FINAL REPORT

STERICYCLE

BRAMPTON, ONTARIO

EMISSION SUMMARY AND DISPERSION MODELLING REPORT RWDI # 2204908 April 19, 2023

SUBMITTED TO

Dan Kokol

Environmental Health & Safety Coordinator dkokol@stericycle.com

Stericycle

95 Deerhurst Drive Brampton, Ontario L6T 5R7

T: 905.595.8532 F: 905.789.5549

SUBMITTED BY

Kirk Easto, d.E.T., QSTI

Senior Project Manager / Principal Kirk.easto@rwdi.com

Anthony Desilva, M.Env.Sc., EPt

Air Quality Scientist Anthony.Desilva@RWDI.com

RWDI AIR Inc.

Consulting Engineers & Scientists

600 Southgate Drive Guelph, Ontario N1G 4P6 T: 519.823.1311 F: 519.823.1316

Emission Summary and Dispersion Modelling Report Checklist

Unit Number Street Number Street Name Deerhurst Drive Province Postal Code Earmpton Earmpton Earmpton Postal Code Earmpton Earmp	Company Na	me						
City/Town Brampton City/Town Brampton City/Town Brampton Cox DN Cox Dox Described Cox DN Cox	Stericycle ULC							
Unit Number Street Number Street Name Deerhurst Drive Province Postal Code Brampton Province ON L6T 5R7 Location of Facility 95 Deerhurst Drive, Brampton, ON L6T 5R7 The attached Emission Summary and Dispersion Modeling Report was prepared in accordance with s. 26 of O. Reg. 419/03 the guidance in the MECP document "Procedure for Preparing an Emission Summary and Dispersion Modelling Report dated March 2009 and "Air Dispersion Modelling Guideline for Ontario" dated March 2009 and the minimum required information identified in the check-list on the reverse of this sheet has been submitted. Company Contact Company Contact Company Contact Name Last Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Telephone Number Signature Date (yyyy/mm/dd) Technical Contact Technical Contact Technical Contact Name Last Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Middle Initial Pepin Date (yyyy/mm/dd) Technical Contact Name First Name Date (yyyy/mm/dd) Technical Contact Name First Name Date (yyyy/mm/dd) Technical Contact Nam	Company Add	ress						
Brampton ON L6T 5R7 Location of Facility 95 Deerhurst Drive, Brampton, ON L6T 5R7 The attached Emission Summary and Dispersion Modeling Report was prepared in accordance with s. 26 of O. Reg. 419/05 the guidance in the MECP document "Procedure for Preparing an Emission Summary and Dispersion Modelling Report" dat March 2009 and "Air Dispersion Modelling Guideline for Ontario" dated March 2009 and the minimum required information identified in the check-list on the reverse of this sheet has been submitted. Company Contact Company Contact Company Contact Name Last Name Pepin First Name Jean-Pierre Title Telephone Number 819 246-4516 Signature Date (yyyy/mm/dd) Technical Contact Name Last Name		Street Number					РО Вох	
95 Deerhurst Drive, Brampton, ON L6T 5R7 The attached Emission Summary and Dispersion Modeling Report was prepared in accordance with s. 26 of O. Reg. 419/03 the guidance in the MECP document "Procedure for Preparing an Emission Summary and Dispersion Modelling Report" dat March 2009 and "Air Dispersion Modelling Guideline for Ontario" dated March 2009 and the minimum required information identified in the check-list on the reverse of this sheet has been submitted. Company Contact Company Contact Company Contact Name Last Name Pepin Title Director, Environment, Health & Safety First Name Jean-Pierre Telephone Number 819 246-4516 Signature Technical Contact Technical Contact Name Last Name Last Name Kirk Telephone Number 519-823-1311	=							
the guidance in the MECP document "Procedure for Preparing an Emission Summary and Dispersion Modelling Report" dat March 2009 and "Air Dispersion Modelling Guideline for Ontario" dated March 2009 and the minimum required information identified in the check-list on the reverse of this sheet has been submitted. Company Contact Company Contact Company Contact Name Last Name Pepin Title Director, Environment, Health & Safety First Name Jean-Pierre Telephone Number 819 246-4516 Date (yyyy/mm/dd) Technical Contact Technical Contact Technical Contact Technical Contact First Name Kirk Middle Initial First Name And Contact Technical Contact Technical Contact Technical Contact Technical Contact Name Last Name Last Name First Name Kirk Telephone Number 519-823-1311		•	L6T 5R7					
Company Contact Name Last Name Pepin Jean-Pierre Title Telephone Number 819 246-4516 Signature Date (yyyy/mm/dd) Technical Contact Name Last Name First Name Kirk Representing RWDI Air Inc. Telephone Number Middle Initial Telephone Number 519-823-1311	the guidance in t March 2009 and	he MECP document ' "Air Dispersion Mode	Procedure for Preparing Hing Guideline for Onta	g an Emission Summary ar rio" dated March 2009 and	nd Dispersio	n Modelli	ing Report" dated	
Company Contact Name Last Name Pepin Title Director, Environment, Health & Safety Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Technical Contact Name Last Name Last Name Easto First Name Kirk Telephone Number 519-823-1311	Company Co	ntact						
Last Name Pepin Title Director, Environment, Health & Safety Signature Technical Contact Technical Contact Name Last Name Easto Kirk Telephone Number 519-823-1311	Company Contac	ct						
Last Name Pepin Title Director, Environment, Health & Safety Signature Technical Contact Technical Contact Name Last Name Easto Kirk Telephone Number 519-823-1311	Company Con	tact Name						
Title Director, Environment, Health & Safety Signature Date (yyyy/mm/dd) Technical Contact Technical Contact Technical Contact Technical Contact First Name Last Name Easto Representing RWDI Air Inc. Telephone Number 819 246-4516 Date (yyyy/mm/dd) Date (yyyy/mm/dd) Date (yyyy/mm/dd) Telephone Number 519-823-1311	• •			First Name		Middle Initial		
Director, Environment, Health & Safety Signature Date (yyyy/mm/dd) Technical Contact Technical Contact Technical Contact Technical Contact Name Last Name Easto Representing RWDI Air Inc. Base Safety Base	Pepin			Jean-Pierre	Jean-Pierre			
Signature Date (yyyy/mm/dd) Technical Contact Technical Contact Technical Contact Name Last Name Easto Representing RWDI Air Inc. Date (yyyy/mm/dd) First Name Kirk Telephone Number 519-823-1311	Title					•		
Technical Contact Technical Contact Technical Contact Name Last Name Easto Representing RWDI Air Inc. Technical Contact Name First Name Kirk Telephone Number 519-823-1311	Director, Enviro	onment, Health & Sa	afety		81	9 246-4	516	
Technical Contact Name Last Name Easto Representing RWDI Air Inc. First Name Kirk First Name Kirk Telephone Number 519-823-1311	Signature				•	Date (y	yyy/mm/dd)	
Technical Contact Name Last Name Easto Representing RWDI Air Inc. First Name Kirk First Name Kirk Telephone Number 519-823-1311	Technical Co	ntact						
Last Name Easto Representing RWDI Air Inc. First Name Kirk Middle Initial Kirk Telephone Number 519-823-1311	Technical Contac	ct						
Easto Kirk Representing Telephone Number 519-823-1311	Technical Con	tact Name						
Representing RWDI Air Inc. Telephone Number 519-823-1311	Last Name			First Name			Middle Initial	
RWDI Air Inc. 519-823-1311	Easto			Kirk				
				· · · · · · · · · · · · · · · · · · ·				
Signature Date (vvvv/mm/dd)	RWDI Air Inc.				519-823-131			
	Signature					Date (y	yyy/mm/dd)	

5357E (2021/02) © Queen's Printer for Ontario, 2021 Disponible en français Page 1 of 3

* This checklist is taken from the document titled "Procedure for Preparing an Emission Summary and Dispersion Modelling Report" dated March 2009.

Emis	sion Summary and Dispersion Modelling Report Checklis	t	
	Required Information	Submitted	Explanation/Reference
	Executive Summary and Emission Summary Table	**	· · ·
	1.1 Overview of ESDM Report	✓ Yes	
do	1.2 Emission Summary Table	✓ Yes	
1.0	Introduction and Facility Description		
	1.1 Purpose and Scope of ESDM Report (when report only represents a portion of facility)	✓ Yes	
	1.2 Description of Processes and NAICS code(s)	✓ Yes	
	1.3 Description of Products and Raw Materials	✓ Yes	
	1.4 Process Flow Diagram	✓ Yes	
	1.5 Operating Schedule	✓ Yes	
2.0	Initial Identification of Sources and Contaminants		
	2.1 Sources and Contaminants Identification Table	✓ Yes	
3.0	Assessment of the Significance of Contaminants and Sources	-	-
-	3.1 Identification of Negligible Contaminants and Sources	✓ Yes	
-	3.2 Rationale for Assessment	✓ Yes	
4.0	Operating Conditions, Emission Rate Estimating and Data Quality		-
	4.1 Description of operating conditions, for each significant contaminant that results in the maximum POI concentration for that contaminant	✓ Yes	
	4.2 Explanation of Method used to calculate the emission rate for each contaminant	✓ Yes	
ē	4.3 Sample calculation for each method	✓ Yes	
**	4.4 Assessment of Data Quality for each emission rate	✓ Yes	
5.0	Source Summary Table and Property Plan		
	5.1 Source Summary Table	✓ Yes	
-	5.2 Site Plan (scalable)	✓ Yes	
6.0	Dispersion Modelling	^	
÷	6.1 Dispersion Modelling Input Summary Table	✓ Yes	
	6.2 Land Use Zoning Designation Plan	✓ Yes	
	6.3 Dispersion Modelling Input and Output Files	✓ Yes	
7.0	Emission Summary Table and Conclusions		_
**	7.1 Emission Summary Table	✓ Yes	
	7.2 Assessment of Contaminants with no MECP POI Limits	✓ Yes	
-	7.3 Conclusions	✓ Yes	
	Appendices (Provide supporting information or details such as)	- mare	-
	Appendix A: Current ECA	✓ Yes	
	Appendix B: Supporting Information for Assessment of Negligibility Appendix C: Natural Gas Combustion Emissions Calculations	✓ Yes	

Required Information	Submitted	Explanation/Reference
Appendix D: Incinerator Source Testing Program Report, October 17, 2022 Appendix E: Generator Emission Calculations Appendix F: Cooling Tower Emission Calculations Appendix G: Dispersion Modelling Input and Output Files	✓ Yes	

5357E (2021/02) Page 3 of 3

RWDI#2204908 April 19, 2023

EXECUTIVE SUMMARY

This Emission Summary and Dispersion Modelling (ESDM) report covers activities at the Deerhurst facility, operated by Stericycle ULC, located at 95 Deerhurst Drive, Brampton, Ontario. This report was prepared in response to an email request from the Ministry of the Environment, Conservation and Parks (MECP) dated 14^{th} of March 2022 for an ESDM report update that includes assessment of compliance with the new sulphur dioxide (SO_2) standard.

The Deerhurst facility receives various streams of biomedical waste which are segregated for the appropriate method of treatment: i) suitable for autoclave treatment, and ii) "must-burn" anatomical, pharmaceutical, or chemotherapy waste for incineration. The facility currently has two autoclaves and one incinerator for the purposes of waste treatment. The incinerator at the facility is approved to operate with the processing capacity of 10 tonnes per day of waste, not to exceed the 670 kg/h design limit.

Under the North American Industry Classification System (NAICS) the facility is classified as 562210, Waste Treatment and Disposal.

For the purposes of estimating emissions from the facility, a maximum operating scenario was considered. The primary scenario considered the predicted impacts due to the incinerator and the natural gas-fired equipment operating simultaneously at their maximum capacity. This scenario was used as the basis for the dispersion modelling analysis, which was conducted for one-hour, 24-hour, monthly, and annual averaging times. Emission rates were determined through emission factors, source testing, engineering calculations, and historical reports.

The facility is located at 95 Deerhurst Drive, Brampton, Ontario, and the property is zoned for industrial use. Properties immediately adjacent to the Deerhurst facility are also zoned for industrial use. Within a radius of 300 m from the Deerhurst facility there are also areas zoned for open space to the north, agricultural to the east and commercial to the south. The local terrain is generally flat, and this was considered in the dispersion modelling analysis.

Concentrations at points of impingement were predicted using the U.S. EPA AERMOD dispersion model, version 19191. Modelling input and output files have been provided in **Appendix G**. Predicted concentrations for all contaminants of significance were found to be less than their respective benchmark values at all receptors in the area. The contaminant with the greatest percentage of a benchmark under normal conditions was predicted to be nitrogen oxides with a value of 57%. Therefore, the Stericycle Deerhurst facility is expected to be in compliance with the requirements of O. Reg. 419/05.

Stericycle 2022 ESDM Update

Receptor	Contaminant	CAS Number	Total Facility Emission Rate (g/s)	Air Dispersion Model Used	Maximum POI Concentration (µg/m³) [6]	Averaging Period (hours)	MECP POI Limit (µg/m³) [1]	Limiting Effect	Regulation Schedule #	Benchmark Category [2]	Percentage of MECP POI Limit (%)
	tions (No Emergency Generator Testing)										
Property Line	Acrolein	107-02-8	9.28E-05	AERMOD	6.40E-02	1	4.5	Health	Schedule 3	B1	1%
Property Line	Acrolein	107-02-8	9.28E-05	AERMOD	2.84E-02	24	0.4	Health	Schedule 3	B1	7%
Property Line	Acrolein	107-02-8	9.28E-05	AERMOD	2.84E-02	24	4	Health	URT	URT	<1%
Property Line	Benzo(a)pyrene	50-32-8	8.81E-08	AERMOD	4.33E-06	8760	0.00001	Health	Schedule 3	B1	43%
Property Line	Benzo(a)pyrene	50-32-8	8.81E-08	AERMOD	2.69E-05	24	0.005	Health	URT	URT	<1%
Property Line	Dioxins, Furans and Dioxin-like PCBs [3][4]	N/A-DF	8.84E-11	AERMOD	2.70E-08	24	0.0000001	Health	Schedule 3	B1	27%
Property Line	Dioxins, Furans and Dioxin-like PCBs [3][4]	N/A-DF	8.84E-11	AERMOD	2.70E-08	24	0.000001	Health	URT	URT	3%
Property Line	Hydrochloric Acid	7647-01-0	8.97E-03	AERMOD	2.74E+00	24	20	Health	Schedule 3	B1	14%
Property Line	Hydrochloric Acid	7647-01-0	8.97E-03	AERMOD	2.74E+00	24	200	Health	URT	URT	1%
Property Line	Hydrofluoric Acid	7664-39-3	1.44E-03	AERMOD	4.40E-01	24	0.86	Vegetation	Schedule 3	B1	51%
Property Line	Hydrofluoric Acid	7664-39-3	1.44E-03	AERMOD	1.02E-01	720	0.34	Vegetation	Schedule 3	B1	30%
Property Line	Nitrogen Oxides	10102-44-0	3.80E-01	AERMOD	1.70E+02	1	400	Health	Schedule 3	B1	43%
Property Line	Nitrogen Oxides	10102-44-0	3.80E-01	AERMOD	1.13E+02	24	200	Health	Schedule 3	B1	57%
Property Line	Particulate Matter	N/A-PM	2.23E-02	AERMOD	2.13E+00	24	120	Visibility	Schedule 3	B1	2%
Property Line	Phosphorus Pentoxide	1314-56-3	2.15E-04	AERMOD	6.57E-02	24	1	Health	Schedule 3	B2	7%
Property Line	Sodium Hydroxide	1310-73-2	2.92E-03	AERMOD	8.94E-01	24	10	Corrosion	Schedule 3	B1	9%
Property Line	Sulphur Dioxide	7446-09-5	5.47E-03	AERMOD	3.77E+00	1	690	Health & Vegetation	Schedule 3	B1	<1%
Property Line	Sulphur Dioxide	7446-09-5	5.47E-03	AERMOD	1.67E+00	24	275	Health & Vegetation	Schedule 3	B1	<1%
Property Line	Sulphur Dioxide	7446-09-5	5.47E-03	AERMOD	3.77E+00	1	690	Health & Vegetation	URT	URT	<1%
Property Line	Sulphur Dioxide [5]	7446-09-5	5.47E-03	AERMOD	3.77E+00	1	100	Health & Vegetation	Schedule 3	B1	4%
Property Line	Sulphur Dioxide [5]	7446-09-5	5.47E-03	AERMOD	2.69E-01	8760	10	Health & Vegetation	Schedule 3	B1	3%
All Sources (In	cludes Emergency Generator Testing) [8][9]										
Property Line	Nitrogen Oxides	10102-44-0	1.69E+00	AERMOD	1.22E+03	0.5	1880	Health	Schedule 3	B1	65%

^{*} Modelling was updated in March 2023 using AERMOD v.19191 with Toronto suburban meteorological data and cdem_030M terrain data.

Notes

[1] The term "MECP POI Limit" identified in Table D-4 of Guideline A-10 refers to the following information (there may be more than one relevant MECP POI Limit for each contaminant):

- Air quality Standards, Guidelines or SL-JSLs set out the MECP publication, "Air Contaminants Benchmark (ACB) List: Standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants", 01 April 2018;
- The Daily Assessment Values (DAV) from the MECP ACB List;
- The Annual Assessment Values (AAV) from the MECP ACB List; or.
- Upper Risk Threshold (URT) from the MECP ACB List; or,
- An acceptable concentration for contaminants with no standards or guidelines.
- [2] Benchmark Categories are set out in the MECP ACB List; Benchmark 1 (B1) refers to Standards or Guidelines, Benchmark 2 (B2) refers to Screening Levels.
- [3] The PCDD/F (ITEQ) based on the total toxicity equivalent for all individual compounds based on stack sampling program conducted by RWDI
- [4] Concentrations in micrograms per cubic metre
- [5] New ACB Standard for Sulphur Dioxide, effective date July 1, 2023.

[6] Individual model runs were conducted using a unit emission rate of 1 g/s for the incinerator source. The model results were multiplied by the actual emission rate for each compound to develop the maximum predicted concentration for each compound. The maximum model results for the unit emission rates are as follows:

0.16 h	(10-minute)	1137	µg/m³
0.5 h		827	$\mu g/m^3$
1 h		689	$\mu g/m^3$
24 h		306	µg/m³
720 h	(Monthly)	71	µg/m³
8760 h	(Annual)	49	µg/m³

[7] As per MECP Guideline A-11, 1-hr POI concentrations are compared to 10 minute and 30 minute POI limits by multiplying by the following standard conversions:

10 minute 1.65 30 minute 1.2

[8] As per MECP guidance on emergency generators (standby power sources), the only significant contaminant from this source will be nitrogen oxides (NOx). All other contaminants have maximum POI concentrations as noted for Normal Operation:
[9] When testing standby power sources, modelling results for NOx are compared to the MECP approvals screening level of 1880 µg/m3 maximum half-hour average at non-sensitive receptors, and for sensitive receptors the 1-hour standard of 400 µg/m3 is used; there are no sensitive receptors in the vicinity of this facility, so the approvals screening level of 1880 µg/m3 maximum half-hour average is used.

RWDI#2204908 April 19, 2023

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Purpose and Scope of ESDM	1
1.2	Description of Process and NAICS Code(s)	1
1.3	Description of Products and Raw Materials	1
1.4	Process Flow Diagram	2
1.5	Operating Schedule	2
2	IDENTIFICATION OF SOURCES & CONTAMINANTS	2
2.1	Existing Approved Sources	3
2.2	Exempt Sources	4
3	SIGNIFICANCE OF SOURCES & CONTAMINANTS	4
3.1 3.1.1 3.1.2	Identification of Negligible Sources	4
3.2 3.2.1 3.2.2	Identification of Insignificant Contaminants Insignificant Contaminants Rationale for Assessment	5
4	OPERATING CONDITIONS, EMISSIONS ESTIMATING & DATA QUALITY	6
4.1	Description of Operating Conditions	6
4.2 4.2.1 4.2.2 4.2.3 4.2.4	Explanation of Method Used to Calculate the Emission Rate	6 7 7
4.3	Sample Calculation for Each Method	
4.3.1 4.3.2	Natural Gas-Fired Combustion Equipment	
4.3.3 4 3 4	Emergency Generator	8 8

RWDI#2204908 April 19, 2023

4.4	Assessment of Data Quality for Each Emission RateRate	8
5	SOURCE SUMMARY TABLE & PROPERTY PLAN	8
5.1	Source Summary Table	8
5.2	Site plan (Scaleable)	8
6	DISPERSION MODELLING	8
6.1	Dispersion Modelling Input Summary Table	8
6.2	Land Use Designation Plan	8
6.3	Dispersion Modelling Input and Output Files	8
7	EMISSION SUMMARY TABLE & CONCLUSIONS	9
7.1	Emission Summary Table	9
7.2	Contaminants without Standards or Guidelines under O. Reg. 419/05	9
7.3	Conclusions	9
7.4	Statement of Limitations	10

RWDI#2204908 April 19, 2023

LIST OF TABLES

Table 2.1: Source and Contaminants Identification Table

Table 5.1: Source Summary Table

Table 6.1: Dispersion Modelling Input Summary Table

Table 7.1: Emission Summary Table

LIST OF FIGURES

Figure 1.4: Process Flow Diagram

Figure 5.2: Site Plan

Figure 6.2: Land Use Zoning and Designation

LIST OF APPENDICES

Appendix A: Current ECA

Appendix B: Supporting Information for Assessment of Negligibility

Appendix C: Natural Gas Combustion Emissions Calculations

Appendix D: Incinerator Source Testing Program Report, October 17, 2022

Appendix E: Emergency Generator Emission Calculations

Appendix F: Cooling Tower Emission Calculations

Appendix G: Dispersion Modelling Input & Output Files

RWDI#2204908 April 19, 2023

1 INTRODUCTION

1.1 Purpose and Scope of ESDM

This Emission Summary and Dispersion Modelling (ESDM) report covers activities at the Deerhurst facility, operated by Stericycle ULC, located at 95 Deerhurst Drive, Brampton, Ontario. This report was prepared in response to an email request from the Ministry of the Environment, Conservation and Parks (MECP) dated 14th of March 2022 for an ESDM report update that includes assessment of compliance with the new sulphur dioxide (SO₂) standard.

This ESDM report includes the following updates:

- Assessment of compliance with the new SO₂ standard, effective July 1, 2023;
- Upgrade, relocation, and updated emission rates of the emergency power supply (STACK03);
- Removal of one natural gas-fired backup boiler (STACK05);
- Updated emission rates for natural gas-fired heating equipment;
- Updated emission rates based on most recent incinerator stack testing values (STACK01); and
- Prediction of maximum point of impingement (POI) concentrations using US EPA AERMOD dispersion model version 19191.

1.2 Description of Process and NAICS Code(s)

The Deerhurst facility began operation in 1999 as a waste management facility. The facility accepts waste materials that have been collected from hospitals, doctor's offices, and industries involved in the health care industry. The facility currently has two autoclaves and one incinerator for the purposes of waste treatment. The incinerator at the facility is approved to operate with a processing capacity up to a maximum of 10 tonnes per day of waste, not to exceed 670 kilograms per hour at any time.

Under the North American Industry Classification System (NAICS) the facility is classified as 562210, Waste Treatment and Disposal.

1.3 Description of Products and Raw Materials

The Deerhurst facility receives various streams of biomedical waste which are segregated for the appropriate method of treatment: i) suitable for autoclave treatment, and ii) "must-burn" anatomical, pharmaceutical, or chemotherapy waste for incineration.

Following receipt of the waste from a fleet of transport vehicles, the material suitable for sterilization is unloaded into carts and the carts are placed into the autoclaves for processing. Following sterilization in the autoclave, the materials are placed in a compactor bin for transport to a sanitary landfill.

RWDI#2204908 April 19, 2023

The incinerator is a two-stage controlled air incinerator with a design limit of 670 kg/h of waste to be treated. In addition to this design limit, the ECA also specifies a maximum processing capacity of 10 tonnes per day of waste. The exhaust gases from the incinerator are directed to a rapid quench, wet scrubber, carbon bed filter based air pollution control system before being discharged through an induced draft fan to the stack. The incinerator is equipped with an in-line ash hole for wet ash removal from the primary chamber. The ash is collected in a large container for transport to landfill. The incinerator is equipped with an air pollution control system, manufactured by EMCOTEK, which includes a selective, non-catalytic reduction (SNCR) system to control nitrogen oxide emissions.

1.4 Process Flow Diagram

Figure 1.4 in the Figures Section provides the process flow diagrams for the facility.

1.5 Operating Schedule

The Stericycle Deerhurst facility operates 24 hours per day and 7 days per week. The facility receives waste from a fleet of collection vehicles which deliver the waste to an unloading dock at the rear of the facility. As described above, the facility currently has two autoclaves and one incinerator for the purposes of waste treatment.

The incinerator operates on a campaign basis amassing waste until there is sufficient volume to burn for a reasonable period and then burning wastes are depleted. The incinerator is then shut down for maintenance. The current approval restricts the total amount of waste that can be burned to 10 tonnes per day, not to exceed 670 kilograms per hour at any time.

The autoclaves are operated 16 hours per day and 6 days per week. They operate in batch mode with each batch taking between 60 and 75 minutes to process. The boiler peak load will occur when the autoclaves are operational, however the steam used to reheat the exhaust gases from the incinerator prior to entering the carbon filter requires the boiler to be on low fire when the incinerator is operating.

Emergency generation equipment is operated as needed and in test mode to meet the appropriate CSA codes. General ventilation of the shops is a combination of make-up air units that supply the air and interconnected purpose-designed exhaust systems.

2 IDENTIFICATION OF SOURCES & CONTAMINANTS

Table 2.1 in the Tables Section provides the Source and Contaminants Identification Table. Detailed source parameters are provided on Table 5.1. A list of the sources included in this ESDM Report is provided below:

RWDI#2204908 April 19, 2023

2.1 Existing Approved Sources

- One (1) main natural gas-fired heating boiler (STACK04) with a maximum heat input rating of 18,700,000 kJ/h. The principal purpose of the boiler at the Stericycle Deerhurst facility is to provide steam to the autoclaves, although they also provide heat for the incinerator flue gas re-heat system in the Air Pollution Control (APC) system. The boiler supplier has provided a guarantee that the boiler meets MECP Guideline A9 requirements. A copy of this guarantee is provided in **Appendix C**.
- One (1) incinerator main stack (STACK01). The incinerator is a JOY ECLAIRE 2500 TESI W/SR62H equipped with an in-line ash hole for wet ash removal from the primary chamber. The unit is equipped with a 2 yard hydraulic ram feeder with internal stoker and cart lifter. The unit was designed with a secondary chamber that provides 2-second retention time at an operating temperature of 1000°C. Source parameters and emission rates have been updated to the most recent results from the Incinerator Source Testing Program, provided in **Appendix D**.
- One (1) incinerator bypass stack (STACK02). The incinerator, described above, is equipped with a refractory lined 1.07 m diameter bypass stack complete with valve and a connection to route stack gases to the APC system. The bypass stack allows for the exhaust gases to be removed from the incinerator when the APC system is not able to function. The APC system will not function during an electrical power outage and so the bypass stack allows for the exhaust of gases while the incinerator is shutdown. Malfunction of components of the APC system, such as the quench system, also require the use of the bypass stack to allow for restoration of proper function. When the bypass is used due to failure or malfunction of the APC system, an emergency shutdown procedure is initiated for the incinerator. Any time the bypass is opened the Spills Action Centre must be notified immediately. Since operation of the bypass is for transitory emergency situations and immediately initiates an emergency shutdown of the incinerator and notification to the Spills Action Centre, the incinerator bypass was not considered in modelling.
- One diesel-fired emergency generator (STACK03), having a maximum output rating of 500 kWe.
- Ten (10) space heating units (STACK06 to STACK15) with a combined total heat input rating of 1,423,000 kJ/h.
- One (1) container washing system and power washer (STACK16). As part of the container washing a
 system, a power washer is used to clean the containers. The washer is heated by a steam coil and not fired
 by natural gas.
- One (1) natural gas-fired dryer (STACK17).
- One (1) natural gas-fired make-up air unit (STACK18), with a maximum heat input rating of 132,000 kJ/h.

RWDI#2204908 April 19, 2023

- Four (4) items of equipment for the autoclave treatment process, two autoclave holding tanks and two condensers (STACK21 to STACK24). The autoclave process sterilizes waste by heating it to high temperature using a steam autoclave. At the end of the autoclave treatment cycle, steam is released through a large condenser equipped with water sprayers. The water and any condensate collected are routed to a holding tank and discharged to the sanitary sewer system. Should the water valves fail to open, a vent on the condenser allows steam to escape to atmosphere.
- One (1) 405-ton cooling tower (CT1), with a water circulation rate of 76.65 litres per second (1215 US gallons per minute).

2.2 Exempt Sources

• Two (2) building ventilation fans (STACK19 and STACK20), installed on the roof of the processing area. The fans are thermostatically controlled to maintain temperature on the operating floor. In conjunction with the fans, a fresh air intake hood is used to supply fresh air to the operating space. These sources are exempt from the requirement to obtain an ECA as per Section 7 of O. Reg. 524/98, which includes equipment used for the ventilation of indoor air out of a space that does not discharge any contaminant produced by those activities, other than heat or noise.

3 SIGNIFICANCE OF SOURCES & CONTAMINANTS

3.1 Identification of Negligible Sources

3.1.1 Insignificant Sources

The following sources were determined to be insignificant:

- STACK06 to STACK15, STACK18: Space Heating Equipment and Make-up Air Unit
- STACK16: Container Washing System
- STACK19 and STACK20: Exhaust Fans
- STACK21 to STACK24 : Autoclaves and Condensers

3.1.2 Rationale for Assessment

3.1.2.1 STACK06 to STACK15, STACK18: Space Heating Equipment and Make-up Air Unit

These sources are space heaters and a make-up air unit fired by natural gas. Section 7.2.2 of the MECP Guideline A10 states that "sources that, in combination, represent less than 5% of total property-wide emissions of a contaminant can, in many cases, be considered insignificant". As shown in **Appendix C**, combined emissions of nitrogen oxides for this space heating equipment plus the make-up air unit was calculated to be 1.82E-02 g/s, which is 4.6% of the total emissions of nitrogen oxides for the facility, and therefore STACK06 to STACK15 and STACK18 have been considered insignificant sources of nitrogen oxides.

RWDI#2204908 April 19, 2023

3.1.2.2 STACK16: Container Washing System

This source is a power washer that is heated by steam coil. As the power washer is not fired by natural gas it is considered to be negligible.

3.1.2.3 STACK19 and STACK20: Exhaust Fans

These fans provide general ventilation for the interior space and are not expected to discharge any contaminant other than heat.

3.1.2.4 STACK21 to STACK24: Autoclaves and Condensers

The Emission Summary and Dispersion Modelling Report prepared by A.J. Chandler & Associates Ltd. for the Stericycle Deerhurst facility, December 2007, describes exhaust testing that was required for the autoclave and condenser following commencement of operation. Samples were collected from the condenser and the quantity of VOCs in the condenser samples was found to be generally low. In addition, it is described in the Chandler report that since the duration of the releases from the facility is on the order of 4 minutes, after which flow ceases, not enough chemicals are released to result in a one-hour average and compare to a POI value. With the findings of the testing and based on the operation conditions, the autoclave holding tanks and the condensers are considered to be negligible.

3.2 Identification of Insignificant Contaminants

3.2.1 Insignificant Contaminants

The following contaminants were determined to be insignificant:

- Contaminants other than nitrogen oxides from emergency generators
- Contaminants other than nitrogen oxides from natural gas-fired combustion equipment
- Contaminants screened out using an Emission Threshold

3.2.2 Rationale for Assessment

3.2.2.1 Contaminants other than Nitrogen Oxides from Emergency Generators

The MECP emergency generator guideline, Information for Proponents Applying for a Certificate of Approval (Air) for an Emergency Generator, August 2008, states that the significant contaminants emitted to the atmosphere from an emergency generator are nitrogen oxides (NOx). Other contaminants, for these types of sources, are generally emitted in negligible amounts.

3.2.2.2 Contaminants other than Nitrogen Oxides from Natural Gas-Fired Combustion Equipment

As per the MECP Guideline A-10, the significant contaminant for the combustion of natural gas and propane may be nitrogen oxides. Other contaminants, for this type of source, are generally emitted in negligible amounts.

RWDI#2204908 April 19, 2023

3.2.2.3 Contaminants screened out using the Emissions Threshold

As per the MECP Guideline A-10, aggregate facility-wide emissions of a contaminant may be compared to a calculated site-specific emission threshold to evaluate whether the contaminant is significant. The Emission Threshold is calculated using a conservative dispersion factor (μ g/m³ per g/s emission) and the relevant standard or guideline under O. Reg. 419/05. For chemicals without limits under O. Reg. 419/05, the MECP de minimus Points of Impingement (POI) concentrations (24-hour average basis) presented on Table B-2A in Appendix B.1 of MECP Guideline A-10 can be used (unless the chemical is listed on Table B-2B of MECP Guideline A-10).

If the aggregate facility-wide emission rate of a contaminant multiplied by the appropriate dispersion factor from Appendix B.1 of the MECP Guideline A-10 is less than 50% of the limit under O. Reg. 419/05, or is less than the appropriate de minimus value (or converted to a 24-hour average concentration in the case of 24-hour average limit under O. Reg. 419/05), then the assessment for that contaminant is complete.

Contaminants screened out using the emission threshold are listed in **Appendix B**.

Sulphur Dioxide was screened out on this basis but was carried through to the assessment based on the MECP request that compliance with the new SO₂ limits be assessed.

4 OPERATING CONDITIONS, EMISSIONS ESTIMATING & DATA QUALITY

4.1 Description of Operating Conditions

Section 10 of O. Reg. 419/05 states that, for the purposes of an ESDM report, an acceptable operating scenario to consider is one that would result, for a given contaminant, in the highest concentration of that contaminant at Points of Impingement (POI's) that the facility is capable of causing. To satisfy this requirement, a maximum production scenario was developed in consultation with Stericycle Deerhurst.

For the purposes of this report, two operating scenarios were investigated. The first scenario assessed the predicted impacts due to the incinerator and the natural gas-fired equipment operating simultaneously at their maximum capacity. The second scenario included all of the equipment included in Scenario 1 plus the testing of the emergency generator.

4.2 Explanation of Method Used to Calculate the Emission Rate

4.2.1 Natural Gas-Fired Combustion Equipment

Emissions from the 400 BHP main boiler (STACK04) were estimated using the manufacturer's emission specifications, provided in **Appendix C**. The manufacturer guarantees a maximum in-stack concentration of 48 ppm of nitrogen oxides. This was converted to an emission rate using the exhaust gas temperature stated on the specification sheet, and assuming atmospheric pressure of 101.3 kPa.

RWDI#2204908 April 19, 2023

Emissions from natural gas-fired heating equipment were estimated using factors from US EPA AP-42 Chapter 1.4 and the maximum heat input for the equipment. This is summarized in **Appendix C**.

4.2.2 Incinerator

The incinerator stack gas flow conditions and the emission rates for the contaminants were based upon the latest stack testing results, Incinerator Source Testing Program Report, October 17, 2022. A copy of this report has been provided in **Appendix D**.

4.2.3 Emergency Generator

A new EPA-certified emergency diesel-fired generator was installed in 2016 and is expected to conform to EPA Tier 3 emission standard for stationary compression ignition engines. The EPA Tier 3 standards do not necessarily account for transitional use of the engines, such as during start up during a generator test.

A generator test of one-hour duration was assumed. The initial 15 minutes were assumed to conform to uncontrolled emissions from a stationary diesel engine, with emissions factors as described in AP-42 Table 3.3-1. Following this start up period, the engine was assumed to operate in compliance with EPA Tier 3 standards. A weighted average of these emission rates was calculated for the hour, and this was used as the emission rate of nitrogen oxides for one-hour and 24-hour AERMOD modelling. Sample calculations and additional information are provided in **Appendix E**.

4.2.4 Cooling Tower

The MECP requires the assessment of two air quality concerns for cooling towers: particulate emissions; and the visible (fogging) impacts of the cooling tower exhaust plumes. The worst-case scenario for the fogging impact assessment included the cooling tower operating continuously during the winter months. The MECP has a Cooling Tower Guideline to calculate the visible plume length extending from the operating towers during a worst-case January day. We recognise that this is an unlikely scenario as cooling towers typically do not operate in the winter months. The visible plume calculations are based on the exhaust exit temperature, local ambient temperature, relative humidity, and saturation curves. This guideline was followed, and calculations are provided in **Appendix F**.

The cooling tower was also examined for particulate emissions. Particulate emissions were calculated using AP-42 Chapter 13.4 "Wet Cooling Towers". The emission rates from the cooling towers were based on total dissolved solids (TDS) and drift loss obtained from the manufacturer. Particulate emission calculations for the cooling towers are included in **Appendix F**.

4.3 Sample Calculation for Each Method

4.3.1 Natural Gas-Fired Combustion Equipment

Refer to **Appendix C** for example calculations for the boiler and other heating equipment.

4.3.2 Incinerator

Refer to **Appendix D** for the Incinerator Source Testing Program Report, October 17, 2022.

RWDI#2204908 April 19, 2023

4.3.3 Emergency Generator

Refer to **Appendix E** for example calculations for the diesel-fired emergency generator.

4.3.4 Cooling Tower

Refer to **Appendix F** for example calculations for the cooling tower.

4.4 Assessment of Data Quality for Each Emission Rate

The assessment of data quality for each emission rate is provided in the Source Summary Table and is based on the AP-42 data quality ratings.

5 SOURCE SUMMARY TABLE & PROPERTY PLAN

5.1 Source Summary Table

Table 5.1 in the Tables Section provides the Source Summary Table for the facility.

5.2 Site plan (Scaleable)

Figure 5.2 in the Figures Section provides the site plan for the facility.

6 DISPERSION MODELLING

6.1 Dispersion Modelling Input Summary Table

Table 6.1 in the Tables Section provides the Dispersion Modelling Input Summary Table for the facility.

6.2 Land Use Designation Plan

Figure 6.2 in the Figures Section provides the zoning designation.

The site is zoned for industrial use and is surrounded by properties also zoned for industrial use. Within a radius of 300 m from the facility there are also areas zoned for open space to the north, agricultural to the east and commercial to the south. The local terrain is generally flat.

6.3 Dispersion Modelling Input and Output Files

Modelling input and output files have been provided in **Appendix G**.

RWDI#2204908 April 19, 2023

7 EMISSION SUMMARY TABLE & CONCLUSIONS

7.1 Emission Summary Table

Table 7.1 in the Tables Section provides the Emission Summary Table for the facility.

7.2 Contaminants without Standards or Guidelines under O. Reg. 419/05

All contaminants identified in the emission inventory have established benchmark values listed in the MECP Workbook Air Contaminants Benchmarks (ACB) List: Standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants, Version 2.0 - April, 2018.

7.3 Conclusions

Concentrations at points of impingement were predicted using the U.S. EPA AERMOD dispersion model, version 19191. Predicted concentrations for all contaminants of significance were found to be less than their respective benchmark values at all receptors in the area. The contaminant with the greatest percentage of a benchmark under normal conditions was predicted to be nitrogen oxides with a value of 57%. Therefore, the Stericycle Deerhurst facility is expected to be in compliance with the requirements of O. Reg. 419/05.

RWDI#2204908 April 19, 2023

7.4 Statement of Limitations

This report entitled Emission Summary and Dispersion Modelling Report, dated March 31, 2023, was prepared by RWDI AIR Inc. ("RWDI") for Stericycle ULC ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared. Because the contents of this report may not reflect the final design of the Project or subsequent changes made after the date of this report, RWDI recommends that it be retained by Client during the final stages of the project to verify that the results and recommendations provided in this report have been correctly interpreted in the final design of the Project.

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and to understand the different factors which may impact the conclusions and recommendations provided.

TABLES

1.1 Summary of Changes Stericycle 2022 ESDM Update

Process Description	Source(s) Affected	Contaminant	Original Emission Rate (g/s)	New Emission Rate (g/s)	Comment						
2022 ESDM Update (March 2023) - PN #2204908											
Upgraded the emergency standby diesel generator equipment to a new unit (model Generac SD500)	STACK03	Nitrogen Oxides	2.7		New diesel generator has been moved from the interior of the facility to a location outdoors at the back of the facility. As per the MECP Emergency Generator Checklist, all contaminants emitted though combustion by an emergency generator except for nitrogen oxides are considered negligible; contaminants that had been modelled in previous assessments are no longer included.						
Removal of one natural gas-fired backup boiler, rated at maximum heat input of 9,284,000 kJ/h.	STACK05	Nitrogen Oxides	1.10E-01	0							

RWDI# 2204908

2.1 Sources and Contaminant Identification Table

Stericycle 2022 ESDM Update

	Sour		Included in	e: 10 to	Reference				
Source ID	Source Description or Title	Source Description or Title Thermal Input Rating BTU/hr KJ/hr		General Location	Expected Contaminants	Modelling? (yes / no)	Significant? (yes / no)	(optional)	
Existing Approved Sources									
STACK01	Incinerator Main Stack			On roof	Products of Combustion	Yes	Yes		
STACKUT	Incinerator Main Stack			On root	Organics and Inorganics	Yes	Yes		
CTA CI(OO				0 (Products of Combustion	No	No		
STACK02	Incinerator Bypass Stack			On roof	Organics and Inorganics	No	No		
STACK03	500 eKW Diesel generator (Emergency Standby)			Northeast corner of property	Products of Combustion	Yes	Yes	[1]	
STACK04	Natural gas-fired heating boiler (Main)	17,724,110	18,700,000	On roof	Products of Combustion	Yes	Yes	[2]	
STACK06	Roof top heating unit	120,372	127,000	On roof	Products of Combustion	No	No	[2][3]	
STACK07	Roof top heating unit	90,042	95,000	On roof	Products of Combustion	No	No	[2][3]	
STACK08	Roof top heating unit	90,042	95,000	On roof	Products of Combustion	No	No	[2][3]	
STACK09	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK10	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK11	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK12	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK13	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK14	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK15	IR heating unit	149,755	158,000	On roof	Products of Combustion	No	No	[2][3]	
STACK16	Power Washer			On roof	None	No	No		
STACK17	Dryer	199,989	211,000	On roof	Products of Combustion	Yes	Yes	[2]	
STACK18	Roof-mounted MAU	125,111	132,000	On roof	Products of Combustion	No	No	[2][3]	
STACK19	Building General Exhaust Fan			On roof	General Ventilation	No	No	Section 3.1.2.3	
STACK20	Building General Exhaust Fan			On roof	General Ventilation	No	No	Section 3.1.2.3	
STACK21	Autoclave Holding Tank Vent			On roof	Process Vent VOC / Steam	No	No	Section 3.1.2.4	
STACK22	Autoclave Holding Tank Vent			On roof	Process Vent VOC / Steam	No	No	Section 3.1.2.4	
STACK23	Condenser (Autoclave system)			On roof	Process Vent VOC / Steam	No	No	Section 3.1.2.4	
STACK24	Condenser (Autoclave system)			On roof	Process Vent VOC / Steam	No	No	Section 3.1.2.4	
CT1	Cooling Tower			On roof	Particulate Matter	Yes	Yes		
Sources to	be Removed from Assessment								
STACK05	Natural gas-fired heating boiler (Back-up)	8,880,064	9,369,000	On roof	Products of Combustion	No	No		

Notes

^[1] As per the MECP Emergency Generator Checklist, all contaminants emitted though combustion by an emergency generator except for nitrogen oxides are considered negligible.

^[2] As per Guideline A-10, Section 7.1.1, all contaminants emitted through natural gas and propane combustion except for nitrogen oxides are considered negligible.

^[3] As per Guideline A-10, Section 7.2.2, these sources in combination represent less than 5% of total facility emissions of nitrogen oxides, and are therefore deemed insignificant.

5.1 Source Summary Table (by source)

Stericycle 2022 ESDM Update

		Source Data								Emission Data							
Source ID	Source Type	Source Description	Stack Volumetric Flow Rate (Am³/s)	Stack Exit Gas Temp. (°C)	Stack Inner Diameter (m)	Stack Exit Velocity (m/s)	Stack Height Above Grade (m)	Stack Height Above Roof (m)	Source Coordinates X Y (m) (m)		Contaminant	CAS Number	Maximum Emission Rate (g/s)	Averaging Period (hours)	Emission Estimating Technique ^[1]	Emissions Data Quality ^[2]	Percentage of Overall Emissions (%)
STACK01	Point	Incinerator	2.13	49	0.61	7.30	18.30	11.10	607470	4844268	Acrolein	107-02-8	9.28E-05	24	V-ST	Above-Average	100%
		- Main Stack of Air Pollution Control System									Benzo(a)pyrene	50-32-8	8.81E-08	24	V-ST	Above-Average	100%
											Dioxins, Furans and Dioxin-like PCBs	N/A-DF	8.84E-11	24	V-ST	Above-Average	100%
											Hydrochloric Acid	7647-01-0	8.97E-03	24	V-ST	Above-Average	100%
											Hydrofluoric Acid	7664-39-3	1.44E-03	24	V-ST	Above-Average	100%
											Nitrogen Oxides	10102-44-0	2.28E-01	24	V-ST	Above-Average	57%
											Particulate Matter	N/A-PM	6.97E-03	24	V-ST	Above-Average	31%
											Phosphorus Pentoxide	1314-56-3	2.15E-04	24	V-ST	Above-Average	100%
											Sodium Hydroxide	1310-73-2	2.92E-03	24	V-ST	Above-Average	100%
											Sulphur Dioxide	7446-09-5	5.47E-03	1	V-ST	Above-Average	100%
STACK04	Point	400 HP Boiler (Main)	3.18	280	0.60	11.28	9.23	2.03	607450	4844276	Nitrogen Oxides	10102-44-0	1.50E-01	24	EF	Above-Average	38%
CT1	Point	Cooling Tower	104	32	3.35	11.78	12.10	4.90	607465	4844258	Particulate Matter	N/A-PM	1.53E-02	24	EF	Marginal	69%
NG_COMB	Volume	Natural gas-fired heating equipment (STACK17)			n/	'a			607450	4844265	Nitrogen Oxides	10102-44-0	2.47E-03	24	EF	Marginal	<1%
Insignificant	Sources																
NG_COMB		Natural gas-fired heating equipment (STACK 6-15	, STACK 18)						607450	4844265	Nitrogen Oxides	10102-44-0	1.82E-02	24	EF	Marginal	5%
Emergency T	esting Scenario	0															
STACK03	Point	500kW Diesel Generator (Emergency Standby)	1.87	550	0.20	57.56	2.50	n/a	607464	4844320	Nitrogen Oxides	10102-44-0	1.31E+00	24	EF	Marginal	n/a
											Total NOx Emission Rate		1.69E+00				
											Contaminant	CAS	Total All Sources	Total Significant Sources			
Total		Total of all listed sources									Acrolein	107-02-8	9.28E-05	9.28E-05			100%
											Benzo(a)pyrene	50-32-8	8.81E-08	8.81E-08			100%
											Dioxins, Furans and Dioxin-like PCBs	N/A-DF	8.84E-11	8.84E-11			100%
											Hydrochloric Acid	7647-01-0	8.97E-03	8.97E-03			100%
											Hydrofluoric Acid	7664-39-3	1.44E-03	1.44E-03			100%
											Nitrogen Oxides	10102-44-0		3.80E-01			100%
											Particulate Matter	N/A-PM	2.23E-02	2.23E-02			100%
											Phosphorus Pentoxide	1314-56-3	2.15E-04	2.15E-04			100%
											Sodium Hydroxide	1310-73-2	2.92E-03	2.92E-03			100%
											Sulphur Dioxide	7446-09-5	5.47E-03	5.47E-03			100%

Notes:

[1] Emission Estimating Technique Short-Forms are V-ST (Validated Source Test), "ST" (Source Test), EF (Emission Factor), MB (Mass Balance), and EC (Engineering Calculation).

6.1 Dispersion Modelling Input Summary Table Stericycle 2022 ESDM Update

Relevant		
Section of the	Section Title	Description of How the Approved Dispersion Model was Used
Regulation		
Section 8	Negligible Sources	Sources STACK06 to STACK15 and STACK18 were considered negligible because these sources in combination represent less than 5% of total facility emissions of nitrogen oxides, and therefore were not included in the modelling.
Section 9	Same Structure Contamination	Assessment of same structure contamination is not required for this facility.
Section 10	Operating Conditions	Please refer to Section 4.1 of the ESDM report. For the purposes of this application a maximum operating scenario was applied; this consists of all equipment operating simultaneously at their individual maximum capacities.
Section 11	Source of Contaminant Emission Rates	Please refer to section 4.0 of the ESDM report for an explanation of the methods used to estimate contaminant emissions. The source summary table (Table 5.1) includes an assessment of how accurately the methods estimate the emission rate.
Section 12	Combined Effect of Assumptions for Operating Conditions and Emission Rates	The operating conditions and emission rates (as described in previous sections) were used in an approved dispersion model. The model-predicted results that were less than the applicable POI limits; therefore, no further refinements were made to either the operating conditions or the emission rates.
Section 13	Meteorological Conditions	The facility is located in Brampton; therefore, the Central Region meteorological data set is recommended by the MECP for use at this site. This includes surface data from Pearson International Airport in Toronto and upper air data from Buffalo, New York. Within each region, the MECP provides alternative data sets with the choice of data set depending on the character of the terrain at the study site. The area surrounding the facility is primarily industrial; therefore, the default data set for "suburban" was used.
Section 14	Area of Modelling Coverage	The area of modelling coverage was designed to meet the requirements outlined in Section 14 of O. Reg. 419/05. A multi-tiered receptor grid was developed as per Section 7.2 of Guideline A-11, Version 3.0, February 2017. Interval spacing was dependent on receptor distance from on-site sources. Receptors on site were removed from the assessment.
Section 15	Stack Height for Certain New Sources of Contaminant	All stack heights are within the allowable stack height obtained using the stack height formula defined under Section 15 of O. Reg. 419/05. As such, building downwash effects have been considered in the dispersion modelling by using the US-EPA's Building Profile Input Program (BPIP) associated with the AERMOD model.
Section 16	Terrain Data	Terrain information for the area surrounding the facility was obtained from the MECP Regional Meteorological and Terrain Data for Air Dispersion Modelling website. The terrain data is based on the Canadian Digital Elevation Model (CDEM) horizontal reference datum. These data were run through the AERMAP terrain pre-processor to estimate base elevations for sources and receptors to help the model account for changes in elevation in the surrounding terrain.
Section 17	Averaging Periods	Emissions were modelled using the 1-hour, 24-hour, month and annual averaging period options in the AERMOD dispersion model. Half-hour averages were calculated based on the conversion factor equation provided in Guideline A-10, Table 7-1.

RWDI# 2204908

Stericycle 2022 ESDM Update

Receptor	Contaminant	CAS Number	Total Facility Emission Rate (g/s)	Air Dispersion Model Used	Maximum POI Concentration (µg/m³) [6]	Averaging Period (hours)	MECP POI Limit (µg/m³) [1]	Limiting Effect	Regulation Schedule #	Benchmark Category [2]	Percentage of MECP POI Limit (%)
Normal Opera	tions (No Emergency Generator Testing)										
Property Line	Acrolein	107-02-8	9.28E-05	AERMOD	6.40E-02	1	4.5	Health	Schedule 3	B1	1%
Property Line	Acrolein	107-02-8	9.28E-05	AERMOD	2.84E-02	24	0.4	Health	Schedule 3	B1	7%
Property Line	Acrolein	107-02-8	9.28E-05	AERMOD	2.84E-02	24	4	Health	URT	URT	<1%
Property Line	Benzo(a)pyrene	50-32-8	8.81E-08	AERMOD	4.33E-06	8760	0.00001	Health	Schedule 3	B1	43%
Property Line	Benzo(a)pyrene	50-32-8	8.81E-08	AERMOD	2.69E-05	24	0.005	Health	URT	URT	<1%
Property Line	Dioxins, Furans and Dioxin-like PCBs [3][4]	N/A-DF	8.84E-11	AERMOD	2.70E-08	24	0.0000001	Health	Schedule 3	B1	27%
Property Line	Dioxins, Furans and Dioxin-like PCBs [3][4]	N/A-DF	8.84E-11	AERMOD	2.70E-08	24	0.000001	Health	URT	URT	3%
Property Line	Hydrochloric Acid	7647-01-0	8.97E-03	AERMOD	2.74E+00	24	20	Health	Schedule 3	B1	14%
Property Line	Hydrochloric Acid	7647-01-0	8.97E-03	AERMOD	2.74E+00	24	200	Health	URT	URT	1%
Property Line	Hydrofluoric Acid	7664-39-3	1.44E-03	AERMOD	4.40E-01	24	0.86	Vegetation	Schedule 3	B1	51%
Property Line	Hydrofluoric Acid	7664-39-3	1.44E-03	AERMOD	1.02E-01	720	0.34	Vegetation	Schedule 3	B1	30%
Property Line	Nitrogen Oxides	10102-44-0	3.80E-01	AERMOD	1.70E+02	1	400	Health	Schedule 3	B1	43%
Property Line	Nitrogen Oxides	10102-44-0	3.80E-01	AERMOD	1.13E+02	24	200	Health	Schedule 3	B1	57%
Property Line	Particulate Matter	N/A-PM	2.23E-02	AERMOD	2.13E+00	24	120	Visibility	Schedule 3	B1	2%
Property Line	Phosphorus Pentoxide	1314-56-3	2.15E-04	AERMOD	6.57E-02	24	1	Health	Schedule 3	B2	7%
Property Line	Sodium Hydroxide	1310-73-2	2.92E-03	AERMOD	8.94E-01	24	10	Corrosion	Schedule 3	B1	9%
Property Line	Sulphur Dioxide	7446-09-5	5.47E-03	AERMOD	3.77E+00	1	690	Health & Vegetation	Schedule 3	B1	<1%
Property Line	Sulphur Dioxide	7446-09-5	5.47E-03	AERMOD	1.67E+00	24	275	Health & Vegetation	Schedule 3	B1	<1%
Property Line	Sulphur Dioxide	7446-09-5	5.47E-03	AERMOD	3.77E+00	1	690	Health & Vegetation	URT	URT	<1%
Property Line	Sulphur Dioxide [5]	7446-09-5	5.47E-03	AERMOD	3.77E+00	1	100	Health & Vegetation	Schedule 3	B1	4%
Property Line	Sulphur Dioxide [5]	7446-09-5	5.47E-03	AERMOD	2.69E-01	8760	10	Health & Vegetation	Schedule 3	B1	3%
Emergency Ger	nerator Testing [8][9]	•								•	
Property Line	Nitrogen Oxides	10102-44-0	1.69E+00	AERMOD	1.22E+03	0.5	1880	Health	Schedule 3	B1	65%

^{*} Modelling was updated in March 2023 using AERMOD v.19191 with Toronto suburban meteorological data and cdem_030M terrain data.

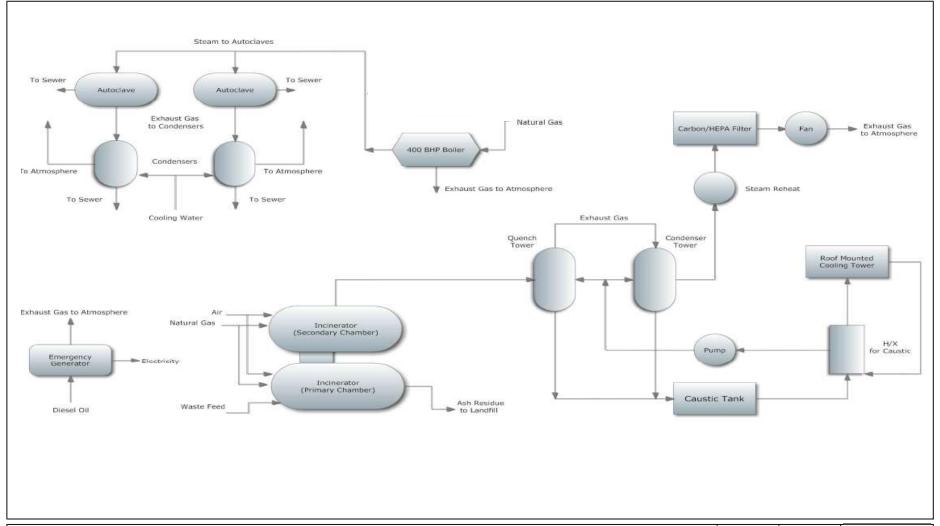
Notes:

[1] The term "MECP POI Limit" identified in Table D-4 of Guideline A-10 refers to the following information (there may be more than one relevant MECP POI Limit for each contaminant):

- Air quality Standards, Guidelines or SL-JSLs set out the MECP publication, "Air Contaminants Benchmark (ACB) List: Standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants", 01 April 2018;
- The Daily Assessment Values (DAV) from the MECP ACB List;
- The Annual Assessment Values (AAV) from the MECP ACB List; or,
- Upper Risk Threshold (URT) from the MECP ACB List; or,
- An acceptable concentration for contaminants with no standards or guidelines.
- [2] Benchmark Categories are set out in the MECP ACB List; Benchmark 1 (B1) refers to Standards or Guidelines, Benchmark 2 (B2) refers to Screening Levels.
- [3] The PCDD/F (ITEQ) based on the total toxicity equivalent for all individual compounds based on stack sampling program conducted by RWDI
- [4] Concentrations in micrograms per cubic metre
- [5] New ACB Standard for Sulphur Dioxide, effective date July 1, 2023.
- [6] Individual model runs were conducted using a unit emission rate of 1 g/s for the Incinerator source. The model results were multiplied by the actual emission rate for each compound to develop the maximum predicted concentration for each compound. The maximum model results for the unit emission rates are as follows:

0.16 h (10-minute)	1137 µg/m³
0.5 h	827 µg/m³
1 h	689 μg/m³
24 h	306 μg/m ³
720 h (Monthly)	71 µg/m ³
8760 h (Annual)	49 μg/m ³

[7] As per MECP Guideline A-11, 1-hr POI concentrations are compared to 10 minute and 30 minute POI limits by multiplying by the following standard conversions:


10 minute 1.65 30 minute 1.2

[8] As per MECP guidance on emergency generators (standby power sources), the only significant contaminant from this source will be nitrogen oxides (NOx). All other contaminants have maximum POI concentrations as noted for Normal Operations.

[9] When testing standby power sources, modelling results for NOx are compared to the MECP approvals screening level of 1880 µg/m³ maximum half-hour average at non-sensitive receptors, and for sensitive receptors the 1-hour standard of 400 µg/m³ is used; there are no sensitive receptors in the vicinity of this facility, so the approvals screening level of 1880 µg/m³ maximum half-hour average is used.

FIGURES

Process Flow Diagram

Drawn by: JWS Figure: 1.4

Approx. Scale: not to scale

Stericycle 2022 ESDM Update - Brampton, ON

RWDI# 2204908 Date Revised: March 15, 2023

Map Document: D:\G|S\desktop\z

Land Use Zoning and Designation

True North Drawn by: RCL Figure: 6. 2

1:10,200

Project #: 2204908 Date Revised: Mar 8, 2023

Map Projection: NAD 1983 UTM Zone 17N Stericycle Inc. - 95 Deerhurst Drive - Brampton, ON

Approx. Scale:

APPENDIX A

Content Copy Of Original

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A680324 Issue Date: July 20, 2020

Stericycle, ULC 95 Deerhurst Dr Brampton, Ontario L6T 5R7

Site Location: 95 Deerhurst Drive

Brampton City, Regional Municipality of Peel

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

the use and operation of a Waste Disposal Site which includes the use of the Site for the transfer, processing and incineration of the following categories of waste:

Waste Class Nos. 148 (Miscellaneous waste inorganic chemicals), 261 (Pharmaceutical), except bulk liquids, 262 (Detergents and Soaps), 264 (Photoprocessing) and 312 (Pathological), as defined in the New Ontario Waste Classes dated January, 1986 or the most recent revision; Biomedical Waste and solid non-hazardous wastes, including but not limited to controlled substances as defined in the *Controlled Drug and Substances Act*, currency, stamps, confiscated videos and other media.

For the purpose of this environmental compliance approval, the following definitions apply:

- " Act " means the Environmental Protection Act , R.S.O. 1990, C. E-19 as amended;
- "Activated Carbon Maintenance and Replacement Plan " means the document amended as item (52) of Schedule "A";
- " **AERMOD** " is as defined in Ontario Regulation 419/05 subsection 6(1).
- "Air Pollution Control System" means the quench pre-scrubber tower, the cooling tower, the caustic storage and delivery system, the condensing column, the two rotary atomizer modules, the acid absorber and demister system, the induced draft fan, the steam re-heat system, the carbon filter, the HEPA filtration system, the NOx selective non-catalytic reduction (SNCR) system, the Main Stack and all auxiliary equipment

necessary for proper operation of the main components listed in the attached Schedule 1 and approved by this ECA;

- "**Autoclave** "means either of the two autoclave sterilization systems, referred to in this ECA as the North and South Autoclaves, complete with the condenser, as described in the Company's application, Schedule 1 of this ECA and in the supporting documentation referred to herein, to the extent approved by this ECA;
- "Baseline Parameters" means the operation and emissions parameters listed in Column 1 of Schedule 2 of this ECA:
- " **Biomedical Waste** " is as defined in the Guideline and generated by any of the following:
- (a) human health care and residential facilities;
- (b) animal health care facilities;
- (c) medical research and medical teaching establishments;
- (d) veterinary research and veterinary teaching establishments;
- (e) health care teaching establishments for human health care;
- (f) health care teaching establishments for animal health care;
- (g) clinical testing or research laboratories;
- (h) the professional office of a health professional within the meaning of the Regulated Health Professions Act, 1991;
- (i) the professional office of a member of the College of Veterinarians of Ontario;
- (j) mortuaries and funeral establishments, including any similar establishments for pets and other animals;
- (k) facilities involved in the production of vaccines;
- (I) facilities involved in mobile health care for humans; and
- (m) facilities involved in mobile health care for animals,
- "Boilers" means the two boilers as described in the Company's application, Schedule 1 of this ECA and in the supporting documentation referred to in Schedule "A";
- " **Bottom Ash** " means the ash residue resulting from combustion of waste and being discharged from the primary chamber of the Incinerator into an ash pit using a hydraulic ram:
- " **Carbon Bed** " means the carbon filter bed associated with the Air Pollution Control System and as specified in the Activated Carbon Maintenance and Replacement Plan;
- "Company" means any person(s) that is responsible for the operation of the Site and its Equipment, and includes Stericycle, Inc., its successors and assigns;
- "Continuous Monitoring and Control System" means the differential pressure gauges, the pH monitoring devices, flow rate measuring devices, waste feed measuring device the continuous temperature monitors, continuous carbon monoxide monitor, continuous oxygen monitor together, NO χ monitoring system with all associated sampling lines, analysers, recording devices, computer hardware and software and other appurtenances necessary for proper operation of the Continuous Monitoring and Control System, as described in Schedule 1 of this ECA;
- " **Controlled Shutdown** " means the complete cessation of operation of the incinerator after lockout, if the exceeded operational and/or emission performance parameters

cannot be normalized below required ECA limits within a 24-hour period.

- " **Director** " means a Director of the Environmental Assessment and Permissions Branch of the Ministry of the Environment, Conservation and Parks, or successor;
- " **District Manager** " means the District Manager of the Halton-Peel District Office of the Ministry of the Environment, Conservation and Parks, or successor;
- " **ECA** " means the Environmental Compliance Approval number A680324, including its schedules, issued under the Act, as amended from time to time;
- " **Emergency Bypass Stack** " means the exhaust stack that discharges emissions generated during combustion of waste in the primary chamber of the Incinerator after those emissions have been controlled by the secondary chamber of the Incinerator;
- "Emergency Power Supply" means a diesel fuel fired generator set, described in Schedule 1 of this ECA, rated at 500 kilowatts, capable of supplying sufficient electrical power to maintain the proper functioning of the Incinerator, the Air Pollution Control System and the Continuous Monitoring and Control System to ensure compliance with the Performance Conditions during external power supply failures;
- " **Emergency Shutdown** " means an immediate cut-off of all waste into the primary chamber of the Incinerator; followed by natural gas standby until the emergency condition has been resolved, or the controlled termination of the combustion process when all the residual waste has been combusted:
- "Equipment" means the North Autoclave, the South Autoclave, the Boiler, the Incinerator, the Air Pollution Control System, the Reusable Container System, the Continuous Monitoring and Control System together with all associated pieces of equipment necessary for the proper functioning of the major components listed in the above, as described in Schedule 1 of this ECA;
- "**ESDM Report** " means the most current Emission Summary and Dispersion Modelling Report that describes the Facility. The ESDM Report is based on the Original ESDM Report and is updated after the issuance of this ECA in accordance with section 26 of O. Reg. 419/05 and the Procedure Document;
- " **Guideline** " means the Ministry document, "Guideline C-4: The Management of Biomedical Waste in Ontario", dated November 2009, as amended from time to time;
- "Incineration Waste " means any other waste, approved by this ECA, that is not a Treatable Waste;
- "Incinerator" means JOY ECOLAIRE 2500 TESI W/SR62H, or equivalent, controlled air 2-stage incinerator, described in Schedule 1 of this ECA;
- "Lockout" means a temporary termination of the waste feed to the incinerator; either triggered by a waste feed lockout set point alarm, as prescribed in Schedule 2 of this ECA; and/or while the Incinerator is under shutdown mode; and/or when the Incinerator or the Continuous Monitoring and Control System is under maintenance or inoperative;
- " Main Stack " means the exhaust stack that discharges emissions generated during combustion of waste in the primary chamber of the Incinerator after those emissions have been controlled by the secondary chamber of the Incinerator and the Air Pollution Control System, as described in Schedule 1 of this ECA;
- " Manager " means the Manager, Technology Standards Section, Technical

Assessment and Standards Development Branch of the Ministry of the Environment, Conservation and Parks, or successor, including any other person who represents and carries out the duties of the Manager, or successor, as those duties relate to the conditions of this ECA;

- " **Ministry** " means the Ontario Ministry of the Environment, Conservation and Parks, or successor, unless specific reference is made to another ministry;
- "North Autoclave" means the autoclave sterilization system, complete with one condenser, as described in Schedule 1 and Item 37 of Schedule "A" of this ECA;
- " O. Reg. 419/05 " means the Ontario Regulation 419/05, Air Pollution Local Air Quality, as amended;
- " **OWRA** " means the Ontario Water Resources Act , R.S.O. 1990, c. O.40, as amended;
- "PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amended from time to time;
- "Pathological Waste" is as defined in Reg. 347;
- "Performance Conditions" means the conditions listed in Section D of this ECA, entitled "Design and Performance Requirements for the Equipment and the Site";
- "Point of Impingement" means any point outside the Site in the natural environment and as defined in section 2 of O. Reg. 419/05;
- " **Pre-Test Plan** " means a document, part of the Source Testing, prepared following the requirements of Part A, Section 5 of the Source Testing Code;
- " Process " means:
- (a) in relation to Treatable Waste, the receipt of Treatable Waste at the Site, its treatment in an Autoclave to achieve sterilization and the segregation of the treated waste into the appropriate storage area; and
- (b) in relation to Incineration Waste, the receipt, segregation of the Incineration Waste into the appropriate storage or staging area, Destruction of the Incineration Waste in the primary chamber of the Incinerator, and segregation, handling and disposal of the Residual Waste.

Note: " Processed " and " Processing " have a corresponding meaning;

- "Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the OWRA or section 5 of the EPA or section 17 of PA;
- " **Publication NPC-103** " means the technical publication NPC-103, as amended, included in the "Model

Municipal Noise Control By-Law, Final Report, August 1978" document;

- "Publication NPC-233" means Ministry Publication NPC-233, Information to be Submitted for Approval of Stationary Sources of Sound, October 1995, as amended;
- "Publication NPC-300" means the Ministry Publication NPC-300, "Environmental Noise Guideline, Stationary and Transportation Sources Approval and Planning, Publication NPC-300", August, 2013, as amended.
- "Reg. 347" means Regulation 347, R.R.O. 1990, as amended;
- " **Rejected Waste** " means any waste that cannot be processed at the facility or waste which the Site is not approved to accept;

- "Residence Time" means the period of time combustion gases are subjected to the minimum temperature and oxygen content as specified by conditions 43(1) and 44(1)(c) of this ECA after the flame front where the combustion is fully developed and after the point of final addition of air in the secondary chamber of the Incinerator;
- "Report EPS 1/PG/7" means Environment Canada Report EPS 1/PG/7, "Protocols and Performance Specifications for Continuous Monitoring of Gaseous Emissions from Thermal Generation", December, 2005;
- "Residual Waste" means the spent filter material from the carbon filter and the HEPA filter and the Bottom Ash generated as a result of Processing waste in the Incinerator;
- "Reusable Container System" means all equipment and materials associated with the Biosystems reusable sharps container system.
- " **Site** " means the waste disposal site permitted under this ECA, located at 95 Deerhurst Drive, City of Brampton, in the Regional Municipality of Peel;
- "Source Testing Code " means the Ontario Source Testing Code, dated June 2010, prepared by the Ministry, as amended;
- "**Source Testing**" means sampling and testing to measure emissions resulting from operating the Incinerator under conditions which yield the worst case emissions within the approved operating range of the Incinerator which satisfies paragraph 1 of subsection 11(1) of O. Reg. 419/05;
- "South Autoclave" means the autoclave sterilization system, complete with one condenser, as described in Item 56 of Schedule "A" of this ECA;
- "Test Contaminants" means those contaminants set out in Schedule 7 of this ECA;
- "**Trained** "means competent and knowledgeable in the operation of the Site through instruction and practice, as required and detailed in condition 54(1) of this ECA.;
- "**Treatable Waste** " means that waste which is to be treated using the North or South Autoclave. More specifically, "Treatable Waste" means Biomedical Waste that is limited to non-anatomical Waste Class 312P; and
- "**Undiluted Gases** " means the flue gas stream which contains oxygen, carbon monoxide, total hydrocarbons and all contaminants in the same concentrations as they exist in the flue gas stream emerging from an individual piece of equipment.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

A. GENERAL REQUIREMENTS

1. Compliance

- (1) The Company shall ensure compliance with all the conditions of this ECA and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this ECA and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Any person authorized to carry out work on or operate any aspect of the Site shall

comply with the conditions of this ECA.

2. In Accordance

- (1) Except as otherwise provided by these conditions, the Site shall be designed, developed, used, maintained and operated, and all facilities, equipment and fixtures shall be built and installed, in accordance with the Applications for a Certificate of Approval (Waste Disposal Site) dated October 27, 1998 and June 7, 2000, and the Applications for a Certificate of Approval (Air) dated October 27, 1998 and June 7, 2000 and the supporting documentation, plans and specifications listed in Schedule "A".
- (2) Use of the Site for any other type of waste, or other waste management activity, is not permitted under this ECA, and requires obtaining a separate approval amending this ECA.

3. Interpretation

- (1) Where there is a conflict between a provision of any document, including the application, referred to in this ECA, and the conditions of this ECA, the conditions in this ECA shall take precedence.
- (2) Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application, and that the Ministry approved the amendment.
- (3) Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.
- (4) The conditions of this ECA are severable. If any condition of this ECA, or the application of any condition of this ECA to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this ECA shall not be affected thereby.

4. Other Legal Obligations

- (1) The issuance of, and compliance with, this ECA does not:
- (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
- (b) limit in any way the authority of the Ministry to require certain steps be taken or to require the Company to furnish any further information related to compliance with this ECA.
- (2) All wastes at the Site shall be managed and disposed in accordance with the EPA and Reg. 347.

5. Change of Owner

- (1) The Company shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
- (a) the ownership of the Site;
- (b) appointment of, or a change in, the operator of the Site;
- (c) the name or address of the Company;
- (d) the partners, where the Company is or at any time becomes a partnership and a copy of the most recent declaration filed under the Business Names Act, R. S. O.

1990, c. B.17, shall be included in the notification.

- (2) No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- (3) In the event of any change in ownership of the Site, other than change to a successor municipality, the Company shall notify the successor of and provide the successor with a copy of this ECA, and the Company shall provide a copy of the notification to the District Manager and the Director.

6. Inspections

- (1) No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the OWRA, the EPA, or the PA, of any place to which this ECA relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this ECA are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this ECA;
 - (c) to inspect the Site, related equipment and appurtenances;
 - (d) to inspect the practices, procedures, or operations required by the conditions of this ECA; and
 - (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this ECA or the EPA, the OWRA or the PA.

7. Information and Record Retention

- (1) Any information requested, by the Ministry, concerning the Site and its operation under this ECA, including but not limited to any records required to be kept by this ECA shall be provided to the Ministry, upon request, in a timely manner.
- (2) The Company shall maintain and retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation of the Equipment, and monitoring and recording activities, in both hard copy and electronic formats.
- (3) The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action, under this ECA or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the Ministry of any act or omission of any person that contravenes any term or

condition of this Approval or any statute, regulation or other legal requirement; or

- (b) acceptance by the Ministry of the information's completeness or accuracy.
- (4) Any information relating to this ECA and contained in Ministry files may be made available to the public in accordance with the provisions of the Freedom of Information and Protection of Privacy Act, R.S.O. 1990, C. F-31.

8. Financial Assurance

- (1) The Company shall maintain Financial Assurance, as defined in Section 131 of the Act, for the amount of two hundred twenty-five thousand Canadian dollars (225 000 CAD). This Financial Assurance shall be in a form acceptable to the Director and shall provide sufficient funds for compliance with and performance of any action specified in the Certificate, including waste analysis, monitoring and disposal of all quantities of waste at the Site at any one time, transportation of waste, Site clean-up as well as closure and post-closure care of the Site.
- (2) Commencing on March 31, 2023 and at intervals of three (3) years thereafter, the Company shall submit to the Director, a re-evaluation of the amount of Financial Assurance to implement the actions required under condition 8(1). The re-evaluation shall include an assessment based on any new information relating to the environmental conditions of the Site and shall include the costs of additional monitoring and/or implementation of contingency plans required by the Director upon review of the closure plan, quarterly and annual reports. The Financial Assurance must be submitted to the Director within twenty (20) days of written acceptance of the re-evaluation by the Director.
- (3) The amount of Financial Assurance is subject to review at any time by the Director and may be amended at his/her discretion. If any Financial Assurance is scheduled to expire or notice is received, indicating Financial Assurance will not be renewed, and satisfactory methods have not been made to replace the Financial assurance at least sixty (60) days before the Financial Assurance terminates, the Financial Assurance shall forthwith be replaced by cash.

9. Liability Insurance

(1) The Company shall, at all times while the Site is operating, maintain an environmental impairment liability insurance policy in the amount of at least two million Canadian dollars (2 000 000 CAD) and a general third party liability insurance policy in the amount of at least ten million Canadian dollars (10 000 000 CAD).

10. Complaint Response Procedure

(1) If at any time, the Company receives complaints regarding the operation of the Site, the Company shall respond to these complaints according to the following procedure:

- (a) The Company shall record each complaint on a formal complaint form entered in a sequentially numbered log book. The information recorded shall include the nature of the complaint, the name, address and the telephone number of the complainant and the time and date of the complaint;
- (b) The Company, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, noting and recording the prevalent weather conditions, wind strength and wind direction at the time of the complaint, and shall proceed to take the necessary actions to eliminate the cause of the complaint, forward a formal reply to the complainant and within 24 hours of the complaint having been received notify by telephone and in writing the District Manager of the complaint and the actions taken; and
- (c) The Company shall prepare a report within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the reoccurrence of similar incidents.

11. Spill Response and Reporting

- (1) The Company shall promptly take all necessary steps to contain and clean up any spills which result from the operation of the Site.
- (2) All spills, upsets, exceedance of any concentration limit prescribed in condition 44(1), as well as any instance of the use of the Emergency Bypass Stack, shall be immediately reported to the Ministry's Spills Action Centre at (416) 325-3000 or 1-800-268-6060, with the following information to be recorded:
- (a) the nature and cause of the spill or upset, and
 - (b) the action taken for clean-up, as well as any corrective or preventative measures taken to avoid any similar occurrences in the future.

B. RECEIPT, STORAGE AND HANDLING OF WASTE 12. General

- (1) Except as otherwise provided by these conditions, the collection, handling and disposal of Biomedical Waste shall be carried out in accordance with the Guideline.
- (2) All waste unloading shall occur indoors at all times;
- (3) All waste received at, but not Processed at the Site, shall be stored indoors at all

times, pending transfer to final disposal with the exception of waste stored in accordance with conditions 20(1) and 20(2);

- (4) Treatable Waste must be stored, pending Processing, as described in the information listed in Schedule "A"; and
- (5) Only Treatable Waste may be Processed in an Autoclave;
- (6) All other acceptable wastes received at the Site shall be stored, transferred and/or Processed in the Incinerator, in accordance with this ECA and information listed in Schedule "A".
- (7) The Company shall ensure that only waste haulers approved by the Ministry to handle these wastes are used to transport waste to and from the Site.

13. Service Area

- (1) The Company may only receive waste generated within Canada and the United States of America.
- (2) No Biomedical Waste shall be received from the United States of America unless:
- (a) the Biomedical Waste is being transferred from a facility under the control of Stericycle, Inc.; and
- (b) the Biomedical Waste has been identified as being equivalent to waste class 312P by being identified on the manifest with code UN 3291.
- (3) Any waste received from the United States of America that does not meet the labelling and/or packaging standards listed in Guideline C-4 shall be immediately relabelled upon receipt to provide a clear indication of the nature of the waste and the treatment requirements for that waste. Any waste that is not clearly identified shall be incinerated on-site.
- (4) All waste received from the United States of America shall be segregated from all other waste on-site.

14. Acceptable Waste Types

(1) Only Waste Class Nos. 148 (Miscellaneous waste inorganic chemicals), 261 (Pharmaceutical), 262 ((Detergents and Soaps), 264 (Photoprocessing), and 312 (Pathological) as defined in the New Ontario Waste Classes, and dated January 1986 or as revised, Biomedical wastes and solid non-hazardous wastes contracted for product destruction may be received at this Site.

15. Approved Waste Receiving Rate

(1) The total, maximum rate at which the Company may receive waste at the Site for Processing in an Autoclave and/ or Transfer and/ or Processing in the Incinerator shall be 95 tonnes per day.

16. Approved Waste Storage Capacity

(1) The maximum amount of Processed, unprocessed and Residual Waste that may be present at the Site is limited to 250 tonnes at any time.

17. Waste Screening

(1) Incoming waste containers shall be visually inspected by a Trained employee, prior to being accepted at the Site, to ensure that the Site is approved to accept that type of waste. This inspection does not require opening the containers, but shall include inspection to determine that the containers are undamaged and correctly and

appropriately labelled and that the wastes are properly packaged.

- (2) All incoming waste that arrives in leaking, damaged, improperly labelled, packaged or identified containers shall be repackaged to contain any leakage and re-labelled appropriately.
- (3) Only properly identified, packaged, undamaged and labelled waste containers shall be Processed at the Site.
- (4) Upon receipt at the Site, incoming materials must be categorized, by a Trained employee, as either Treatable Waste or Incineration Waste;

18. Waste Storage and Receiving Restrictions

- (1) The Company shall ensure that all Treatable Waste except sharps received at the Site are Processed within 72 hours of receipt. If, for any reason, this is not possible, the Company shall ensure that all wastes are placed in refrigerated storage or removed from the Site, within 24 hours of the equipment or process failure or otherwise in accordance with the procedures as described in the information listed in Schedule "A", and disposed at an approved waste disposal site;
- (2) Subject to Condition 18(1), if Treatable Waste is not Processed within 72 hours of receipt, no additional waste may be received at the Site for Processing in an Autoclave, until such time as the Site can operate in compliance with the conditions of this ECA;
- (3) Waste Class 261 may be stored at the Site for a maximum of 30 days;
- (4) All anatomical waste, including anatomical waste which is also cytotoxic, shall be refrigerated as soon as the waste has been weighed, inspected, time-stamped and recorded into the database unless it can be fed into the primary chamber of the Incinerator within 12 hours of having been recorded into the database; and
- (5) All cytotoxic waste shall be immediately stored in separate, secure and clearly marked areas.

19. Treatable Waste Received in Biosystems Reusable Containers

- (1) Treatable Waste received at the Site in Biosystems containers shall be unloaded and stored prior to processing in an area specified for only Biosystems containers.
- (2) Biosystems containers received at the site that have been bagged prior to receipt at the site shall be manually removed from the rack and disposed of immediately in the next load of waste being prepared for an Autoclave. These containers shall not be reused.
- (3) Biosystems containers that will not be treated on site shall be stored in a designated area inside the building or in a locked authorized vehicle outside in a fenced area.
- (4) Biosystems containers for storage or transport shall be removed from the site within 15 days of receipt at the Site.
- (5) In the event that legislation is promulgated that regulates biomedical waste containers, the requirements of this condition may be amended in order to conform to any new regulatory requirements.

20. Outdoor Activities

(1) Unprocessed waste shall not be stored outside the building in any containers or in any vehicles, but may remain in refrigerated vehicles within a fenced, secure area at the Site, up to a maximum of four 10-tonne refrigerated truckloads, for a maximum of

- 12 hours while waiting to be unloaded; and
- (2) Only Bottom Ash, demonstrated to be non-hazardous, up to a maximum of two 10-tonne lugger bins, and waste Processed in an Autoclave, up to a maximum of five 15-tonne compactor bins, may be stored outside the building in leak-proof, completely covered containers within a secure, fenced and paved area; and
- (3) All waste present outdoors at the Site is subject to the overall limitation referred to in condition 16(1).

21. Processed Waste Handling

- (1) Each load of Processed material and other waste, including Residual Waste, destined for final disposal, shall be removed from the Site in accordance with the information listed in Schedule "A".
- (2) All biomedical waste Processed in an Autoclave, destined for final disposal, shall be packaged in accordance with the Guideline.

22. Signage and Security

- (1) The Site shall be maintained in a secure manner to prevent unauthorized persons from entering the Site.
- (2) A sign shall be posted outside the building in a prominent location to indicate when the Site is open, and shall include a telephone number for an emergency response contact.

23. Nuisance Impacts

(1) The Company shall ensure that the Site is operated in a manner that is clean, orderly and hygienic and that prevents any off-site impacts, including the impacts of vermin, vectors, dust, litter, noise and traffic on the environment and the public.

24. Wastewater Management

(1) The Company shall ensure that all wastewater generated is discharged in accordance with the applicable municipal sewer use by-laws or shipped off-site for treatment.

25. Disposal of Residual Waste

- (1) The Company shall transfer the spent carbon and spent HEPA filters for disposal at a site approved to accept hazardous waste for disposal.
- (2) Bottom Ash that is not leachate toxic is not considered hazardous waste and may therefore be disposed of as solid, non-hazardous waste at a landfill site approved to receive and dispose of such waste.
- (3) Waste Processed in an Autoclave is not considered hazardous waste and may therefore be disposed of as solid, non-hazardous waste at a landfill site approved to receive and dispose of such waste.

C. OPERATION AND MAINTENANCE OF THE EQUIPMENT AND SITE 26. General

(1) The Company shall ensure that the Equipment and the Site are properly operated and maintained at all times.

27. Operating and Maintenance Manual

(1) Maintain an operating and maintenance manual that outlines the operating procedures and a maintenance program for the all Equipment on-site that includes, but

- (a) routine operating procedures in accordance with recommendations of the equipment manufacturers and good engineering practices and other requirements contained in this ECA:
- (b) a detailed waste acceptance protocol, including appropriate characterization and pre-screening procedures for all incoming wastes and acceptance procedures for waste received in the Biosystems reusable containers, maintenance and cleaning procedures associated with the cleaning of Biosystems containers and operation instructions and safety requirements for the associated washing equipment, with special attention to Incineration Waste from any new customers with a view on combustion characteristics as well as potential impact on Bottom Ash quality:
- (c) inspection programs, including frequency of inspection of all pieces of Equipment, and the methods or tests employed to detect when maintenance is necessary;
- (d) repair and maintenance programs, including the frequency of routine maintenance of all pieces of Equipment;
- (e) emergency procedures;
- (f) instructions for any record keeping activities relating to operation, inspection and maintenance of the Equipment;
- (g) any other plans and procedures which are necessary because of the special nature of the Site, the materials used at the Site, or the location thereof;
- (h) a list of personnel positions responsible for operation and maintenance, including supervisory personnel and personnel responsible for recording and reporting pursuant to the requirements of this ECA, along with the training and experience required for the positions and a description of the responsibilities;
- (i) a list and location of spare parts to be kept available at the Site;
- (j) the procedures for recording and responding to environmental complaints;
- (k) all appropriate measures to minimize dust, odours, noise and other nuisances generated from all potential sources at the Site; and
- (I) the Activated Carbon Maintenance and Replacement Plan

- (2) provide the operating and maintenance manual for inspection by staff of the Ministry upon request; and
- (3) implement the recommendations of the operating and maintenance manual.

28. Emergency Response and Spill Contingency Plan

- (1) The Company shall maintain an emergency response and spill contingency plan at the Site at all times when the Site is operational and shall submit the same to the District Manager for their information, the local Fire Department and the City of Brampton for their reference before any waste is received at the Site. The emergency response and contingency plan shall contain, as a minimum:
 - (a) emergency response procedures, including notification procedures in case of spills, fires and explosions;
 - (b) list of home and business phone numbers and work locations of all person(s) responsible for the Site;
 - (c) list of emergency phone numbers for the local Ministry office, Ministry's Spills Action Centre, and the Local Fire Department;
 - (d) measures to prevent spills, fires and explosions;
 - (e) description and procedures for use of fire fighting as well as spill clean-up related equipment and control and safety devices;
 - (f) maintenance and testing program for spill clean-up equipment and fire fighting equipment;
 - (g) training of Site operators and Site emergency response personnel;
 - (h) an emergency Site plan, identifying the location and nature of wastes on Site.
- (2) The Company shall, as a minimum, review the emergency response and spill contingency plan on an annual basis, and, if amended, immediately submit the amended emergency response and contingency plan to the District Manager for their information, the local Fire Department and the City of Brampton.
- (3) The Company shall ensure that at all times that equipment and material are kept on hand and in good repair for immediate use in the event of:.
 - (a) any change in process parameters which results or potentially could result in an excursion from approved operational ranges;
 - (b) any fire or explosion;
 - (c) any unauthorized discharge of a contaminant into the natural environment or interior of any building; or
 - (d) any spill within the meaning of Part X of the Act.

29. Equipment and Site Inspections

- (1) The Company shall conduct regular inspections of the Equipment and Site to ensure that all pieces of Equipment and the Site are operated in a manner that will not negatively impact the environment. Any deficiencies detected during these regular inspections, that might negatively impact the environment, shall be promptly corrected. A written record shall be prepared, which includes the following:
 - (a) name and signature of Trained employee conducting the inspection;
 - (b) date and time of the inspection;
 - (c) list of pieces of Equipment inspected and all deficiencies that might negatively impact the environment observed;
 - (d) recommendations for remedial action and actions undertaken;
 - (e) date and time of maintenance activity; and
 - (f) a detailed description of the maintenance activity.

30. Emergency Power Supply

(1) The Company shall maintain the Emergency Power Supply in proper working condition at all times so that it is capable of maintaining the proper operation of all components of the Incinerator, the Air Pollution Control System and the Continuous Monitoring and Control System in order to ensure compliance with the Performance Conditions and to continue to operate the Incinerator and the Air Pollution Control System within the Operating Window.

31. Refrigerated Storage Units

(1) The Company shall ensure that the refrigerated storage units are operated at a temperature equal to or lower than 4 $^{\rm O}$ C at all times when waste is required to be refrigerated;

32. Autoclaves

- (1) The Company shall Process a maximum of 70 tonnes per day of Treatable waste in the Autoclaves.
- (2) The Company shall ensure that each of the two Autoclaves is operated at all times in such a manner that:
 - (a) the load per cycle does not exceed 1,590 kilograms;

- (b) the sterilization temperature is maintained at 149 ^O C +/ or one (1) percent; and
- (c) the sterilization cycle per load lasts at least 20 minutes when using the North Autoclave and 30 minutes when using the South Autoclave.

33. Incinerator and Air Pollution Control System

- (1) The Company shall ensure that the waste feed into the Incinerator does not exceed 670 kilograms per hour, up to a maximum of 10 tonnes per day, at any time.
- (2) The Company shall ensure that the temperature of the flue gas at the exit of the de-mister section of the Air Pollution Control System maintaining a minimum of 10 ^O C difference with the Carbon Bed inlet temperature.
- (3) The Company shall ensure that the flue gas is reheated to a temperature not exceeding 57 °C before entering the Carbon Bed.
- (4) The Company shall plan any Carbon replacement to occur eight (8) weeks after the annual source testing has been completed to confirm, based on the Source Testing results, that the Carbon half-life has been adequately determined for the Carbon Bed to effectively control the emissions of mercury, as well as dioxins, furans and dioxin-like PCB compounds.
- (5) The Company shall ensure that appropriate equipment and systems are available to continuously monitor and provide visual and audible warnings for the warning set points detailed in Schedule 2.

34. Failure to Operate in Accordance

(1) The Company shall forthwith bring the Incinerator to a waste feed Lockout if one or more Baseline Parameters exceeds the waste feed Lockout set point continuously for a period of time longer than the time referred to in Column 6 of the attached Schedule 2; or under Controlled Shutdown if the Approval exceeded Baseline Parameters cannot be normalized below required limits within a 24-hour period.

35. Power Failure

- (1) Upon the reduction, loss or failure of the external power source to the Site, the Company shall forthwith, in order to maintain compliance with the Performance Conditions of this ECA, take all reasonable steps to minimize all discharges from the Site, including steps to switch to the Emergency Power Supply within two minutes of the external power failure having occurred, and to control, reduce or halt combustion in the Incinerator, as may be necessary to ensure continued compliance with Performance Conditions and the ability to operate within the Operating Window.
- (2) Despite subsection (a), the Company shall forthwith proceed to an Emergency Shutdown of the Incinerator, if there is a loss or failure of the external power supply; pursuant to subsection (a), and the Emergency Power Supply is not available within 2 minutes of the failure of the external power supply having occurred or the Emergency Power Supply fails while the external power supply is not available.

36. Air Pollution Control System Failure

(1) In the event that the Air Pollution Control System fails and/or malfunctions, the Company shall forthwith initiate an Emergency Shutdown of the Incinerator, while maintaining the temperature of the secondary chamber of the Incinerator in accordance with conditions 43(1) and 43(2).

37. Continuous Monitoring and Control System Failure

(1) In the event that the Continuous Monitoring and Control System fails and/or malfunctions, the Company shall bring the Incinerator to a waste feed Lockout, and not resume the waste feed to the Incinerator until such time that the Continuous Monitoring and Control System has been repaired and operates in compliance with the design and performance specifications set out in Schedules 3, 4, 5 and 6.

38. Use of Emergency Bypass Stack

- (1) The Company shall not use the Emergency Bypass Stack, except during the following conditions:
 - (a) start-up of the Incinerator, when no waste has been fed into the Incinerator; or
 - (b) failure and/or malfunction of the Air Pollution Control System pursuant to condition 36(1) above.
- (2) When use of the Emergency Bypass Stack is necessary, pursuant to condition 38(1)(b) above, the Company shall forthwith bring the Incinerator to an Emergency Shutdown, while maintaining the temperature in the secondary chamber of the Incinerator at a minimum temperature of 1000 °C by burning natural gas only, until all waste is completely incinerated and the Bottom Ash discharged from the primary chamber of the Incinerator.
- (3) The Company shall forthwith notify the District Manager and Spills Action Centre by telephone, when use of the Emergency Bypass Stack occurs.
- (4) In the event of any use of the Emergency Bypass Stack, the Company shall prepare and submit a report to the District Manager within five (5) calendar days of the use, which shall include the following:
 - (a) date of the occurrence;
 - (b) general description of the occurrence;
 - (c) duration of the occurrence;
 - (d) effect of the occurrence on the emissions from the Incinerator;

- (e) measures taken to alleviate the effect of the occurrence on the emissions from the Incinerator; and
- (f) measures taken to prevent the occurrence of the same or similar occurrence in the future.

D. DESIGN AND PERFORMANCE REQUIREMENTS FOR THE EQUIPMENT AND THE SITE

39. Site (Noise)

(1) The Company shall ensure that the noise emissions from the Site comply with the limits set in accordance with Publication NPC-300.

40. Refrigerated Storage Units

(1) The Company shall ensure that there is a minimum of 130 cubic metres of refrigerated storage space available to accommodate 35 tonnes of waste.

41. Autoclaves:

(1) The Company shall ensure that the Autoclaves meets the requirements set out in the Guideline at all times when waste is Processed in either Autoclave.

42. Bottom Ash Quality

(1) The Company shall ensure that the organic content, measured as carbon, of the Bottom Ash does not exceed 10 percent by weight.

43. Secondary Chamber of the Incinerator

- (1) The Company shall have the Incinerator designed in such a manner as to ensure that the Incinerator is capable of maintaining, on a continuous basis, a temperature of not less than 1100°C in the secondary chamber of the Incinerator.
- (2) The Company shall have the Incinerator designed and operated in such a manner as to ensure that the following performance conditions are met at all times:
 - (a) The Incinerator shall be capable of regulating, by means of auxiliary fuel control, the temperature at the outlet of the secondary chamber of the Incinerator, so as to ensure that a temperature of not less than 1000 °C is attained prior to introduction of any waste into the primary chamber of the Incinerator during the start-up, and that the said temperature is thereafter maintained during the entire incineration cycle and subsequent shutdown until all waste combustion is completed in the primary chamber of the Incinerator, and until the final Bottom Ash is discharged from the primary chamber of the Incinerator.
 - (b) The Incinerator shall include primary and secondary air control systems, which are capable of automatically adjusting

the distribution and the quantity of combustion air, in such a manner that changes in the waste feed rate and/or waste composition or irregularities in the loading and/or combustion shall not adversely affect the performance of the Incinerator.

- (c) The Residence Time for the combustion gases in the secondary chamber of the Incinerator shall be a minimum of one second at a temperature of 1000 °C, and shall be calculated from the point where most of the combustion has been completed and the incineration temperature fully developed, to the last thermocouple, where the temperature of not less than 1000 °C is maintained.
- (d) The Incinerator shall provide and maintain a high degree of gas turbulence and mixing in the secondary chamber of the Incinerator.
- (e) The Incinerator shall achieve the temperature, Residence Time, residual oxygen and turbulence requirements over the complete range of operating parameters, including feed rate, feed characteristics, combustion air, flue gas flow rate and heat losses.

44. Concentration Limits

- (1) The Company shall, at all times, operate the Incinerator and the Air Pollution Control System in such a manner as to ensure that the following performance conditions are met:
 - (a) The concentration of nitrogen oxides at the Main Stack shall be not more than 187 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, calculated as the rolling arithmetic average of 24 hours of data derived from one-hour rolling average amounts measured by the Continuous Monitoring and Control System.
 - (b) The concentration of carbon monoxide at the Main Stack, shall be not more than 9 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, calculated as the rolling arithmetic average of 12 hours of data derived from one-hour rolling average amounts measured by the Continuous Monitoring and Control System.

- (c) The residual oxygen in the Undiluted Gases at the outlet of the secondary combustion chamber of the incinerator shall be not less than 6 percent by volume on a dry basis, calculated as the rolling arithmetic average of 6 minutes of data measured by the Continuous Monitoring and Control System.
- (d) The concentration of hydrochloric acid at the Main Stack shall be not more than 7 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (e) The concentration of suspended particulate matter at the Main Stack shall be not more than 17 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (f) The Toxic Equivalent Concentrations of dioxins, furans and dioxin-like PCBs at the Main Stack:
 - (A) Shall be not more than 80 picograms per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
 - (B) The toxicity equivalent concentration of dioxins, furans and dioxin-like PCBs shall be calculated in accordance with Schedule 8 of O. Reg. 419/05. The Toxic Equivalent Factors (TEF) scheme is intended to be used with isomer specific analytical results. In cases where results are reported by congener group only, staff at Ministry's Technical Assessment and Standards Development Branch shall be contacted for appropriate procedures to convert non-isomer specific data to Toxic equivalents (TEQs).

- (g) The concentration of organic matter having a carbon content, expressed as equivalent methane, in the Undiluted Gases at the outlet of the secondary chamber of the Incinerator and being an average of ten measurements taken at approximately one minute intervals, shall be not more than 50 parts per million by volume on dry basis, as measured by the Continuous Monitoring and Control System during Compliance Source Testing.
- (h) The concentration of sulphur dioxide at the Main Stack shall be not more than 17 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, calculated as the rolling arithmetic average of 24 hours of data measured by Compliance Source Testing.
- (i) The concentration of mercury at the Main Stack shall be not more than 15 micrograms per dry cubic metre normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (j) The concentration of cadmium at the Main Stack shall be not more than 7 micrograms per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (k) The concentration of lead at the Main Stack shall be not more than 26 micrograms per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (2) The data reporting for the Baseline Parameters requires the following:
 - (a) Data recording minute-by-minute whenever the averaging time for a parameter limit is less than or equal to an hour; in such cases, the data acquisition system is expected to "roll the data" minute-by-minute to produce a series of rolling averages.
 - (b) Data recording every fifteen minutes whenever the averaging time for a parameter limit is more than an hour; in such cases, the data acquisition system is expected to "roll the

data" every fifteen minutes to produce a series of rolling averages.

E. MONITORING

45. Noise

- (1) The Company shall carry out acoustic audit measurements on the actual noise emissions due to the operation of the Site, in accordance with the procedures in Publication NPC-103.
- (2) The Director may not accept the results of the acoustic audit if the requirements of Publication NPC-233 were not followed.
- (3) If the Director does not accept the results of the acoustic audit the Director may require the Company to repeat the acoustic audit.

46. Autoclaves

- (1) Every sixth day of operation of each of the two Autoclaves, the Company shall undertake Verification Testing as outlined in the Guideline.
- (2) Waste loads tested shall be representative of the waste normally Processed in the Autoclaves to confirm that the outgoing waste is acceptable for disposal at an approved sanitary landfill site;
- (3) Spore vials associated with the testing shall be cultured and monitored in accordance with the specifications of the manufacturers;
- (4) If any tested load fails, as indicated by Verification Testing, the waste loads shall be reprocessed and the next load retested;
- (5) Subject to condition 46(4), if a second tested load fails as well, no further waste may be received to be Processed in the Autoclaves or Processed in the Autoclave until the Company is able to ensure that the Treatable Waste can be effectively Processed in the Autoclaves; and
- (6) All failures shall be immediately reported verbally to the District Office or Spills Action Centre and in writing to the District Manager and details of the failure(s) recorded in the Annual Report required under condition 51(1).

47. Continuous Monitoring and Control System

- (1) The Continuous Monitoring and Control System shall be equipped with continuous recording devices and comply with the requirements outlined in the attached Schedules 3, 4, 5, and 6.
- (2) The Company shall conduct and maintain a program to continuously monitor:
 - (a) the temperature in the primary chamber of the Incinerator,
 - (b) the temperature in the secondary chamber of the Incinerator,
 - (c) the concentration of carbon monoxide in the Undiluted Gases leaving the secondary chamber of the Incinerator or at

the outlet of the Main Stack,

- (d) on an interim basis, the concentration of oxygen in the gases leaving the Air Pollution Control System, which can be used as an indicator of oxygen levels in the Undiluted Gases leaving the secondary combustion chamber of the Incinerator.
 - (i) Any proposed upgrade to the Air Pollution Control System will require a relocation of the oxygen probe to a location that will monitor oxygen in the Undiluted Gases.
- (e) the concentration of nitrogen oxides in the undiluted gases leaving the Air Pollution Control System.
- (f) all other Baseline Parameters.
- (3) The Company shall, in consultation with the Manager, develop and implement quality assurance and quality control procedures ("QA/QC plan") for the Continuous Monitoring and Control System in accordance with Report EPS 1/PG/7, to be implemented upon written acceptance from the Manager.
- (4) The Company shall assess the accuracy of the information contained in the QA/QC plan every three years or sooner to reflect the actual configuration of the Continuous Monitoring and Control System. If the assessment indicates the need for an update of the QA/QC plan, the Company shall submit updated quality assurance procedures and quality control activities plan shall to the Manager for written acceptance.
 - (a) Notwithstanding condition 47(4) above, by no later than March 31, 2020, the Company shall submit to the Manager and the District Manager, updated quality assurance procedures and quality control activities which will be employed in connection with the Continuous Monitoring and Control System.
- (5) The Company shall not alter the quality assurance procedures and quality control activities unless the Director has approved the updated procedures in accordance with condition 47(4) above.

48. Source Testing

- (1) The Company shall perform Source Testing to determine the rate of emission of the Test Contaminants in the Main Stack while processing a waste mix that may be encountered during the normal operation of the Incinerator yielding worse case emissions scenario.
- (2) The Company shall perform Source Testing following the procedure outlined in Schedule 8 of this ECA to determine the rate of emission of the Test Contaminants from the Incinerator.
- (3) The Company shall repeat the Source Testing on an annual basis ("Compliance Source Testing") for all Test Contaminants except for the polycyclic organic matter (excluding benzo(a)pyrene) and volatile organic contaminants, using one waste feed mix as agreed upon in writing by the Manager in consultation with the District Manager. (4) If the annual Compliance Source Testing indicates that the toxicity equivalent concentration of dioxins, furans and dioxin-like PCBs has remained consistently below 32 picograms per dry cubic metre, normalized to 11 percent oxygen, at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, for five (5) consecutive years, then the Company may exclude dioxins, furans and dioxin-like PCBs from the annual Source Testing every second year as long as the toxicity equivalent concentration of dioxins, furans and dioxin-like PCBs continues to remain below 32 picograms per dry cubic metre normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals. (5) If the annual Compliance Source Testing indicates that benzo(a)pyrene (as a surrogate of polycyclic aromatic compounds with no set standards or guidelines in O. Reg. 419/05) exceeds O. Reg. 419/05 upper risk threshold, speciation for the polycyclic aromatic compounds listed in Schedule 9 will be required during the following Compliance Source Testing, or sooner if requested by the Director.

49. Testing of Bottom Ash

- (1) The Company shall conduct periodic verification testing of the Bottom Ash in accordance with the following:
 - (a) The Company shall conduct Bottom Ash sampling using the method described in the Ministry document entitled "Protocol for Sampling and Evaluating Fly Ash from Non-Hazardous Solid Waste Incineration Facilities, Ministry of the Environment and Energy, October 1990"; except for the sampling frequency and analytical requirements which are set out in this condition.
 - (b) The Company shall test the Bottom Ash no less than once per year.
 - (c) The Company shall analyze the samples in accordance with the Toxicity Characteristic Leaching Procedure described in Section 1 of Reg. 347 for compliance with the contaminant limits set out in Schedule 4 of Reg. 347

- (2) If at any time Bottom Ash is produced from waste that includes a new waste stream, the Company shall test that Bottom Ash in accordance with condition 49(1)(a) above before disposing of it.
- (3) The Company shall prepare a report on each verification test on the Bottom Ash and submit this report to the District Manager no later than one month after the sampling has been completed in accordance with conditions 49(1)(a) or 49(2) above.
- (4) If any of the tests indicate that the Bottom Ash is hazardous based on the results of sampling and analysis, the Company shall immediately notify the District Manager by telephone as well as in writing take action to ensure that hazardous waste is not disposed of at a site that is not approved to accept hazardous waste for storage, transfer and/or final disposal.

F. RECORD KEEPING AND REPORTING

50. General

- (1) All records, monitoring data and reports required by the conditions of this ECA shall be maintained at the Site for a minimum period of at least five (5) years from the date of their creation in a hard copy format and as an electronic record and shall be made available for inspection by staff of the Ministry. The records shall include, as a minimum, the following daily records:
 - (a) the sources, types and weights of all wastes received;
 - (b) the types, weights and destinations of all wastes transferred from the Site;
 - (c) the types and weights of all wastes present at the Site at the end of each operating day;
 - (d) the types and weights of wastes Processed in the Autoclaves;
 - (e) the types and weights of wastes Processed in the Incinerator;
 - (f) start time, end time and weight for each Autoclave and Incinerator batch or operating period together with the Trained employee's name responsible for the proper Processing of the respective batch;
 - (g) any needle stick injuries or accidental direct exposure to Biomedical Waste (e.g., splashing of blood from a container into an employee's face) resulting from the operation of the Site;
 - (h) results of verification testing required by condition 46(1) of this ECA;
 - (i) any records related to inspection, repair and maintenance of the Equipment;
 - (j) records produced by the recording devices associated with the Continuous Monitoring and Control Systems; and

(k) records obtained during Source Testing.

51. Annual Report for the Autoclave and the Site

(1) By March 31st, 2020, and thereafter by each subsequent March 31st, the Company shall prepare and submit to the District Manager, and post on a web site identified by the Company name, an Annual Report covering the operation of the Autoclaves and all waste handling activities relating to the Site during the previous calendar year. Each such report shall include, but not be limited to, the following information:

- (a) monthly summaries of tonnages of all wastes Processed at, stored at and/or transferred to the Site;
- (b) details of any incidents involving improperly labelled incoming wastes and actions taken to ensure proper handling of all wastes and to minimize the potential for reoccurrence of the improper labelling;
- (c) dates when each of the two Autoclaves was operated during the reporting period, including start and finish times as well as the names of the Trained employees who were responsible for the proper operation of the Autoclaves;
- (d) details of any loads that failed the Autoclave verification testing required under condition 46(1);
- (e) any environmental and operational problems, including spills, that may have negatively impacted the quality of the environment, encountered during the operation of either of the two Autoclaves and any mitigating actions taken, including a summary of any complaints received regarding the operation of the Autoclaves, as described under condition 10(1);
- (f) a summary of all complaints received and any actions taken to mitigate;
- (g) a statement as to compliance with all conditions of the ECA and with the inspection and reporting requirements of the conditions contained herein; and
- (h) any recommendations to minimize environmental impacts and improve Site operations and monitoring programs.

52. Quarterly Report for the Incinerator

(1) The Company shall prepare and submit to the District Manager, and post on a website identified by the Company name, a Quarterly Report covering the operation of the Incinerator, the Air Pollution Control System and Continuous Monitoring and Control System, due not later than one (1) month after the end of the quarter being reported on.

Each report shall include, but not be limited to, the following information:

- (a) dates when the Incinerator was operated during the reporting period, including start and finish times as well as the names of the Trained employees responsible for the operation of the Incinerator;
- (b) hourly and daily waste feed rates into the Incinerator for each day when the Incinerator was operated during the reporting period;
- (c) daily minimum, maximum and average values for all Baseline Parameters for the averaging times referred to in the Performance Conditions:
- (d) duration of any secondary warning for carbon monoxide concentration, as triggered by the criteria detailed in Schedule 2, the concentration of carbon monoxide read during each warning period, and the corrective actions taken in response.
- (e) duration of any Lockout triggered by an exceedance of the Waste Feed Lockout Set Point values listed in Schedule 2;
- (f) detailed explanation of any Lockout triggered by an exceedance of the Waste Feed Lockout Set Point values listed in Schedule 2, and the course of action taken to resume the waste feed;
- (g) summary table describing each incident in which any of the concentration limits prescribed in condition 45(1) of this Approval are exceeded. The table shall include for each exceedance:
 - (i) date of exceedance;
 - (ii) duration of exceedance;
 - (iii) the exceeded parameter;
 - (iv) a description of the exceedance, including the suspected cause; and
 - (v) corrective actions taken to ensure operation resumes within the approved concentration limits.

the data in the table shall be expressed in the same units of measurement used in

Condition 44(1).

- (h) dates, duration and reason for any use of the Emergency Bypass Stack as well as actions taken to eliminate the need for using the Emergency Bypass Stack;
- (i) any environmental and operational problems that may have negatively impacted the quality of the environment, encountered during the operation of the Incinerator and any mitigative actions taken, including a summary of any complaints received regarding the operation of the Incinerator. as described under condition 10(1);
- (j) a statement as to compliance with all Conditions of this ECA and with the inspection and reporting requirements of the Conditions contained herein, including compliance with Design and Performance Specifications for the Continuous Monitoring and Control System, as set out in Schedules 3, 4, 5 and 6 as well as the quality assurance and quality control procedures for the methods and devices used to monitor the Baseline Parameters:
- (k) any recommendations to minimize environmental impacts and improve Incinerator operations and monitoring programs; and
- (I) summary of maintenance and repair activities in relation to the Incinerator, Air Pollution Control System and/or the Continuous Monitoring and Control System, including calibration and testing activities, during the reporting period.

53. Incinerator Transient Operation

(1) The Company shall prepare a monthly Incinerator's Transient Operation report to be maintained for at least two years by the Company and made available to the Ministry upon request. Each report shall be prepared in hard and electronic formats, and shall include, but not be limited to, the dates of any Baseline Parameter warning alarm triggered in accordance with criteria in Schedule 2, start and finishing times, the names of the Trained employees responsible for managing the alarm, and the course of action taken to resume operation of the Incinerator.

G. TRAINING

54. Training Requirements

(1) The Company shall ensure that staff receiving and/or Processing waste, handling waste, disinfecting or servicing equipment at the Site wear adequate protective clothing

at all times in compliance with applicable provincial legislation and are trained with respect to:

- (a) the terms, conditions and operating requirements of this ECA;
- (b) the procedures for all waste receipt, transfer, Processing and storage operations;
- (c) the operation and maintenance of the specific equipment which they operate at the Site;
- (d) all emergency and spill response procedures;
- (e) any environmental concerns pertaining to the Site and wastes to be handled; and
- (f) relevant waste management legislation, regulations and guidelines.
- (2) The Company shall maintain an updated training manual at the Site at all times. The manual shall include sufficient material to satisfy the requirements detailed in condition 54(1) above.
- (3) The Company shall develop, and periodically update, a training plan, that includes, but is not limited to:
 - (a) the credentials of the trainer(s);
 - (b) the duration of the training course;
 - (c) the specific content of the training course, including any updated and supplementary information;
 - (d) the schedule for updating staff; and
 - (e) criteria to determine whether an individual trainee has met all the training objectives.
- (4) Staff shall be deemed to be Trained, if they successfully pass the appropriate components of the training courses, and annually, or more often, update their knowledge and skills with respect to the maintenance and operation of the equipment that they are responsible for.
- (5) A listing of all Trained employee responsible for the Processing of waste shall be placed in a visible and conspicuous location at the Site.

H. SITE CLOSURE

55. Closure Plan

(1) Three (3) months prior to the planned closure of this Site, the Company shall provide to the Director, for approval, a written Closure Plan for the Site. This plan shall include, as a minimum, a description of the work that will be done to facilitate closure of the Site and a schedule for completion of that work; and

(2) Within four (4) months of closure of the Site, the Company shall provide the Director with a report, written by an independent, qualified consultant which confirms that the Site has been closed in accordance with the Closure Plan submitted and approved in accordance with Condition 55(1).

SCHEDULE "A"

This Schedule "A" forms part of this ECA.

- 1. Document entitled "Applications for Certificates of Approval in accordance with the regulations under the EPA For the Establishment of a Biomedical, Pharmaceutical and Product Destruction Operation in the City of Brampton", submitted Thursday, September 3, 1998 by Medical Waste Management Inc.
- 2. Revised application for Approval of a Waste Disposal Site (Transfer/Processing) dated October 27, 1998, and signed by Daniel Kennedy, President, Medical Waste Management Inc.
- 3. Letter from I. Parrott, MOE, to D. Kennedy, Medical Waste Management Inc., dated November 24, 1998, re: Request for Additional Information.
- 4. Letter from D. Kennedy, Medical Waste Management Inc., to I. Parrott, MOE, dated November 27, 1998, re: Response to November 24, 1998, re: Request for Additional Information.
- 5. Application for a Certificate of Approval (Air) for a condenser dated September 1, 1998 as amended by Application for a Certificate of Approval (Air) dated October 27, 1998.
- 6. Application for a Certificate of Approval (Air) for a boiler dated September 1, 1998 as amended by Application for a Certificate of Approval (Air) dated October 27,1998.
- 7. Application for Amendment to Certificate of Approval Air, and supporting information, dated June 7, 2000.
- 8. Application for Amendment to Certificate of Approval Waste Disposal Site, and supporting information, dated June 7, 2000.
- 9. A letter, dated August 17, 2000, signed by N. Shah, P. Eng. And John E. Coulter of J.E. Coulter Associates Limited, re: "Medical Waste Management 95 Deerhurst Drive, Brampton, Noise Monitoring".
- 10. Letter dated August 28, 2000 signed by Daniel Kennedy.
- 11. Additional information binder with a cover letter dated September 7, 2000, signed by Daniel Kennedy.
- 12. Letter dated September 20, 2000 signed by Daniel Kennedy.
- 13. Response package with a cover letter dated October 9, 2000, signed by Daniel Kennedy.
- 14. Emissions Inventory and Dispersion Modelling for the Medical Waste Management (MWM) Inc. Proposed Medical Waste Incinerator, Prepared by Envirometrex Corporation, dated October 2000.
- 15. Human Health Risk Assessment for the Medical Waste Management Inc. Proposed Medical Waste Incinerator System Final Report. Prepared by Cantox Environmental, dated October 16, 2000.
- 16. E-mail message dated December 18, 2000 from Jim Gallant of Medical Waste

Management Inc., including "Emergency Generator Addendum 1 to Human Health Risk Assessment For The Medical Waste Management Inc. Proposed Medical Waste Incinerator System, Brampton, Ontario" prepared by Cantox Environmental, December 2000 and "Human Health Risk Assessment Results for Santa Maria Foods Addendum 2 to Human Health Risk Assessment For The Medical Waste Management Inc. Proposed Medical Waste Incinerator System, Brampton, Ontario" prepared by Cantox Environmental, December 2000.

- 17. E-mail message dated December 21, 2000 from Richard Kolomeychuk of Envirometrex Corporation, including "Emergency Generator Dispersion Modelling Addendum 1 to Emissions Inventory and Dispersion Modelling For Medical Waste Management Inc. Proposed Medical Waste Incinerator prepared by Envirometrex Corporation November 30, 2000, revised December 21, 2000" and "Dispersion Modelling Results for Santa Maria Foods Addendum 2 to Emissions Inventory and Dispersion Modelling For Medical Waste Management Inc. Proposed Medical Waste Incinerator prepared by Envirometrex Corporation November 30, 2000, revised December 21, 2000".
- 18. E-mail message dated January 3, 2001 from Dan Kennedy regarding a financial assurance estimate.
- 19. Letter from Daniel Kennedy to Steve Klose, Ministry of the Environment, dated July 27, 2001, together with documentation referred to as "Medical Waste Management Inc. Pre-Commencement Date Reporting Requirements for the Ministry of the Environment. 20. Application for Approval of a Waste Disposal Site (transfer/processing) dated August 27, 2001, and signed by Daniel Kennedy.
- 21. Letter from Daniel Kennedy to Ian Parrott, Ministry of the Environment, dated August 28, 2001.
- 22. Letter from Jim Gallant on behalf of Medical Waste Management Inc. to Ken Smith, Ministry of the Environment, dated October 5, 2001.
- 23. Letter from Jim Gallant on behalf of Medical Waste Management Inc. to Ken Smith, Ministry of the Environment, dated October 23, 2001.
- 24. Medical Waste Management Inc. Continuous Emission Monitors QA/QC Program Updated: July 10, 2001.
- 25. Medical Waste Management Inc. Incinerator Air Pollution Control System Activated Carbon Monitoring & Replacement Program, December 11, 2001.
- 26. Medical Waste Management Inc. Incinerator Updated Activated Carbon Monitoring & Replacement Program, January 31, 2002 to replace Medical Waste Management Inc. Incinerator Air Pollution Control System Activated Carbon Monitoring & Replacement Program, December 11, 2001.
- 27. Letter from Jim Gallant on behalf of Medical Waste Management Inc. to Anne-Maria Pennanen, Ministry of the Environment, dated February 4, 2002.
- 28. Letter dated August 27, 2002 from Daniel Kennedy, Medical Waste Management Inc., to Ian Parrott, P. Eng., MOE, re: Provisional Certificate of Approval Number A-680324.
- 29. Letter dated August 21, 2002 from Paul Oldford, P. Eng., Manager of Solid Waste,

- Cape Breton Regional Municipality, to Ian Parrott, P. Eng., MOE, regarding the labour dispute in Sydney, Nova Scotia.
- 30. Letter dated February 4, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, describing the requested amendment.
- 31. Fax dated February 26, 2003 enclosing a revised letter dated February 4, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, describing the requested amendment.
- 32. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated July 9, 2003 and signed by Daniel Kennedy, President, Medical Waste Management Inc.
- 33. Cover letter dated Thursday July 10, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, describing the requested amendment and enclosing the application form.
- 34. Letter dated December 31, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, supplying additional required information regarding Michigan waste contingency plan and receipt of waste class 262.
- 35. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated April 20, 2004 and signed by L. A. Hurley, Operations Manager, Medical Waste Management Inc. including all attached supporting information and covering letter.
- 36. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated July 6, 2006 including all attached information, plans, drawings and specifications.
- 37. Application for approval, signed by Daniel Kennedy, dated December 18, 2007, together with a cover letter, dated December 17, 2007, signed by John Chandler, A. J. Chandler & Associates Ltd., and attachments prepared by John Chandler, A. J. Chandler & Associates Ltd.
- 38. An e-mail from John Chandler to Anne-Maria Pennanen on January 21, 2008 including a letter, dated January 18, 2008, signed by John Chandler, A. J. Chandler & Associates Ltd., addressed to Anne-Maria Pennanen, Ministry of the Environment".
- 39. A letter, dated February 1, 2008, signed by John Chandler, A. J. Chandler & Associates Ltd., addressed to Anne-Maria Pennanen, Ministry of the Environment regarding re-location of the Sharp Smart operation.
- 40. An e-mail from John Chandler to Anne-Maria Pennanen on February 10, 2008, including Figure 2: "Future Layout Inside Building, revised February 8, 2008" and "Design & Operating Report, Autoclave Waste Receipt and Handling Operations for Stericycle, Inc., revised February 8, 2008".
- 41. An e-mail from John Chandler to Anne-Maria Pennanen on February 11, 2008, including Figure 1: "Site Layout Showing Building Access and Outside Storage Areas", revised February 8, 2008.
- 42. An e-mail from Daniel Kennedy of Stericycle, Inc. to Anne-Maria Pennanen on February 18, 2008, including a copy of a neighbor notification letter and list of recipients.
- 43. An e-mail from Jean-Pierre Pepin of Stericycle, Inc. to Anne-Maria Pennanen on February 22, 2008, including a letter dated February 21, 2008 regarding a proposal for

financial assurance.

- 44. A copy of a Notice of Decision, dated April 1, 2008, certified to be a correct copy and signed by Eileen Collie, City of Brampton, approving a minor variance or special permission to extend a non-conforming use (building addition to facilitate a compactor and walking floor trailer).
- 45. A copy of a letter, dated April 22, 2008, signed by Eileen Collie, City of Brampton, notifying that the Decision on minor variance is final and binding.
- 46. A copy of Engineer's General Review Certificate Sprinkler & Life Safety, date of Inspection & Review April 30, 2008, signed by Francis P. Sim, P. Eng.
- 47. A copy of Building Permit, dated May 1, 2008, issued by B.L. Campbell, City of Brampton.
- 48. A copy of a Pest Control program prepared by Orkin PCO Services.
- 49. An e-mail message dated May 26, 2008 from John Chandler of A. J. Chandler & Associates Ltd. containing an e-mail message dated May 26, 2008 from Daniel Kennedy of Stericycle Inc. to John Chandler of A. J. Chandler & Associates Ltd.
- 50. A letter dated October 10, 2008, signed by Jean-Pierre Pepin.
- 51. Carbon Management Plan, Stericycle Brampton, Ontario, dated March 2009, together with a cover letter, dated April 6, 2009, signed by Jean Pierre Pepin, Director, Environment, Safety and Health, Stericycle Inc.
- 52. Letter dated May 4, 2010, from Jean-Pierre Pepin, Director, Environmental Health and Safety, Stericycle, Inc., to Director, MOE, including the attached document entitled "Carbon Management Plan, Stericycle Brampton, Ontario, May 2010".
- 53. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated June 15, 2010 signed by Dan Kokol, Stericycle Inc. on July 30, 2010, requesting a service area change to include the United States of America.
- 54. Report entitled "Ash Sampling Results in Support of Designation as Non-Hazardous Waste for the Medical Waste Management (Stericycle) Incineration Facility" dated March 2008 prepared by A.J. Chandler & Associates Ltd.
- 55. Financial Assurance Re-evaluation dated April 8, 2020, prepared by Stericycle, Inc. and submitted to the Director, including all attached supporting information.
- 56. Environmental Compliance Approval application dated May 11, 2020, submitted and signed by Dan Kokol, Operational EHS Specialist, Stericycle ULC, including all supporting documentation, information, drawings and appendices.
- 57. Drawing entitled "Floor & Equipment Plan", dated July 2020, prepared by West Engineering.

SCHEDULE 1

This Schedule 1 forms part of this ECA (Air and Waste Disposal Site). List of Main Pieces of Equipment at the Site:

- A. one (1) incineration facility, to burn a maximum of 10 tonnes per day of a mixture of biomedical waste, pharmaceutical waste and solid non-hazardous waste, complete with all auxiliary equipment and the following major components:
- 1. one (1) JOY ECOLAIRE 2500 TESI W/SR62H, or equivalent, controlled air 2-stage incinerator, referred to as the Incinerator, having a design operating capacity of 670

kilograms per hour, equipped with:

- a. a hydraulic ram waste feed system with internal stoker;
- b. a primary chamber complete with a fixed hearth, a natural gas fired burner rated at 1.95 gigajoules per hour, a combustion air fan with a maximum volumetric flowrate of 0.18 cubic metre per second, and two modulating under fire air blowers, one capable of delivering approximately 0.35 cubic metre per second, and the other approximately 0.25 cubic metre per second:
- c. hydraulic rams for removal of Bottom Ash from the primary chamber into an ash pit with a volume of approximately 4.6 cubic metres, complete with a water quench system;
- d. an in-line ash hoe for wet ash removal from the ash pit into ash collection bins, each with a volume of approximately 2.5 cubic metres:
- e. a secondary chamber, complete with a natural gas fired burner, rated at 4.48 gig joules per second, a combustion air fan with a maximum volumetric flowrate of 1.2 cubic metres per second, and a flameport blower to provide combustion air at a volumetric flowrate of 2.6 cubic metres per second at 20 °C;
- f. an Emergency Bypass Stack, having an exit diameter of 1.07 metres, extending 17.66 metres above grade, complete with a diverter valve and connection to route gases via a refractory lined hot gas duct into the Air Pollution Control System during normal operating conditions, discharging products of combustion and other Incinerator emissions during upset conditions into the natural environment at a maximum volumetric flowrate of 12.2 actual cubic metres per second at approximately 1000 °C;
- 2. one Air Pollution Control System, manufactured by EMCOTEK, including the following components:
 - a. one (1) quench pre-scrubber tower, having an internal diameter of 1.55 metres and a height of 5.2 metres, complete with a recirculation pump delivering 19.0 litres per hour of caustic into the spray nozzles at the upper parts of the prescrubber quench and condenser vessels, and an emergency potable water supply at 95 litres per hour into the spray nozzles

at the top of the prescrubber quench vessel;

- b. one (1) roof mounted single-cell, mechanical draft evaporative cooling tower, having a height of 12.8 metres, rated at 15.8 gigajoules per hour cooling capacity, equipped with single two speed air coil fan, powered by a motor rated at 80 kilowatts, complete with a chemical water treatment system to control scaling, corrosion and biofouling, a drain down tank :having a capacity of 9,462 litres, and two pumps, installed in parallel providing 100 percent redundancy, each rated at 54 kilowatts, to deliver cooling water at an approximate flow rate of 82 litres per second at approximately 26 °C into the two heat exchangers associated with the Air Pollution Control System;
- c. a caustic storage and delivery system, complete with a high density polyethylene tank capable of storing 18,928 litres of 50 percent caustic soda (sodium hydroxide) solution, three metering pumps, each rated at 30.28 litres per hour with one pump injecting caustic into the suction side of the quench vessel recirculation pump and the other two into the suction side of each of the two condenser vessel recirculation pumps with the combined flow of 50 percent caustic soda (sodium hydroxide) to be approximately 21 litres per hour;
- d. one (1) condensing column, having an internal diameter of 1.55 metres and a height of 5.2 metres, complete with a recirculation pump delivering approximately 10 litres per hour of caustic, cooled in a heat exchanger, into the spray nozzles at the top of the condensing column;
- e. two (2) rotary atomizer modules, each incorporating EmcoTek proprietary spray discs, spun at more than 10,000 revolutions per minute (rpm) by motors, rated at 67 kilowatts, to create a high shear energy water wall, complete with a pump circulating approximately 750 litres per minute of process water, cooled in a heat exchanger, such that the gases exit the rotary atomizers maintaining a minimum of 10 °C difference with the Carbon Bed Inlet Temperature;
- f. one (1) 3-stage MistFree polypropylene acid absorber and de-mister system;
- g. steam re-heat system, complete with a steam supply at 113 kilograms per hour from the boiler referenced in B. below, to raise temperature of the gases to approximately 52 °C before Carbon Bed;

- h. Carbon Bed filter, complete with two carbon layers each measuring 2.29 metres by 4.88 metres by 0.2 metre and each containing at.least 1 tonne of carbon;
- a HEPA filtration system, containing one array, measuring
 2.44 metres by 2.44 metres, complete with filters each
 measuring 0.61 metre by 0.61 metre by 0.30 metre;
- j. Selective non-catalytic reduction system (SNCR), to inject ammonia or an equivalent rate of urea to the water feed used to cool the incinerator gases; injecting ammonia or an equivalent rate of urea with range of 1.89 to 3.79 litres per hour.
- k. one induced draft fan equipped with a motor, rated at 30 kilowatts, and variable' frequency drive, mounted at floor level, exhausting tangentially upwards directly into the Main Stack;
- I. one Main Stack, discharging Undiluted Gases exiting the Air Pollution Control System at a maximum volumetric flowrate of 9,668 actual cubic metres per hour at 52 °C, having an exit diameter of 0.67 metre, extending 18.29 metres above grade;
- 3. a Continuous Monitoring and Control System, including, but not limited to the following:
 - a. waste feed rate;
 - b. shielded "R"-type thermocouples, or equivalent, to measure the temperature at the following locations:
 - i. primary combustion chamber of the incinerator (two locations);
 - ii. outlet duct of the secondary combustion chamber of the incinerator, at a location where a flue gas retention time of a minimum of one second is achieved;
 - iii. inlet of reheat section:
 - iv. fan exhaust I stack inlet;
 - c. one Rosemount World Class 3000, in-situ oxygen analyzer, or equivalent, to measure the concentration of oxygen at a location where the concentration of oxygen is representative of the operating condition at the exit of the secondary combustion

chamber;

- d. one Rosemount Model 5100A, in-situ carbon monoxide analyzer, or equivalent, to measure the concentration of carbon monoxide at a location where the concentration of carbon monoxide is representative of the operating condition at the exit of the secondary combustion chamber or the outlet of the Main Stack;
- e. One in-situ Chemiluminescence analyzer, or equivalent, to measure the concentration of nitrogen oxides where the concentration of nitrogen oxides is representative of the operating conditions at the exit of the Air Pollution Control System.
- f. differential pressure gauges to measure the differential pressure across each of the carbon filter and HEPA filter;
- g. sodium hydroxide flow rate into each of the pre-quench scrubber and condensing tower;
- h. amperage for each rotary atomizer;
- i. pre-scrubber liquor pH;
- j. condensing tower liquor pH;
- k. atomizer/de-mister tank liquor pH (two);
- I. Ammonia or an equivalent urea injection rate to the SNCR.

All being recorded and monitored (and some automatically controlled) by either the Incinerator or EmcoTek Process Control System.

- 4. Process Control System to control the operation of the Incinerator, Air Pollution Control System, Continuos Monitoring and Control System, waste conveyors, caustic injection system, cooling tower system, and all associated pieces of equipment necessary for the proper functioning the aforementioned systems, complete with a computer-based data acquisition, alarm and reporting system.
- B. 1. one (1) natural gas fired boiler, used as a back up boiler, to supply steam for an air pollution control reheat system associated with the incineration facility and also for two (2) autoclave sterilization systems, to sterilize a maximum of 70 tonnes per day of solid biomedical waste, having a maximum heat input of 9,284,000 kilojoules per hour, exhausting into the atmosphere through a stack, having an exit diameter of 0.46 metre, extending 2.5 metres above the roof and 9.71 metres above grade; and
- 2. one (1) natural gas fired boiler, to be used as the main boiler, to supply steam for an

air pollution control reheat system associated with the incineration facility and also for two (2) autoclave sterilization systems, to sterilize a maximum of 70 tonnes per day of solid biomedical waste, having a maximum heat input of 18,700,000 kilojoules per hour, discharging to the air at a maximum volumetric flow rate of 3.18 cubic metres per second, through a stack, having an exit diameter of 0.60 metre, extending 2.03 metres above the roof and 9.23 metres above grade.

- C. one (1) condenser, connected in series with the autoclave sterilization system, used for controlling discharge from the autoclave, having a heat capacity of 2,563,000 kilojoules per hour, a minimum diameter of 0.76 metre and a height of 3.05 metre, discharging into the atmosphere through a vent having an exit diameter of 0.2 metre, extending 2.5 metres above the roof and 9.71 metres above grade;
- D. a compactor located in the sterilized Treatable Waste shipping area to be used for loading treated waste into a walking floor trailer.
- E. an Emergency Power Supply, consisting of a 500-kilowatt generator complete with a diesel fuel fired engine having a maximum fuel consumption rate of 117 litres per hour, and a manually operated transfer switch, to provide back up power during a power failure, discharging the products of combustion into the atmosphere through a stack having an exit diameter of 0.254 metre, extending 18.24 metres above grade.

SCHEDULE 2

This Schedule 2 forms part of this ECA (Air and Waste Disposal Site).

The Company shall ensure that appropriate equipment and systems are available to continuously monitor and provide visual and audible warnings for the following warning set points:

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Baseline Parameter	Monitoring Capabilities	Warning Value Set Point ⁽¹⁾	Warning Activation Average Period	Waste Feed Lockout Set Point (2)	Waste Feed Lockout Average Period
Residual Oxygen	1 minute	< 7.5% (3)	3 minutes	< 7.5% (3)	6 minutes
Carbon Monoxide (4)	1 minute	> 8 ppmvd	First: 30 minutes Second: 4 hours (based on 30- minute rolling averages)	> 8 ppmvd	12 hours (based on 1- hour rolling averages)
Nitrogen Oxides	1 minute	> 98 ppmvd	6 hours	> 98 ppmvd	24 hours
Waste Feed Rate into the Incinerator	1 hour	< 670 kg/h	1 hour	< 670 kg/h	1 hour

Primary Chamber Temperature	1 minute	[TBD]	[TBD]	[TBD]	[TBD]
Secondary Chamber Temperature	1 minute	≥1000 ° C	1 minute	≥1000 ° C	30 minutes
De-mister Exit/Carbon Bed Inlet differential Temperature	1 minute	10 ° C	30 minutes	10 ° C	3 hours
Carbon Bed/HEPA Filter Inlet Temperature	1 minute	≤ 57 ^O C	30 minutes	≤ 57 ⁰ C	3 hours
HEPA Filter Differential Pressure Drop	1 minute	>4" WC	30 minutes	>4" WC	3 hours
Carbon Filter Differential Pressure Drop	[TBD]	[TBD]	[TBD]	[TBD]	[TBD]
Quench pH	1 minute	[TBD] (5)	30 minutes	[TBD] (5)	3 hours
Atomizers pH	1 minute	[TBD] (5)	30 minutes	[TBD] (5)	3 hours
Condenser pH	1 minute	[TBD] (5)	30 minutes	[TBD] (5)	3 hours
Atomizers Amperage	1 minute	< 36 A	30 minutes	< 36 A	3 hours
Ammonia Injection Rate	1 hour	< 1.89 Lph or > 3.79 Lph	1 hour	< 1.89 Lph or > 3.79 Lph	3 hours

⁽¹⁾ Warning set points are based on the occurrence of abnormal conditions that will trigger a

warning, requiring the attention by the operator.

1. The calculation of the performance limits for determining

⁽²⁾ Waste Feed Lockout set points are based on the occurrence of abnormal conditions showing exceedances beyond the average time of the ECA set emissions limits, or non-conformance of the acceptable operating range of the target process parameters beyond the transitional period of such abnormal condition; which requires corrective maintenance to bring back the emissions and/or process parameters within acceptable limits.

compliance starts when the waste feed resumes after a shutdown or lockout

- 2. The set points for those parameters, for which this Approval does not stipulate any value, shall be established not later than during the first Source Testing campaign after the issuance of this Approval.
- 3. All monitoring systems shall be operated and maintained so that accurate data is obtain during a minimum of 95% on an annual basis, excluding calibration time.
- 4. The expressed time duration in the "Waste Feed Locked Average Period" is continuous.
- 5. The lockout period includes the 4 hours immediately after the cessation of the waste feed
- (3) Interim value. Shall be set to 6% when the probe is relocated to measure oxygen in the Undiluted Gases.
- (4) Carbon Monoxide has two warning set points before Lockout. Triggering of the second warning requires reporting to the Ministry as part of the Quarterly Reports detailed in condition 54(1) (5) A Site Standard Operating Procedure (SSOP) is to be prepared by the Company providing the strategy to be used for setting up the pH values, based on latest HCl testing results, with annual revision of the pH values undertaken based on the latest source testing results.

SCHEDULE 3

This Schedule 3 forms part of ECA (Air and Waste Disposal Site).

PARAMETER:

Temperature

LOCATION:

The sample point for the Continuous Temperature Monitor shall be located at the exit of the secondary chamber of the Incinerator where the retention time of flue gases has reached a minimum of one second at a minimum temperature of 1000°C.

PERFORMANCE:

The Continuous Temperature Monitor shall meet the following minimum performance specifications for the following parameters.

PARAMETERS SPECIFICATION

- 1. Type: shielded "R" type thermocouple, or equivalent.
- 2. Accuracy: ± 1.5 percent of the minimum gas temperature

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor without a significant loss of accuracy and with a time resolution of one minute or better.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 95

percent of the time for each calendar quarter, excluding calibration time.

SCHEDULE 4

This Schedule 4 forms part of ECA (Air and Waste Disposal Site).

PARAMETER:

Oxygen

INSTALLATION:

The Continuous Oxygen Monitor shall be installed at an accessible location where the measurements are

representative of the actual concentration of oxygen in the undiluted gases leaving the secondary chamber of the

Incinerator and shall meet the following installation specifications:

PARAMETERS SPECIFICATION

- 1. Range (percentage): 0-20 or 0-25
- 2. Calibration Gas Ports: close to the sample point

PERFORMANCE:

The Continuous Oxygen Monitor shall meet the following minimum performance specifications for the following parameters:

PARAMETERS SPECIFICATION

- 1. Span Value (percentage): 2 times the average normal concentration of the source
- 2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data
- 3. Calibration Error: 0.25 percent O 2
- 4. System Bias: ≤ 4 percent of the mean value of the reference method test data
- 5. Procedure for Zero and

Span Calibration Check: all system components checked

- 6. Zero Calibration Drift (24-hour): ≤ 0.5 percent O 2
- 7. Span Calibration Drift (24-hour): ≤ 0.5 percent O 2
- 8. Response Time (90 percent response

to a step change): ≤ 90 seconds

9. Operational Test Period: ≥ 168 hours without corrective maintenance

CALIBRATION:

Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of

Report EPS I/PG/7.

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of a minimum of one (1) minute.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 90 percent of the time for each calendar quarter during the first full year

of operation, and 95 percent, thereafter, excluding calibration time.

SCHEDULE 5

This Schedule 5 forms part of this ECA (Air and Waste Disposal Site).

PARAMETER:

Carbon Monoxide

INSTALLATION:

The Continuous Carbon Monoxide Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of carbon monoxide in the undiluted gases leaving the secondary chamber of Incinerator or the outlet of the Main Stack and shall meet the following installation specifications. PARAMETERS SPECIFICATION

- 1. Range (parts per million, ppm): 0 to ≥ 100 ppm by volume (dry)
- 2. Calibration Gas Ports: close to the sample point

PERFORMANCE:

The Continuous Carbon Monoxide Monitor shall meet the following minimum performance specifications for the following parameters:

PARAMETERS SPECIFICATION

- 1. Span Value (percentage): 2 times the average normal concentration of the source
- 2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data or ± 5 ppm, whichever is greater
- 3. Calibration Error: ≤ 2 percent of actual concentration
- 4. System Bias: ≤ 4 percent of the mean value of the reference method test data
- 5. Procedure for Zero and

Span Calibration Check: all system components checked

- 6. Zero Calibration Drift (24-hour): ≤ 5 percent of span value
- 7. Span Calibration Drift (24-hour): ≤ 5 percent of span value
- 8. Response Time (90 percent response

to a step change): ≤ 90 seconds

9. Operational Test Period: ≥ 168 hours without corrective maintenance

CALIBRATION:

Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of

Report EPS I/PG/7.

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor with an accrracy of 0.5 percent of a full scale reading or better and with a time resolution of a minimum of one (1) minute.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 90 percent of the time for each calendar quarter during the first full year of operation, and 95 percent, thereafter, excluding calibration time.

SCHEDULE 6

This Schedule 6 forms part of this ECA (Air and Waste Disposal Site)

PARAMETER:

Nitrogen Oxides

INSTALLATION:

The Continuous Nitrogen Oxide Monitor shall be installed at the Main Stack where the measurements are representative of the actual concentration of nitrogen oxides in the Undiluted Gases leaving the Air Pollution Control System and shall meet the following specifications.

PARAMETERS SPECIFICATION

- 1. Range (parts per million, ppm): 0 to 200 ppm by volume (dry)
- 2. Calibration Gas Ports: close to the sample point

PERFORMANCE:

The Continuous Nitrogen Oxides Monitor shall meet the following minimum performance specifications for the following parameters:

PARAMETERS SPECIFICATION

- 1. Span Value (percentage): 2 times the average normal concentration of the source
- 2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data or 5 ppm, whichever is greater
- 3. Calibration Error: ≤ 2 percent of actual concentration
- 4. System Bias: ≤ 4 percent of the mean value of the reference method test data
- 5. Procedure for Zero and

Span Calibration Check: all system components checked

- 6. Zero Calibration Drift (24-hour): ≤ 2.5 percent of span value
- 7. Span Calibration Drift (24-hour): ≤ 2.5 percent of span value
- 8. Response Time (90 percent response

to a step change): ≤ 90 seconds

9. Operational Test Period: ≥ 168 hours without corrective maintenance

CALIBRATION:

Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7.

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 1 minute.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 95 percent of the time for each calendar quarter.

SCHEDULE 7

This Schedule 7 forms part of this ECA (Air and Waste disposal Site).

Test Contaminants

Gases and Particulate (Testing)

1. Gases:

Hydrogen Chloride
Carbon Monoxide
Carbon Dioxide
Oxides of Nitrogen
Oxygen
Sulphur Dioxide
Total Hydrocarbons
Ammonia

2. Particulate:

Total suspended particulate matter and particulate matter with the associated gaseous/vapour phase for the following materials:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, . Copper, Fluorides, Iron, Lead, Lithium, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Phosphorous, Selenium, Silicon, Silver, Sodium, Strontium, Tin, Titanium, Vanadium, Zinc

Testing for Other Chlorinated Organics

Total Dichlorobenzenes

Total Trichlorobenzenes

Total Tetrachlorobenzenes

Pentachlorobenzene

Hexachlorobenzene

Total Dichlorophenols

Total Trichlorophenols

Total Tetrachlorophenols

Total Pentachlorophenols

Total Polychlorinated Biphenyls

SCHEDULE 7 (cont.)

Testing for Polycyclic Organic Matter

Acenaphthylene

Acenaphthene

Anthracene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(a)fluorene

Benzo(b)fluorene

Benzo(ghi)perylene

Benzo(a)pyrene

Benzo(e)pyrene

2-chloronaphthalene

Chrysene

Coronene

Dibenzo(a,c)anthracene

9,10 - Dimethylanthracene

7,12 - Dimethylbenzo(a)anthracene

Fluoranthene

Fluorene

Indeno(I,2,3 - Cd)pyrene

- 2 Methylanthracene
- 3 Methylcholanthrene
- 1 Methylnaphthalene
- 2 Methylnaphthalene
- 1 Methylphenanthrene
- 9 Methylphenanthrene

Naphthalene

Perylene

Phenanthrene

Picene

Pyrene

Tetralin

Triphenylene

Dibenzo(a,h)anthracene

Dibenzo(a,e)pyrene

Quinoline

Biphenyl

0-terphenyl

M-terphenyl

P-terphenyl

SCHEDULE 7 (cont.)

Volatile Organic Matter

Acetaldehyde

Acetone

Acrolein

Benzene

Bromodichloromethane

Bromoform

Bromomethane

Butadiene

1.3 - Butanone

2 - Carbon Tetrachloride

Chloroform

Cumene

Dibromochloromethane

Dichlorodifluoromethane

Dichloroethane.

1,2 - Dichloroethene.

Trans- 1,2- Dichloroethene.

1,1 - Dichloropropane,

1,2 - Ethylbenzene

Ethylene Dibromide

Formaldehyde

Mesitylene

Methylene Chloride

Styrene

Tetrachloroethene

Toluene

Trichloroethane,

1,1,1 - Trichloroethene

Trichloroethylene,

1,1,2 - Trichlorofluoromethane

Trichlorotrifluoroethane

Vinyl Chloride

Xylenes, M-, P- and O-

SCHEDULE 7 (cont.)

Dioxins, Furans and Dioxin-Like Polychlorinated Biphenyls Dioxin Isomers

2,3,7,8-Tetrachlorodibenzo-p- dioxin [2,3,7,8-TCDD]

1,2,3,7,8-Pentachlorodibenzo-p-dioxin [1,2,3,7,8-PeCDD]

1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin [1,2,3,4,7,8-HxCDD]

1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin [1,2,3,6,7,8-HxCDD]

1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin [1,2,3,7,8,9-HxCDD]

1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin [1,2,3,4,6,7,8-HpCDD]

1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin [1,2,3,4,6,7,8,9-OCDD]

Furan Isomers

2,3,7,8-Tetrachlorodibenzofuran [2,3,7,8-TCDF]

1,2,3,7,8-Pentachlorodibenzofuran [1,2,3,7,8-PeCDF]

2,3,4,7,8-Pentachlorodibenzofuran [2,3,4,7,8-PeCDF]

1,2,3,4,7,8-Hexachlorodibenzofuran [1,2,3,4,7,8-HxCDF]

1,2,3,6,7,8-Hexachlorodibenzofuran [1,2,3,6,7,8-HxCDF]

1,2,3,7,8,9-Hexachlorodibenzofuran [1,2,3,7,8,9-HxCDF]

2,3,4,6,7,8-Hexachlorodibenzofuran [2,3,4,6,7,8-HxCDF]

- 1,2,3,4,6,7,8-Heptachlorodibenzofuran [1,2,3,4,6,7,8-HpCDF]
- 1,2,3,4,7,8,9-Heptachlorodibenzofuran [1,2,3,4,7,8,9-HpCDF]
- 1,2,3,4,6,7,8,9-Octachlorodibenzofuran [1,2,3,4,6,7,8,9-OCDF)

Co-Planar PCBs (Dioxin-like PCBs)

- 3,3',4,4'-Tetrachlorobiphenyl [3,3',4,4'-tetraCB (PCB 77)]
- 3,4,4',5- Tetrachlorobiphenyl [3,4,4',5-tetraCB (PCB 81)]
- 2,3,3',4,4'- Pentachlorobiphenyl [2,3,3',4,4'-pentaCB (PCB 105)]
- 2,3,4,4',5- Pentachlorobiphenyl [2,3,4,4',5-pentaCB (PCB 114)]
- 2,3',4,4',5- Pentachlorobiphenyl [2,3',4,4',5-pentaCB (PCB 118)]
- 2',3,4,4',5- Pentachlorobiphenyl [2',3,4,4',5-pentaCB (PCB 123)]
- 3,3',4,4',5- Pentachlorobiphenyl (PCB 126)
- 2,3,3',4,4',5- Hexachlorobiphenyl [2,3,3',4,4',5-hexaCB (PCB 156)]
- 2,3,3',4,4',5'- Hexachlorobiphenyl [2,3,3',4,4',5'-hexaCB (PCB 157)]
- 2,3',4,4',5,5'- Hexachlorobiphenyl 2,3',4,4',5,5'-hexaCB (PCB 167)
- 3,3',4,4',5,5'- Hexachlorobiphenyl [3,3',4,4',5,5'-hexaCB (PCB 169)]
- 2,3,3',4,4',5,5'- Heptachlorobiphenyl [2,3,3',4,4',5,5'-heptaCB (PCB 189)]

SCHEDULE 8

This Schedule 8 forms part of this ECA (Air and Waste Disposal Site). Source Testing Procedure:

- (1) The Company shall submit, within nine (9) months of the previous Source Testing, to the Manager a Pre-Test Plan for the Source Testing required under this Approval;
- (2) The Company shall finalize the Pre-Test Plan in consultation with the Manager;
- (3) The Company shall not commence the Source Testing required under this Approval until the Manager has approved the Pre-Test Plan;
- (4) The Company shall complete the Source Testing not later than six (6) months after the Manager has approved the Pre-Test Plan;
- (5) The Company shall notify the Manager and District Manager in writing of the location, date and time of any impending Source Testing required by this Approval, at least fifteen (15) days prior to the Source Testing;
- (6) The Company shall submit a report (hardcopy and electronic format) on the Source Testing to the Manager and District Manager not later than three (3) months after completing the Source Testing. The report shall be in the format described in the Source Testing Code, and shall also include, but not be limited to:
 - (a) an executive summary;
 - (b) an identification of the applicable North American Industry Classification System code (NAICS) for the Facility; and
 - (c) records of operating conditions at the time of Source Testing, including but not limited to the following:

- (i) types of waste;
- (ii) hourly feed rates of the wastes;
- (iii) all relevant records produced by the Continuous Monitoring and Control Systems;
- (iv) results of Source Testing, including the emission rate and emission concentration of the Test Contaminants: (v) where the analytical results indicate that the amount of a particular isomer of the dioxin-like compound is less than the detection limit reported by the laboratory analyzing the source testing samples, the Company shall determine the amount of dioxin-like compound to be reported as the toxicity equivalent concentration by using the reported detection limit as the amount present for that isomer. The reported detection limits are to be determined by the laboratory at the time the source testing samples are analysed based on analysis of appropriate replicate low level samples or blanks; (vi) results of dispersion calculations in accordance with AERMOD, or any other method accepted by the Director, indicating the Point of Impingement concentrations of the Test Contaminants listed in Schedule 7 of this Approval; and (vii) a tabular comparison of Source Testing results for the Incinerator and Test Contaminants to original emission rates described in the Company's application and the ESDM Report.
- (7) The Director may not accept the results of the Source Testing if:

- (a) the Source Testing Code or the requirements of the Manager were not followed;
- (b) the Company did not notify the Manager and the District Manager of the Source Testing; or
- (c) the Company failed to provide a complete Report on the Source Testing.

The reasons for the imposition of these terms and conditions are as follows:

The reason for conditions 1(1), 1(2), 3(1) through 3(4), 4(1), 7(1) through 7(3), 9(1) is to clarify the legal rights and responsibilities of the Company.

The reason for conditions 2(1), 2(2), 12(1) through 12(7), and 22(1) through 22(3) is to ensure that the Site is operated in accordance with the application and supporting documentation submitted by the Company, and not in a manner which the Director has not been asked to consider.

The reasons for condition 5(1) is to ensure that the Site is operated under the corporate name which appears on the application form submitted for this Approval and to ensure that the Director is informed of any changes.

The reasons for condition 5(2) are to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Approval.

The reason for the condition 6(1) is to ensure that appropriate Ministry staff have ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this Approval. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the EPA and OWRA. The reason for conditions 8(1) through 8(4) is to ensure that sufficient funds are available to the Ministry to clean up the Site in the event that the Company is unable or unwilling to do so.

The reason for condition 10(1) is to ensure that any complaints regarding Site operations are responded to and recorded in a timely and appropriate manner. The reason for conditions 11(1) and 11(2) is to ensure that all spills, as defined in Reg. 347, are reported and acted upon in the appropriate manner.

The reason for conditions 13(1) through 13(4) is to specify the approved service area from which waste may be accepted at the Site.

The reason for conditions 14(1) and 15(1) is to specify the types and amounts of waste that may be received at the Site on a daily basis.

The reasons for condition 16(1) and 18(1) through 18(5) is to specify the amounts of waste that may be stored at the Site at any one time and to specify any storage restrictions imposed to minimize the potential for an adverse impact.

The reason for conditions 17(1) through 17(5) is to specify the waste screening

procedures to be employed at the Site to ensure that any unacceptable wastes received at the Site are managed appropriately.

The reason for conditions 19(1) through 19(5) is to approve the use of the proprietary Biosystems reusable containers for biomedical waste management purposes and detail any restrictions regarding its use.

The reason for conditions 21(1), 21(2), 26(1), 27(1) through 27(3), 29(1), 30(1), 31(1), 33(1) through 38(4), is to ensure that the Site is operated in a manner which does not result in a nuisance or a hazard to the health and safety of any person or the environment.

The reason for conditions 20(1) through 20(3) is to specify the waste management activities that may be conducted outdoors.

The reason for conditions 22(1) and 22(2) is to ensure the controlled access and integrity of the Site by preventing unauthorized access.

The reason for condition 24(1), 25(1) through 25(3) is to ensure that waste and wastewater is managed and processed in accordance with the Act and its regulations and not in a manner which may results in an adverse impact or a potential hazard to the health and safety of any person or the environment.

The reasons for conditions 28(1) through 28(3) are to ensure that an Emergency Response and Contingency Plan is developed and maintained at the Site and that the Company is prepared and properly equipped to take immediate action in the event of an emergency or contingency situation.

The reason for conditions 39(1) through 44(2) is to outline the minimum performance requirements considered necessary to prevent an adverse effect resulting from the operation of the Equipment.

The reason for conditions 45(1) through 49(4) is to require the Company to gather accurate information so that the environmental impact and subsequent compliance with the Act, the Regulations and this ECA can be verified.

The reason for conditions 50(1) through 53(1) is to require the Company to retain records and provide information to the Ministry so that the environmental impact and subsequent compliance with the Act, the Regulation and this ECA can be verified. The reason for conditions 54(1) through 54(5) is to ensure that the Site is operated by properly trained staff to minimize the potential for a hazard or nuisance to the natural environment or any person.

The reason for conditions 55(1) and 55(2) is to ensure that the Site is closed in accordance with Ministry standards and to protect the health and safety of the public and the environment.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A680324 issued on June 28, 2019

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the

Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment, Conservation and Parks
135 St. Clair Avenue West, 1st Floor Toronto, Ontario
M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 20th day of July, 2020

Mohsen Keyvani, P.Eng.
Director
appointed for the purposes of Part
II.1 of the *Environmental Protection*

DL/ c: District Manager, MECP Halton-Peel Dan Kokol, Stericycle, ULC

APPENDIX B

Contaminant Name	CAS Number	Source ID	Source Description	Contaminant Emission Rate (by source) (g/s)	Distance to Property Line (m)	Criteria ^[1] (µg/m³)	50% of Criteria (μg/m³)	Regulation Schedule #	Benchmark Category ^[2]	Criteria Averaging Time (hours)	Table B-1 1-hour Dispersion Factor for Shortest Distance to Property Line [3] (µg/m³ / g/s)	Table B-1 Dispersion Factor Converted to Criteria Averaging Time (µg/m³ / g/s)	Predicted Concentration (µg/m³)	Contaminant Negligible?
Metals and Metal Compounds [4]														
Aluminum Oxide (Al ₂ O ₃)	1344-28-1	STACK01	Incinerator Emission	1.42E-04	20	120	60	Schedule 3	B1	24	8700	3573	5.06E-01	yes
Antimony (Sb)	7440-36-0	STACK01	Incinerator Emission	2.80E-06	20	25	12.5	Schedule 3	B1	24	8700	3573	1.00E-02	yes
Arsenic (As)	7440-38-2	STACK01	Incinerator Emission	8.33E-07	20	0.3	0.15	Schedule 3	B1	24	8700	3573	2.98E-03	yes
Barium (Ba)	7440-39-3	STACK01	Incinerator Emission	8.91E-06	20	10	5	Schedule 3	B1	24	8700	3573	3.18E-02	yes
Beryllium (Be)	7440-41-7	STACK01	Incinerator Emission	1.87E-07	20	0.01	0.005	Schedule 3	B1	24	8700	3573	6.68E-04	yes
Boron (B)	7440-42-8	STACK01	Incinerator Emission	5.65E-05	20	120	60	Schedule 3	B1	24	8700	3573	2.02E-01	yes
Cadmium (Cd)	7440-43-9	STACK01	Incinerator Emission	5.50E-07	20	0.025	0.0125	Schedule 3	B1	24	8700	3573	1.97E-03	yes
Calcium Oxide (CaO)	1305-78-8	STACK01	Incinerator Emission	5.53E-04	20	10	5	Schedule 3	B1	24	8700	3573	1.97E+00	yes
Chromium (Cr) (III)	7440-47-3	STACK01	Incinerator Emission	3.24E-06	20	0.5	0.25	Schedule 3	B1	24	8700	3573	1.16E-02	yes
Cobalt (Co)	7440-48-4	STACK01	Incinerator Emission	1.87E-07	20	0.1	0.05	Schedule 3	B1	24	8700	3573	6.68E-04	yes
Copper (Cu)	7440-50-8	STACK01	Incinerator Emission	1.03E-05	20	50	25	Schedule 3	B1	24	8700	3573	3.68E-02	yes
Iron (Fe)	7439-89-6	STACK01	Incinerator Emission	7.01E-05	20	4	2	Schedule 3	B1	24	8700	3573	2.50E-01	yes
Lead (Pb)	7439-92-1	STACK01	Incinerator Emission	4.88E-06	20	0.5	0.25	Schedule 3	B1	24	8700	3573	1.74E-02	yes
Lead (Pb)	7439-92-1	STACK01	Incinerator Emission	4.88E-06	20	0.2	0.1	Schedule 3	B1	720	8700	1379	6.73E-03	yes
Lithium (Li)	7439-93-2	STACK01	Incinerator Emission	3.57E-06	20	20	10	Schedule 3	B1	24	8700	3573	1.28E-02	yes
Magnesium Oxide (MgO)	1309-48-4	STACK01	Incinerator Emission	5.12E-05	20	120	60	Schedule 3	B1	24	8700	3573	1.83E-01	yes
Manganese (Mn)	7439-96-5	STACK01	Incinerator Emission	2.04E-06	20	0.4	0.2	Schedule 3	B1	24	8700	3573	7.29E-03	yes
Mercury (Hg) (Total)	7439-97-6	STACK01	Incinerator Emission	1.47E-05	20	2	1	Schedule 3	B1	24	8700	3573	5.25E-02	yes
Molybdenum (Mo)	7439-98-7	STACK01	Incinerator Emission	7.75E-06	20	120	60	Schedule 3	B1	24	8700	3573	2.77E-02	yes
Nickel (Ni)	7440-02-0	STACK01	Incinerator Emission	2.62E-06	20	0.04	0.02	Schedule 3	B1	8760	8700 8700	685	1.79E-03	yes
Nickel (Ni) Phosphorus Pentoxide (P ₂ O ₅)	7440-02-0 1314-56-3	STACK01 STACK01	Incinerator Emission	2.62E-06 2.15E-04	20	<u>Z</u> 1	0.5	Schedule 3 Schedule 3	B1 B2	24	8700	3573 3573	9.36E-03 7.67E-01	yes
Selenium (Se)	7782-49-2	STACK01	Incinerator Emission Incinerator Emission	2.08E-06	20	10	0.5	Schedule 3	B1	24	8700	3573	7.43E-03	no
Silicon Dioxide (SiO ₂)	7631-86-9	STACK01	Incinerator Emission	2.22E-04	20	5	2.5	Schedule 3	B2	24	8700	3573	7.43E-03 7.95E-01	yes
Silver (Ag)	7440-22-4	STACK01	Incinerator Emission	2.17E-06	20	1	0.5	Schedule 3	B1	24	8700	3573	7.75E-03	yes
Sodium Hydroxide (NaOH)	1310-73-2	STACK01	Incinerator Emission	2.92E-03	20	10	5	Schedule 3	B1	24	8700	3573	1.04E+01	yes
Strontium Oxide (SrO)	1314-11-0	STACK01	Incinerator Emission	1.49E-06	20	120	60	Schedule 3	B1	24	8700	3573	5.32E-03	
					20	10			B1		8700			yes
Tin (Sn)	7440-31-5	STACK01	Incinerator Emission	1.96E-05			5	Schedule 3		24		3573	7.00E-02	yes
Titanium (Ti)	7440-32-6	STACK01	Incinerator Emission	1.08E-05	20	120	60	Schedule 3	B1 B1	24	8700 8700	3573 3573	3.86E-02	yes
Vanadium (V) Zinc (Zn)	7440-62-2 7440-66-6	STACK01 STACK01	Incinerator Emission Incinerator Emission	6.24E-07 2.87E-04	20	120	60	Schedule 3 Schedule 3	B1	24	8700	3573	2.23E-03 1.03E+00	yes
Particulate Matter (Incinerator)	7440-00-0	STACKOT	incinerator Emission	2.07L-04	20	120	00	Scriedule 3	ы	24	8700	3373	1.032100	yes
,	N/A-PM	STACK01	Indianatar Emissian	6.97E-03	20	120	60	Schedule 3	D1	24	8700	3573	2.405+01	NO.
Particulate Matter Polycyclic Aromatic Hydrocarbons	N/A-PM	STACKUT	Incinerator Emission	6.97E-03	20	120	60	Schedule 3	B1	24	8700	35/3	2.49E+01	yes
Chlorobenzenes														
	524.55.2	STACKOA		0.045.00	20	500	200		D0		0700	2572	2.455.04	
1,2,3,4-Tetrachlorobenzene	634-66-2	STACK01	Incinerator Emission	8.81E-08	20	600	300	Schedule 3	B2	24	8700	3573	3.15E-04	yes
1,2,3,5+1,2,4,5-Tetrachlorobenzene	95-94-3	STACK01	Incinerator Emission	8.81E-08	20	1	0.5	Schedule 3	B2	24	8700	3573	3.15E-04	yes
1,2,3-Trichlorobenzene	87-61-6	STACK01	Incinerator Emission	8.81E-08	20	135	67.5	Schedule 3	B2	24	8700	3573	3.15E-04	yes
1,2,4-Trichlorobenzene	120-82-1	STACK01	Incinerator Emission	8.81E-08	20	400	200	Schedule 3	B1	24	8700	3573	3.15E-04	yes
1,2-Dichlorobenzene	95-50-1	STACK01	Incinerator Emission	8.81E-08	20	30500	15250	Schedule 3	B1	1	8700	8700	7.66E-04	yes
1,3,5-Trichlorobenzene	108-70-3	STACK01	Incinerator Emission	8.81E-08	20	3.6	1.8	Schedule 3	B2	24	8700	3573	3.15E-04	yes
1,3-Dichlorobenzene	541-73-1	STACK01	Incinerator Emission	8.81E-08	20	50	25	Schedule 3	B2	24	8700	3573	3.15E-04	yes
1,4-Dichlorobenzene	106-46-7	STACK01	Incinerator Emission	8.81E-08	20	95	47.5	Schedule 3	B1	24	8700	3573	3.15E-04	yes
Hexachlorobenzene	118-74-1	STACK01	Incinerator Emission	8.81E-08	20	0.011	0.0055	Schedule 3	B2	24	8700	3573	3.15E-04	yes
Pentachlorobenzene	608-93-5	STACK01	Incinerator Emission	8.81E-08	20	80	40	Schedule 3	B2	24	8700	3573	3.15E-04	yes
Phenolics														
2,3,4,5-Tetrachlorophenol	4901-51-3	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2,3,4,6-Tetrachlorophenol	58-90-2	STACK01	Incinerator Emission	8.81E-08	20	0.75	0.375	Schedule 3	B2	24	8700	3573	3.15E-04	yes
2,3,7,0 Tetraction opticitor	JU-3U-Z	SIACIOI	THETTER ELITISSION	0.01L-00	20	0.73	0.575	Scriedule 3	DZ	24	6700	3313	J.1JL-04	yes

Contaminant Name	CAS Number	Source ID	Source Description	Contaminant Emission Rate (by source) (g/s)	Distance to Property Line (m)	Criteria ^[1] (µg/m³)	50% of Criteria (µg/m³)	Regulation Schedule #	Benchmark Category ^[2]	Criteria Averaging Time (hours)	Table B-1 1-hour Dispersion Factor for Shortest Distance to Property Line ^[3] (μg/m³ / g/s)	Table B-1 Dispersion Factor Converted to Criteria Averaging Time (µg/m³ / g/s)	Predicted Concentration (µg/m³)	Contaminant Negligible?
2,3,4-Trichlorophenol	15950-66-0	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2,3,5,6-Tetrachlorophenol	935-95-5	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2,3,5-Trichlorophenol	933-78-8	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2,3,6-Trichlorophenol	933-75-5	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2,3-Dichlorophenol	576-24-9	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2,4 + 2,5-Dichlorophenol	120-83-2	STACK01	Incinerator Emission	8.81E-08	20	33.5	16.75	Schedule 3	B2	24	8700	3573	3.15E-04	yes
2,4,5-Trichlorophenol	95-95-4	STACK01	Incinerator Emission	8.81E-08	20	220	110	Schedule 3	B2	24	8700	3573	3.15E-04	yes
2,4,6-Trichlorophenol	88-06-2	STACK01	Incinerator Emission	8.81E-08	20	1.5	0.75	Schedule 3	B2	24	8700	3573	3.15E-04	yes
2,6-Dichlorophenol	87-65-0	STACK01	Incinerator Emission	8.81E-08	20	19	9.5	Schedule 3	B2	24	8700	3573	3.15E-04	yes
2-Chlorophenol	95-57-8	STACK01	Incinerator Emission	8.81E-08	20	18	9	Schedule 3	B2	24	8700	3573	3.15E-04	yes
3,4,5-Trichlorophenol	609-19-8	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
3,4-Dichlorophenol	95-77-2	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
3,5-Dichlorophenol	591-35-5	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
3-Chlorophenol	108-43-0	STACK01	Incinerator Emission	8.81E-08	20	15	7.5	Schedule 3	B2	24	8700	3573	3.15E-04	yes
I-Chlorophenol	106-48-9	STACK01	Incinerator Emission	8.81E-08	20	15	7.5	Schedule 3	B2	24	8700	3573	3.15E-04	-
Pentachlorophenol	87-86-5	STACK01	Incinerator Emission	8.81E-08	20	20	10	Schedule 3	B1	24	8700	3573	3.15E-04	yes
Other Non-Chlorinated Polycyclic Arom			Incinerator Emission	0.01E-00	20	20	10	Scriedule 3	ы	24	8700	33/3	3.136-04	yes
			La de la como esta de la como e	0.045.00	20	25.5	47.75	Silved Iv 2	D2	2.4	0700	2572	2.455.04	l
-Methylnaphthalene	90-12-0	STACK01	Incinerator Emission	8.81E-08	20	35.5	17.75	Schedule 3	B2	24	8700	3573	3.15E-04	yes
-Methylphenanthrene	832-69-9	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2-Chloronaphthalene	91-58-7	STACK01	Incinerator Emission	8.81E-08	20	1	0.5	Schedule 3	B2	24	8700	3573	3.15E-04	yes
2-Methylanthracene	613-12-7	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
2-Methylnaphthalene	91-57-6	STACK01	Incinerator Emission	9.40E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.36E-04	yes
3-Methylcholanthrene	56-49-5	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
7,12-Dimethylbenzo(a)anthracene	57-97-6	STACK01	Incinerator Emission	3.53E-07	20	0.1	0.1	De minimus	N/A	24	8700	3573	1.26E-03	yes
9,10-Dimethylanthracene	781-43-1	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
9-Methylphenanthrene	883-20-5	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Acenaphthene	83-32-9	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Acenaphthylene	208-96-8	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Anthracene	120-12-7	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(a)anthracene	56-55-3	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(a)fluorene	238-84-6	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(a)pyrene [5]	50-32-8	STACK01	Incinerator Emission	8.81E-08	20	1.00E-05	5.00E-06	Schedule 3	B1	8760	8700	685	6.03E-05	no
Benzo(a)pyrene [5]	50-32-8	STACK01	Incinerator Emission	8.81E-08	20	5.00E-03	2.50E-03	URT	B1	24	8700	3573	3.15E-04	yes
Benzo(b)Anthracene	56-55-3	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(b)fluoranthene	205-99-2	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(b)fluorene	30777-19-6	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(e)pyrene	192-97-2	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(g,h,i)perylene	191-24-2	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Benzo(k)fluoranthene	207-08-9	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Biphenyl	92-52-4	STACK01	Incinerator Emission	1.29E-07	20	60	30	Schedule 3	B1	1	8700	8700	1.12E-03	yes
Chrysene	218-01-9	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Coronene	191-07-1	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Dibenzo(a,h)anthracene	53-70-3	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Dibenzo(a,c)anthracene	215-58-7	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Dibenzo(a,e)pyrene	192-65-4	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Fluoranthene	206-44-0	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
luorene	86-73-7	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	
ndeno(1,2,3-cd)pyrene	193-39-5	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
n-Terphenyl	92-06-8	STACKUT STACK01	Incinerator Emission Incinerator Emission	8.81E-08 8.81E-08	20	0.1	0.1	De minimus De minimus	N/A N/A	24	8700	3573	3.15E-04 3.15E-04	yes
	91-20-3	STACK01	Incinerator Emission	1.66E-06	20	22.5	11.25	Schedule 3	B1	24	8700	3573	5.93E-03	yes
Naphthalene				I nnr-Uh	/ ()	// 7	11.75	TO THEORIE 3	D I	/4	8/00	33/3	7.935-03	yes

Contaminant Name	CAS Number	Source ID	Source Description	Contaminant Emission Rate (by source) (g/s)	Distance to Property Line (m)	Criteria ^[1] (µg/m³)	50% of Criteria (µg/m³)	Regulation Schedule #	Benchmark Category ^[2]	Criteria Averaging Time (hours)	Table B-1 1-hour Dispersion Factor for Shortest Distance to Property Line ^[3] (µg/m³ / g/s)	Table B-1 Dispersion Factor Converted to Criteria Averaging Time (µg/m³ / g/s)	Predicted Concentration (μg/m³)	Contaminant Negligible?
o-Terphenyl	84-15-1	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Perylene	198-55-0	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Phenanthrene	85-01-8	STACK01	Incinerator Emission	2.28E-07	20	0.1	0.1	De minimus	N/A	24	8700	3573	8.15E-04	yes
Picene	213-46-7	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
p-Terphenyl	92-94-4	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Pyrene	129-00-0	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
Quinoline	91-22-5	STACK01	Incinerator Emission	8.81E-08	20	0.005	0.0025	Schedule 3	B2	24	8700	3573	3.15E-04	yes
Tetralin	119-64-2	STACK01	Incinerator Emission	8.81E-08	20	151.5	75.75	Schedule 3	B2	24	8700	3573	3.15E-04	yes
Triphenylene	217-59-4	STACK01	Incinerator Emission	8.81E-08	20	0.1	0.1	De minimus	N/A	24	8700	3573	3.15E-04	yes
PCBs														
Polychlorinated biphenyls (PCBs)	1336-36-3	STACK01	Incinerator Emission	8.86E-07	20	0.15	0.075	Schedule 3	B1	24	8700	3573	3.17E-03	yes
Dioxins and Furans [6]														
Dioxins, Furans and Dioxin-like PCBs	N/A-DF	STACK01	Incinerator Emission	8.84E-11	20	1.00E-07	5.00E-08	Schedule 3	B1	24	8700	3573	3.16E-07	no
Hydrogen Halides and Halides														
Ammonia	7664-41-7	STACK01	Incinerator Emission	9.34E-04	20	100	50	Schedule 3	B1	24	8700	3573	3.34E+00	yes
Hydrochloric Acid	7647-01-0	STACK01	Incinerator Emission	8.97E-03	20	20	10	Schedule 3	B1	24	8700	3573	3.20E+01	no
Hydrofluoric Acid	7664-39-3	STACK01	Incinerator Emission	1.44E-03	20	0.86	0.43	Schedule 3	B1	24	8700	3573	5.14E+00	no
Hydrofluoric Acid	7664-39-3	STACK01	Incinerator Emission	1.44E-03	20	0.34	0.17	Schedule 3	B1	720	8700	1379	1.98E+00	no
Volatile Organic Compounds														
1,1,1-Trichloroethane	71-55-6	STACK01	Incinerator Emission	4.72E-06	20	115000	57500	Schedule 3	B1	24	8700	3573	1.69E-02	yes
1,1,2-Trichloroethane	79-00-5	STACK01	Incinerator Emission	4.72E-06	20	0.3	0.15	Schedule 3	B2	24	8700	3573	1.69E-02	yes
1,1-Dichloroethane	75-34-3	STACK01	Incinerator Emission	4.72E-06	20	165	82.5	Schedule 3	B1	24	8700	3573	1.69E-02	yes
1,2-Dichloroethane	107-06-2	STACK01	Incinerator Emission	4.72E-06	20	2	1	Schedule 3	B1	24	8700	3573	1.69E-02	yes
1,2-Dichloropropane	78-87-5	STACK01	Incinerator Emission	4.72E-06	20	2400	1200	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Acetone (2-Propanone)	67-64-1	STACK01	Incinerator Emission	7.01E-06	20	11880	5940	Schedule 3	B1	24	8700	3573	2.50E-02	yes
Benzene	71-43-2	STACK01	Incinerator Emission	6.59E-06	20	0.45	0.225	Schedule 3	B1	8760	8700	685	4.51E-03	yes
Bromodichloromethane	75-27-4	STACK01	Incinerator Emission	4.72E-06	20	350	175	Schedule 3	B2	24	8700	3573	1.69E-02	yes
Bromoform	75-25-2	STACK01	Incinerator Emission	4.72E-06	20	55	27.5	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Bromomethane Carbon Tatrachlarida	74-83-9	STACK01	Incinerator Emission	1.28E-05 4.72E-06	20	1350 2.4	675	Schedule 3	B1 B1	24	8700 8700	3573 3573	4.58E-02 1.69E-02	yes
Carbon Tetrachloride Chloroform	56-23-5 67-66-3	STACK01 STACK01	Incinerator Emission Incinerator Emission	4.72E-06 4.75E-06	20	2.4	1.2 0.5	Schedule 3 Schedule 3	B1	24	8700	3573	1.70E-02	yes
cis-1,2-Dichloroethylene	156-59-2	STACK01	Incinerator Emission	4.72E-06	20	105	52.5	Schedule 3	B1	24	8700	3573	1.69E-02	yes
trans-1,2-Dichloroethylene	156-60-5	STACK01	Incinerator Emission	4.72E-06	20	105	52.5	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Dibromochloromethane	124-48-1	STACK01	Incinerator Emission	4.72E-06	20	0.2	0.1	Schedule 3	B2	24	8700	3573	1.69E-02	yes
Dichlorodifluoromethane (FREON 12)	75–71–8	STACK01	Incinerator Emission	4.72E-06	20	0.1	0.1	De minimus	N/A	24	8700	3573	1.69E-02	yes
Ethylbenzene	100-41-4	STACK01	Incinerator Emission	4.72E-06	20	1900	950	Schedule 3	B1	0.16	8700	14533	6.86E-02	yes
Ethylbenzene	100-41-4	STACK01	Incinerator Emission	4.72E-06	20	1000	500	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Ethylene Dibromide	106-93-4	STACK01	Incinerator Emission	4.72E-06	20	3	1.5	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Methyl Ethyl Ketone (2-Butanone)	78-93-3	STACK01	Incinerator Emission	4.72E-06	20	1000	500	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Methylene Chloride (Dichloromethane)	75-09-2	STACK01	Incinerator Emission	4.72E-06	20	220	110	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Styrene	100-42-5	STACK01	Incinerator Emission	4.72E-06	20	400	200	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Tetrachloroethylene	127-18-4	STACK01	Incinerator Emission	4.72E-06	20	360	180	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Toluene	108-88-3	STACK01	Incinerator Emission	1.08E-04	20	2000	1000	Schedule 3	B1	24	8700	3573	3.87E-01	yes
Trichloroethylene	79-01-6	STACK01	Incinerator Emission	4.72E-06	20	12	6	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Trichlorofluoromethane (FREON 11)	75-69-4	STACK01	Incinerator Emission	4.72E-06	20	6000	3000	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Vinyl Chloride	75-01-4	STACK01	Incinerator Emission	4.72E-06	20	2000	0.5	Schedule 3	B1	24	8700	3573	1.69E-02	yes
Xylenes Xylenes	1330-20-7 1330-20-7	STACK01 STACK01	Incinerator Emission Incinerator Emission	1.42E-05 1.42E-05	20	3000 730	1500 365	Schedule 3 Schedule 3	B1 B1	0.16	8700 8700	14533 3573	2.06E-01 5.06E-02	yes
Aldehydes	1330-20-7	STACKUT	incinerator emission	1.42E-05	20	730	303	Scriedule 3	ВІ	24	8700	35/3	5.U0E-U2	yes
·	F0.00.0	CTA CVC4	In the section Fig. 1. 1	4.765.00	20	C.F.	22.5	Call III 2	D4	24	0700	2572	C 205:00	
Formaldehyde (Methanal)	50-00-0	STACK01	Incinerator Emission	1.76E-03	20	65	32.5	Schedule 3	B1	24	8700	3573	6.29E+00	yes
Acetaldehyde (Ethanal)	75-07-0	STACK01	Incinerator Emission	1.08E-04	20	500	250	Schedule 3	B1	24	8700	3573	3.86E-01	yes
Acetaldehyde (Ethanal) Acrolein	75-07-0 107-02-8	STACK01 STACK01	Incinerator Emission Incinerator Emission	1.08E-04 9.28E-05	20	500 0.4	250 0.2	Schedule 3 Schedule 3	B1 B1	0.5	8700 8700	10563 3573	1.14E+00 3.32E-01	yes
Acrolein	107-02-8	STACKUT STACK01	Incinerator Emission	9.28E-05 9.28E-05	20	4.5	2.25	Schedule 3	В1	24	8700	8700	8.07E-01	no yes

Contaminant Name	CAS Number	Source ID	Source Description	Contaminant Emission Rate (by source) (g/s)	Distance to Property Line (m)	Criteria ^[1] (µg/m³)	50% of Criteria (μg/m³)	Regulation Schedule #	Benchmark Category ^[2]	Criteria Averaging Time (hours)	Table B-1 1-hour Dispersion Factor for Shortest Distance to Property Line ^[3] (µg/m³ / g/s)	Table B-1 Dispersion Factor Converted to Criteria Averaging Time (µg/m³ / g/s)	Predicted Concentration (µg/m³)	Contaminant Negligible?
Gaseous Pollutants														
Nitrogen Oxides (NO _x)	10102-44-0	STACK01	Incinerator Emission	2.28E-01	20	200	100	Schedule 3	B1	24	8700	3573	8.14E+02	no
Nitrogen Oxides (NO _X)	10102-44-0	STACK01	Incinerator Emission	2.28E-01	20	400	200	Schedule 3	B1	1	8700	8700	1.98E+03	no
Sulphur Dioxide (SO ₂)	7446-09-5	STACK01	Incinerator Emission	5.47E-03	20	275	137.5	Schedule 3	B1	24	8700	3573	1.95E+01	yes
Sulphur Dioxide (SO ₂)	7446-09-5	STACK01	Incinerator Emission	5.47E-03	20	690	345	Schedule 3	B1	1	8700	8700	4.76E+01	yes
Sulphur Dioxide (SO ₂)	7446-09-5	STACK01	Incinerator Emission	5.47E-03	20	100	50	Schedule 3	B1	1	8700	8700	4.76E+01	yes
Sulphur Dioxide (SO ₂)	7446-09-5	STACK01	Incinerator Emission	5.47E-03	20	10	5	Schedule 3	B1	8760	8700	685	3.74E+00	yes
Carbon Monoxide	630-08-0	STACK01	Incinerator Emission	1.08E-02	20	6000	3000	Schedule 3	B1	0.5	8700	10563	1.14E+02	yes
Particulate Matter (All Sources)														
Particulate Matter	N/A-PM	STACK01	Incinerator Emission	6.97E-03	20	120	60	Schedule 3	B1	24	8700	3573	2.49E+01	yes
Particulate Matter	N/A-PM	CT1	Cooling Tower Emission	1.53E-02	20	120	60	Schedule 3	B1	24	8700	3573	5.48E+01	yes
Particulate Matter	N/A-PM	Total	Total Facility Emission	2.23E-02	20	120	60	Schedule 3	B1	24	8700	3573	7.97E+01	no
Carbon Monoxide (All Sources)														
Carbon Monoxide	630-08-0	STACK01	Incinerator Emission	1.08E-02	20	6000	3000	Schedule 3	B1	0.5	8700	10563	1.14E+02	yes

Notac:

- [1] Air quality limits set out the MECP ACB List dated April 2018, or de-minimus values as per Appendix B of Guideline A-10.
- [2] Benchmark Categories are set out in the MECP ACB List; Benchmark 1 (B1) refers to Standards or Guidelines, Benchmark 2 (B2) refers to Screening Levels.
- [3] Dispersion factor associated with shortest distance to property line for all sources emitting the contaminant was used.
- [4] Metals have been reported from stack testing in the elemental form. It is assumed they will oxidize or react with water moisture in the air upon leaving the stack.

 Where specified on the ACB List, the oxidized form of the metal has been used. If both metallic form and oxidized form are on the ACB List, the form having a Standard is assumed.
- [5] ACB List Note #7 identifies benzo[a]pyrene (CAS # 50-32-8) as surrogate for the majority of polycyclic aromatic hydrocarbons (PAH).
- Many PAH included here as "De minimus" are accounted for by this surrogate, and have been speciated in this negligibility assessment for completeness.
- [6] ACB List Note #8: The air standard for dioxins, furans, and dioxin-like PCBs requires the calculation of the total toxicity equivalent (TEQ) concentration contributed by all dioxin-like compounds in the mixture. The Standard is 0.1 pg TEQ/m3. This is converted to µg/m3 in the Criteria column to align with the Aermod results based on the g/s Contaminant Emission Rate.

Sample Calculation

Predicted Concentration (µg/m³)

- = Emission Rate (g/s) x Dispersion Factor from Table B-1 (μg/m³ / g/s emission)
- = 1.42E-04 g/s x 3573 μ g/m³ / g/s emission
- $= 1 \mu g/m^3$

APPENDIX C

Appendix C: Natural Gas Combustion Emissions Calculations

Stericycle 2022 ESDM Update

Natural gas combustion emissions are calculated based on emission factors from AP-42 Chapter 1.4, Table 1.4-1 and the thermal input rating of the combustion unit.

Assumed exhaust temperature: 125 degrees C

Source ID	Source Description or Title	Firing	Thermal In	put Rating	Natural Gas Heating Value	Flow Rate	Emission Factor	AP-42 Emission	Emission Rate
Source ID	Source Description of Title	Configuration	BTU/hr	KJ/hr	(BTU/ft ³)	(m³/s)	(lb/10 ⁶ ft ³)	Factor Rating	(g/s)
STACK06	Roof top heating unit	Wall-fired	120,372	127,000	1,020	0.014	100	В	1.49E-03
STACK07	Roof top heating unit	Wall-fired	90,042	95,000	1,020	0.011	100	В	1.11E-03
STACK08	Roof top heating unit	Wall-fired	90,042	95,000	1,020	0.011	100	В	1.11E-03
STACK09	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK10	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK11	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK12	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK13	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK14	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK15	IR heating unit	Wall-fired	149,755	158,000	1,020	0.018	100	В	1.85E-03
STACK17	Dryer	Wall-fired	199,989	211,000	1,020	0.023	100	В	2.47E-03
STACK18	Roof-mounted MAU	Wall-fired	125,111	132,000	1,020	0.015	100	В	1.55E-03
Total:	Total:			1,766,000					2.07E-02
Total Exclud	otal Excluding Dryer (STACK17):			1,555,000					1.82E-02

Emission Rate Sample Calculation for STACK06

ER = Thermal Input Rating / NG Heating Value x Emission Factor

ER =	120,372 BTU	1 ft ³	100 lb	1 kg	1,000 g	1 hr
-	1 hr	1,020 BTU	1,000,000 ft ³	2.2 lb	1 kg	3600 s

ER = 1.49E-03 g/s

Flow Rate Sample Calculation (using Ideal Gas Law) for STACK06

Flow Rate = BTU Rating / NG Heating Value x Conversion Factors for Fuel volume to Exhaust Volume

Flow Rate =	120,372 BTU	1 ft ³	28.32 L	0.042 mol NG	$10.996 \text{mol}_{ \mathrm{N}_{2}}$	1 L	1 m ³	1 hr
_	1 hr	1,020 BTU	1 ft ³	1 L	1 mol _{NG}	0.031 mol N ₂	1,000 L	3600 s

Flow Rate = $0.014 \text{ Am}^3/\text{s}$

Negligibility Calculation for Natural Gas Combustion Sources Based on Calculated Emission Rates

Appendix C: Boiler Emission Calculations

400 BHP Boiler

Boiler Heat Input Rating 5.19 MW Input Rating (from Thermogenics Spec)

17724779 BTU/h

18701000 kJ/h

Actual Exhaust Gas Flow Rate 3.18 m³/s Exhaust Gas Flow Rate 280 °C 553 K

Atmospheric Pressure Molar Flow 101.3 kPa

70 mol/s (at 280°C, 101.3 kPa)

Contaminant	In-Stack	Mol.	Emission	Comments
	Conc.	Weight	Rate	
	ppm	g/mol	μg/m³	
Oxides of Nitrogen	48	46	0.15	In-stack concentration from Thermogenics Inc. Themocoil spec sheet.

Sample Calculations:

Molar flow	3.18 m³	101.3 kPa	1 mol K	1000 L		
	1 s	553 K	8.314 L kPa	1 m³	=	70 mol/s
NOx Emissions	7.0E+01 mol exh	48 mol NOx	46 g NOx			0.15 g/g
	1 S	1000000 mol exh	1 mol NOx		=	0.15 g/s

STACK EXHAUST INFORMATION RE: THERMOCOILS

FUEL: NATURAL GAS

CONTROLS: FULLY MODULATING

Boiler HP	75	100	150	200	250	300	350	400	450	500	600	
Maximum Heat Input (MW)	0.96	1.28	1.93	2.55	3.22	3.87	4.54	5.19	5.81	6.35	7.62	
Maximum Gas Input (M³ / hour)	93.5	124.6	187	249	311.5	374	439	501	534	613	736	
Stack Inside Diameter (meter)	0.30	0.356	0.41	0.46	0.51	0.60	0.60	0.60	0.66	0.66	0.71	
Stack Gases Volume (Actual m³/sec)	0.60	0.80	1.22	1.60	2.00	2.40	2.86	3.18	3.54	3.98	4.77	
Estimated Temp. of Exhaust at Stack Exit at Rated Output. (°C)	285	280	290	280	280	275	285	280	285	275	280	
Stack Exit Velocity at Rated Output. (m/sec)	8.57	8.04	9.24	9.63	9.80	8.50	10.14	11.28	10.35	11.63	12.10	
Stack Emissions Estimated CO NOX SOX						Less Than 400 PPM Less Than 48 PPM NIL						

[&]quot;The specifications and descriptions of Thermogenics' products contained in this data sheet were in effect at the time of printing. Thermogenics does not intend that the reader will rely on it as basis for designing and/or installing systems containing the products described in this data sheet. Thermogenics has a policy of continuously improving its products. Thus, changes may be made to the specifications and description of any of Thermogenics products at any time and without notice, and Thermogenics disclaims any liability for costs that may be incurred as a result of such changes, and/or the use of the data provided."

Monday, May 28, 2012

Re: 90145

Stericycle Inc. 19 Armthorpe Road Brampton, Ontario, L6T 5M4 Canada

Tel: +1 (905) 595-2651 Fax: +1 (905) 595-2657

e-mail: nfernandes@stericycle.com

Attn:

To whom it may concern

Re:

Thermocoil boiler Model MG 400 NAX, Serial No.: 212620

Dear Mr. Fernandes,

Thermocoil boilers are designed to comply with the CCME National Emission Guidelines for Commercial/Industrial Boilers and Heaters guideline A9 for NOx 49.6 ppm at O2 of 3%, Boilers with capacity 10-100 MMBtu/h

Sincerely,

H. Bakalov, P.Eng.
Director of Engineering
Thermogenics Inc.
6 Scanlon Court

Aurora, Ontario, L4G 7B2 Tel: 905 727-1901 x 231

Fax: 905 727-7456

e-mail: cbakalov@thermogenicsboilers.com

APPENDIX D

REPORT

STERICYCLE ULC

BRAMPTON, ONTARIO

INCINERATOR SOURCE TESTING PROGRAM

RWDI #2202865 October 17, 2022

SUBMITTED TO

Ministry of the Environment, Conservations and Parks

Technical Assessment and Standards Development Branch 6th Floor 40 St. Claire Ave Toronto, Ontario, M4V 1M2 Source.testing@ontario.ca

cc: Stericycle ULC

Dan Kokol: Env. Health Safety dkokol@stericycle.com

SUBMITTED BY

Kirk Easto, d.E.T., QSTI

Senior Project Manager / Principal kirk.easto@rwdi.com

RWDI

600 Southgate Drive, Guelph, Canada, N1G 4P6 T: 519.823.1311 F: 519.823.1316

RWDI#2202865 October 17, 2022

EXECUTIVE SUMMARY

RWDI AIR Inc. (RWDI) was retained by Stericycle ULC (Stericycle) to conduct emission sampling on the exhaust of the biomedical incinerator at their facility, located in Brampton, Ontario. The purpose of this sampling program was to fulfill the conditions in Stericycle's Environmental Compliance Approval (ECA) Number A680324. A copy of the ECA is presented in Appendix A. The Pre-Test Plan for this testing program was originally submitted on February 8th, 2022, to the Ontario Ministry of the Environment, Conservations and Parks. Approval for the testing program was granted by the MECP on February 18th, 2022. Testing was conducted from June 15th to 17th 2022 under normal operating process conditions. Results from the sampling program are presented in the 'Tables' section of the report, with more detailed sampling results located in the Appendices.

The following represents a summary of the stack testing results and compares the testing results to the limits set out in Stericycle's Environmental Compliance Approval.

Parameter	Stack Testing Results ^[1]	ECA Limit ^[2]
Total Hydrocarbons	7.91 ppm	50 ppm
Carbon Monoxide [3]	5.87 mg/m ³	9 mg/m³
Oxygen (Secondary Combustion Chamber)	8.69 %	> 6%
Hydrogen Chloride	5.55 mg/m ³	7 mg/m ³
Particulate Matter	4.35 mg/m ³	17 mg/m ³
Dioxins and Furans (TEQ)	< 54.4 pg/m ³	80 pg/m ³
Oxides of Nitrogen (NO _x) [3]	123 mg/m ³	187 mg/m ³
Sulphur Dioxide [3]	< 2.96 mg/m ³	17 mg/m ³
Mercury	9.12 μg/m³	15 μg/m³
Cadmium	< 0.329 μg/m³	7 μg/m³
Lead	3.03 µg/m³	26 μg/m³

- [1] Concentrations are referenced to 25° C, 101.3 kPa, 11% O₂ and dry.
- [2] Refer to Section 44 of the ECA
- [3] Permit has a 24-hr or 12-hr rolling average limit, the values presented only represents that of the test times

The results of the testing indicate that all parameters demonstrate compliance with respect to the ECA.

Dispersion Modelling was conducted using the results from this source test in order to assess the aggregate off-property impact from test contaminants. Predicted concentrations for contaminants having concentration limits specified in the ECA were found to be less than their respective Point of Impingement (POI) limits at all receptors in the area. Dispersion modeling was conducted using AERMOD version 19191 and MECP's Toronto suburban MET data set.

A relative accuracy test audit was also conducted on the facility CEM's. They were found to be within the acceptable limits.

RWDI#2202865 October 17, 2022

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1	INTRODUCTION	1
1.1	Summary of Test Program	
1.2	Key Personnel	
2	SOURCE DESCRIPTION	2
2.1	Facility Description	2
2.2	Process Description	2
2.3	Sample Location Description	2
3	RESULTS	2
3.1	Objective and Test Matrix	2
3.2	Discussion of Results	3
	3.2.1 Dispersion Modelling	
	3.2.2 Relative Accuracy Test Audit (RATA)	
3.3	Conclusion	
4	SAMPLING METHODOLOGY	
4.1	Stack Velocity, Temperature, and Volumetric Flow Rate Determination	
4.2	Sampling for Particulate Matter (PM) and Metals	5
4.3	Sampling for Poly-cyclic Aromatic Hydrocarbons (PAH) and Dioxin and Furan Congeners (PCDD/PCDF)	5
4.4	Sampling for Hydrogen Chloride, Hydrogen Fluoride and Ammonia	6
4.5	Sampling for Volatile Organic Compounds	6
4.6	Sampling for Acrolein, Acetaldehyde (Ethanal) and Propionaldehyde (Propanal)	7
4.7	Continuous Emissions Monitoring for O ₂ , CO ₂ , CO, SO ₂ , NO _x , and THC	7
4.8	Relative Accuracy Test Audit	8
5	QUALITY ASSURANCE/QUALITY CONTROL ACTIVITIES	8
6	OPERATING CONDITIONS	C

RWDI#2202865 October 17, 2022

LIST OF TABLES

(Found within the Report Text)

Table 3.1.1: Test Matrix Summary **Table 3.2.1:** Summary of RATA Results

LIST OF TABLES

(Found After the Report Text)

Table 1: Summary of Sampling Parameters and Methodology

Table 2: Sampling Summary and Sample Log

Table 3: Sampling Summary – Flow Characteristics

Table 4: Particulate Matter and Metals - Averaged Results

Table 5: Polycyclic Aromatic Hydrocarbons (PAH) - Averaged Results

Table 6: Dioxins and Furans - Averaged Results **Table 7:** Hydrogen Chloride - Averaged Results

Table 8: Volatile Organic Compounds - Averaged Results

Table 9: Acrolein - Averaged Results

Table 10: Gaseous Pollutants - Averaged Results
 Table 11: ECA Limit Comparison - Averaged Results
 Table 12: Modelling Results - Averaged Results

Table 13: Relative Accuracy Test Results

LIST OF APPENDICES

(Found After the Report Text)

Appendix A: Environmental Compliance Approval

Appendix B: Particulate Matter & Metals

Appendix C: Dioxin and Furan

Appendix D: Halides

Appendix E: Volatile Organic Compounds

Appendix F: Aldehydes

Appendix G: Continuous Emission Monitoring (CEM) Summary

Appendix H: Relative Accuracy Test Audit

Appendix I: Field Notes Qualification of Sampling Team

Appendix J: Laboratory Results

Appendix K: Calibrations
Appendix L: Process Data
Appendix M: Modelling

Appendix N: List of Participants

rwdi.com

RWDI#2202865 October 17, 2022

1 INTRODUCTION

1.1 Summary of Test Program

RWDI AIR Inc. (RWDI) was retained by Stericycle ULC (Stericycle) to conduct emission sampling on the exhaust of the biomedical incinerator at their facility, located in Brampton, Ontario. The purpose of this sampling program was to fulfill the conditions in Stericycle's Environmental Compliance Approval (ECA) Number A680324. A copy of the ECA is presented in Appendix A.

The results of this stack testing were modelled using AERMOD v.19191 dispersion model to determine compliance with Point of Impingement limits defined in the MECP Air Contaminants Benchmark List.

The Pre-Test Plan for this testing program was originally submitted on February 8th, 2022, to the Ontario Ministry of the Environment, Conservations and Parks. Approval for the testing program was granted by the MOE on February 18th, 2022. A copy of the approval letter is provided in Appendix B. This testing was completed from June 15th to 17th, 2022 under normal maximum operating process conditions.

The stack testing study consisted of the following parameters:

- Particulate Matter (PM)
- Velocity, flow rate and temperature
- Metals
- Poly-cyclic Aromatic Hydrocarbons (PAHs), Dioxins and furans and dioxin like PCB's
- Polychlorinated benzenes, phenols and biphenyls
- Acrolein, Acetylaldehyde (Ethanal) and Propionaldehyde (Propanal)
- Hydrogen chloride (HCl), Hydrogen Fluoride (HF) and Ammonia (NH₃)
- Total hydrocarbons (THC)
- Nitrogen oxides (NO_x)
- Sulphur dioxide (SO₂)
- Oxygen (O₂)
- Carbon dioxide (CO₂)
- Carbon monoxide (CO)

A relative accuracy test audit (RATA) was also conducted on the facility's continuous emission monitors (CEM's).

1.2 Key Personnel

RWDI's field team lead for the test program was Mitchell Southwell, B.Sc., QSTI, and Kirk Easto, d.E.T., QSTI was the Senior Project Manager. The primary contact for Stericycle was Dan Kokol. A list of all participants is included in **Appendix N**.

RWDI#2202865 October 17, 2022

2 SOURCE DESCRIPTION

2.1 Facility Description

Stericycle ULC operates a biomedical waste incinerator in their plant at 95 Deerhurst Drive, Brampton, Ontario.

2.2 Process Description

A Joy Ecolaire MW 2500 two-stage starved air incinerator is used at the plant. Biomedical waste in containers is fed into the primary chamber of the incinerator using a hydraulic ram feed system. Auxiliary natural gas burners are used to ignite the waste which burns under sub-stoichiometric conditions. Combustion gases pass into a secondary chamber where the combustion process is completed. The combustion gases are retained for a minimum of 2 seconds above 1000°C in the secondary chamber.

2.3 Sample Location Description

The exhaust stack is located on the plant roof with a height above grade of 18.3 m and a diameter of 0.61 m. Two sampling ports for isokinetic sampling are 90° apart, at the same vertical height and located about 1 m above the roof. These ports are located at an "ideal" location as defined by the MOE Source Testing Code. Two additional sampling ports for non-isokinetic combustion gas and halides sampling are located about 0.4 m above the isokinetic sampling ports. For this round of testing an additional port was created at the outlet of the oxidizer secondary chamber. Oxygen, carbon monoxide and total hydrocarbons were measured at the outlet of the secondary chamber.

3 RESULTS

3.1 Objective and Test Matrix

The average emission results for this study are presented in the **tables section** of this report. A minimum of three tests were performed for all the parameters tested in the study. Detailed information for each test run can be found in the appendices. The following **Table 3.1.1** identifies each sampling parameter, and identifies the corresponding table, and appendices to locate the results from the sampling program.

RWDI#2202865 October 17, 2022

Table 3.1.1: Test Matrix Summary

Parameter	Table	Appendix
Particulate Matter and Selected Metals	4	В
Benzenes, Phenolics and other Chlorinated Organics	5	С
Dioxins and Furan Isomers	6	С
Hydrogen chloride and Fluoride	7	D
Volatile Organic Compounds	8	E
Acrolein, Acetaldehyde (Ethanal) and Formaldehyde (Methanal)	9	F
Continuous Emission Monitoring	10	G
Modelling Results	12	М
Relative Accuracy Test Audit	13	Н

All field notes collected during this study are presented in **Appendix I**. All laboratory results are included in **Appendix J**. All calibration information for the equipment used for this study is included in **Appendix K**.

3.2 Discussion of Results

The source testing was a requirement of the facility ECA Number A680324, issued on June 28th, 2019. The results of this testing program shows that all parameters sampled for are in compliance with their applicable limits specified in the ECA.

When the laboratory reported values less than their method detection limit for a specific component, the respective concentration and emission rates were calculated using the Reportable Detection Limit (RDL). This method is a conservative approach when calculating the emissions.

3.2.1 Dispersion Modelling

Dispersion Modelling was conducted using the results from this source test in order to assess the aggregate offproperty impact from all like contaminants. The AERMOD dispersion model has been used in the most recent ECA application and was used to predict maximum concentrations using the measured results from this source test.

One scenario was considered for this evaluation as the contaminants in question are only emitted from one source.

The dispersion modeling was conducted using the latest version of AERMOD 19191 and MECP's Toronto suburban MET data set.

Appendix M contains information on the dispersion modelling. **Table 12** provides a comparison of the ESDM emission rates to this year's stack testing results. Parameters modelled were those included in the most recent ESDM report. All contaminants were found to be less than their respective Point of Impingement (POI) limits at all receptors in the area.

RWDI#2202865 October 17, 2022

3.2.2 Relative Accuracy Test Audit (RATA)

A total of twelve 30-minute tests were completed on the installed CEM system. The results of this study indicate that the relative accuracy and absolute difference for all the monitors audited were within the limits set out in Environment Canada 1/PG/7 Method.

A summary of all the RATA tests and the results of the relative accuracy calculations are presented in **Table 3.2.1**.

Table 3.2.1: Summary of RATA Results

Parameter	Relative Accuracy (10% limit)	Bias (5% limit)	Bias Adjustment Factor
Oxygen (O ₂)	1.00%	No Bias	1.00
Carbon Monoxide (CO)	0.20%	0.09%	2.732
Nitrogen Oxides (NOx)	1.10%	0.20%	0.893

Detailed results and calculations of individual tests runs are presented in **Appendix H**.

The CEM system is acceptable following the criteria of equal to or less than 10% relative accuracy for the parameters tested. 1/PG/7 recommends the use of a bias adjustment factor (BAF) for monitors with a bias result; however, it is recommended that the new BAF for the Carbon Monoxide monitor is not used due to the low-level concentrations.

3.3 Conclusion

Testing was successfully completed on June 15th to 17th, 2022. All parameters were tested in accordance with referenced methodologies following the MOE approved Pre-Test Plan submitted February 8th, 2022. All parameters tested meet their respective limit in the ECA.

4 SAMPLING METHODOLOGY

The following section provides an overview of the sampling methodologies used in this program. Table 1, located in the Tables section, summarizes the testing parameters and corresponding methodologies.

4.1 Stack Velocity, Temperature, and Volumetric Flow Rate Determination

The exhaust velocities and flow rates were determined following the Ontario Source Testing Code (OSTC) Method 2, "Determination of Stack Gas Velocity and Flow Rate (Type S Pitot Tube)". Velocity measurements were taken with a pre-calibrated S-Type Pitot tube and incline manometer.

RWDI#2202865 October 17, 2022

Volumetric flow rates were determined following the equal area method as outlined in OSTC Method 2. Temperature measurements were made simultaneously with the velocity measurements and were conducted using a chromel-alumel type "k" thermocouple in conjunction with a digital temperature indicator.

The dry molecular weight of the stack gas was determined following calculations outlined in OSTC Method 3, "Determination of Molecular Weight of Dry Stack Gas". Stack moisture content was determined through direct condensation and according to OSTC Method 4, "Determination of Moisture Content of Stack Gas".

4.2 Sampling for Particulate Matter (PM) and Metals

Sampling for PM and Metals on the incinerator exhaust was performed in accordance with OSTC Method 5, "Determination of Particulate Emissions from Stationary Sources" and U.S. EPA Method 29 "Determination of Metals Emissions from Stationary Sources", respectively. Both PM and Metals were sampled concurrently using the same sampling train.

Sampling was conducted isokinetically using the required number of traverse points across the stack diameter. The sample was drawn through a glass lined sample probe and quartz fibre filter, which was maintained at a temperature of $120 \pm 14^{\circ}$ C ($248 \pm 25^{\circ}$ F). The sample was then introduced into the impinger train. The impinger train included two 5% HNO₃/10% H₂O₂ absorbing solution impingers, one empty impinger, two impingers containing acidified KMnO₄ solution and one impinger containing silica gel. Particulate emissions are collected on the heated filter; gaseous emissions are collected in the hydrogen peroxide and acidified potassium permanganate solution impingers. Mercury is analyzed specifically in the permanganate solution and all metals including mercury are analyzed in the peroxide impingers.

For the isokinetic testing, a total of 16 points (8 per traverse) were used. Sampling duration was 20 minutes per point with a total sampling time per isokinetic test of 320 minutes. Target sample volume was 5.6 m³ (200ft³). A total of three test runs were completed for the isokinetic testing.

Upon completion of the test, the sampling train was recovered, as in the procedures detailed in the reference method, and the samples were packaged for transport to Bureau Veritas Laboratory in Mississauga, Ontario for analysis.

4.3 Sampling for Poly-cyclic Aromatic Hydrocarbons (PAH) and Dioxin and Furan Congeners (PCDD/PCDF)

Sampling for PAH's and dioxin and furan congeners was performed in accordance with Environment Canada Method 1/RM/2 (1/RM/2) "Measurement of Releases of Selected Semi-Volatile Organic Compounds from Stationary Sources". Both compound categories were determined concurrently using the same sampling train.

RWDI#2202865 October 17, 2022

Sampling was conducted isokinetically using the required number of traverse points across the stack diameter. The sample was drawn through a glass lined sample probe and proofed glass fibre filter. Both of these were maintained at a temperature of 120 ± 14 °C (248 ± 25 °F). The sample then passed through a water cooled condenser and an XAD-2 absorbent module. The temperature of the XAD-2 module was kept below 20°C. The stack gas sample was then introduced into the impinger train. The impinger train was configured as specified in the reference method.

All glassware and filters were cleaned and proofed in accordance with procedures in 1/RM/2 prior to use in the field. Cleaning, proofing and analysis were performed by Bureau Veritas Laboratory in Mississauga, Ontario.

Upon completion of the test, the sampling train was recovered, as in the procedures detailed in the reference method, and the samples were kept cool and packaged for transport to Bureau Veritas Laboratory in Mississauga, Ontario for analysis. The filter, XAD-2 module, impinger catch, and all rinses were analysed for the PAH's and PCDD/PCDF's using high resolution gas chromatography / mass spectrometry.

For the isokinetic testing, a total of 16 points (8 per traverse) were used. Sampling duration was 20 minutes per point with a total sampling time per isokinetic test of 320 minutes. Target sample volume was 5.6 m³ (200ft³). There was a total of three test runs for PAH's and PCDD/PCDF's

4.4 Sampling for Hydrogen Chloride, Hydrogen Fluoride and Ammonia

Sampling for hydrogen chloride and fluoride compounds was completed following U.S. EPA Method 26 "Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources - Non-Isokinetic Method". The sampling was conducted using a midget impinger sampling train. The sample was drawn through a glass lined probe, glass fibre filter and three way stopcock which was maintained at a temperature of 120 ± 14 °C (248 ± 25 °F). The sample then entered the impinger train, which consisted of five impingers. The impingers included two 0.1N sulphuric acidic impingers, two 0.1N sodium hydroxide solutions, and one silica impinger.

Upon completion of the testing, samples were kept cool and submitted to Bureau Veritas Laboratory in Mississauga, Ontario for analysis.

There was a total of three samples for hydrogen chloride and fluoride compounds and Ammonia collected.

4.5 Sampling for Volatile Organic Compounds

Sampling for Polychlorinated benzenes, phenols and biphenyls was conducted using a volatile organic sampling train (VOST) following U.S. EPA SW846 Method 0030. Sample gas was collected on a pair of adsorbent tubes, the first containing Tenex, and the second, a combination of Tenex/charcoal. Since there was no visible condensate in the knockout flask located after the first tube, it was not recovered for analysis. Each set of tubes were sampled over a 60-minute period at 0.25 L/min. Samples were then submitted to Bureau Veritas Laboratory in Mississauga, Ontario for analysis. VOST tubes were "proofed" to ensure that there was no contamination before taking any samples.

There was a total of three samples for the VOST sampling collected.

RWDI#2202865 October 17, 2022

4.6 Sampling for Acrolein, Acetaldehyde (Ethanal) and Propionaldehyde (Propanal)

Sampling for Acrolein, Acetaldehyde (Ethanal) and Propionaldehyde (Propanal) was conducted following California Air Resources Board (CARB) Modified Method 430. This method is based on chemistry using dinitrophenylhydrazine (DNPH) to capture acrolein in air. Acrolein reacts with DNPH in an acidic solution and is continuously extracted out by toluene. During sampling, the toluene breaks up into small droplets; this allows a liquid-liquid extraction removing any hydrazones in the aqueous solution.

Gas samples were extracted from the stack using a Teflon probe connected to three mini-impingers containing acidified dinitrophenylhydrazine (DNPH), toluene and water (2 mL DNPH-HCl, 2 mL toluene, and 10 mL deionized water). Triplicate samples were collected 30-minutes per duct at a sampling rate of 0.3 L/min. Stack gas was collected until either the first impinger received enough carbonyl containing compounds (aldehydes and ketones) to consume the DNPH reagent causing the lower water phase to turn clear or to a maximum of two (2) hours. For each of the tests conducted, the two (2) hour maximum was reached.

4.7 Continuous Emissions Monitoring for O₂, CO₂, CO₂, SO₂, NO_x, and THC

Testing for O₂, CO₂, CO, SO₂, and NO_x was accomplished using continuous emission monitors (CEM). The exhaust gas sample was withdrawn from a single point at the center of the duct using a stainless-steel probe. The sample proceeded to a heated filter, where particulate matter was removed, and then transferred via a heated Teflon line to a sample conditioner. The Teflon line was heated above the condensation temperature of the exhaust gas stream. The sample conditioner removed any moisture in the exhaust. The sample was then routed through a manifold system and introduced to the individual CEM's for measurement.

THC was measured by drawing a sample of the gas stream through a heated filter, where particulate matter was removed, and then directly into a flame ionization detector, with moisture present in the gas stream.

Prior to testing, sample system bias checks and instrument linearity checks (calibration error) were completed. In addition, the analysers were calibrated (zeroed and span checked) at the completion of each run. A Campbell Scientific data logger system programmed to collect and record data at 1- second intervals was used. Average 1-minute concentrations were recorded from the 1-second measurements.

Oxygen was measured at the exhaust of the main stack as well as at the outlet of the secondary chamber. THC was measured at the outlet of the secondary chamber; CO, CO₂, SO₂ and NO_X were measured at the main stack location.

RWDI#2202865 October 17, 2022

4.8 Relative Accuracy Test Audit

Stericycle's CEM system was tested using the performance specifications as outlined in Section 5.3.4 (Relative Accuracy Test Protocols) of the Environment Canada document, EPS 1/PG/7, "Protocols and Performance Specifications for Continuous Monitoring of Gaseous Emissions from Thermal Power Generation". A total of twelve 30-minute tests were conducted, and the corresponding 30-minute average concentrations from Stericycle's CEM system and RWDI's reference method were obtained. Prior to starting the RATA all bias adjustment factors (BAF's) were set to 1.00.

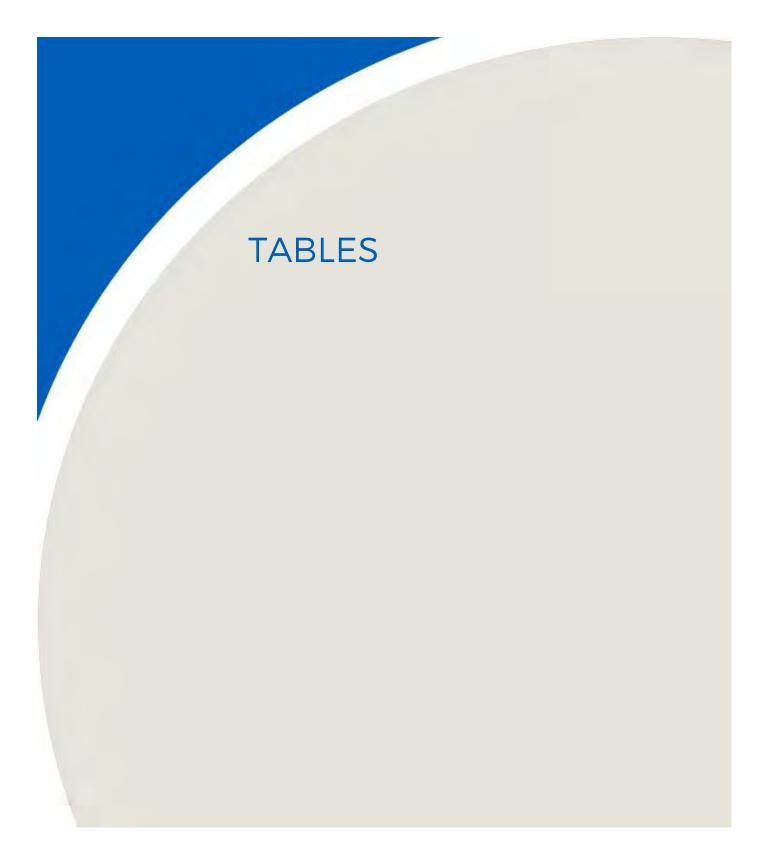
5 QUALITY ASSURANCE/QUALITY CONTROL ACTIVITIES

Applicable quality assurance measures were implemented during the sampling program to ensure the integrity of the results. These measures included detailed documentation of field data, equipment calibrations for all measured parameters, completion of Chain of Custody forms when submitting laboratory samples, and submission of field blank samples to the laboratories. Table 2 presents a sample log and summarizes the sampling times, sample ID's, filter ID's, and XAD trap ID's.

Quality control procedures specific to the CEM monitoring included linearity checks, to determine the instrument performance, and reproducibility checks prior to its use in the field. Regular performance checks on the analyser were also carried out during the testing program by performing hourly zero checks and span calibration checks using primary gas standards. Sample system bias checks were also done. These checks were used to verify the ongoing accuracy of the monitor and sampling system over time. Pollutant-free (zero) air was introduced to perform the zero checks, followed by a known calibration (span) gas into the monitor. The response of the monitor to pollutant-free air and the corresponding sensitivity to the span gas were recorded regularly during the tests.

Calibration gas was mixed using an Environics 4040 Gas Dilution System. The mass flow controllers are factory calibrated using a primary flow standard traceable to the United States National Institute of Standards and Technology (NIST). Each flow controller utilizes an 11-point calibration table with linear interpolation, to increase accuracy and reduce flow controller nonlinearity. The calibration is performed yearly, and the records will be included in the Source Testing Report. A multi-point EPA Method 205 check will be executed in the field prior to testing to ensure accurate gas-mixtures. The gas dilution system consisting of calibrated orifices or mass flow controllers dilutes a high-level calibration gas to within $\pm 2\%$ of predicted values. The gas divider is capable of diluting gases at set increments and will be evaluated for accuracy in the field in accordance with US EPA Method 205 "Verification of Gas Dilution Systems for Field Instrument Calibrations". Before testing, the gas divider dilutions will be measured to evaluate that the responses are within $\pm 2\%$ of predicted values. In addition, a certified calibration gas within $\pm 10\%$ of one of the tested dilution gases will be introduced into an analyzer to ensure the response of the gas calibration is within $\pm 2\%$ of the cylinder concentration.

RWDI#2202865 October 17, 2022


Leak checks were performed on the sampling train by plugging the sample inlet and pulling a representative vacuum. This check was done before and after each test. Similar leak check procedures for pitot tube and pressure lines were also conducted. Leak checks for each test were documented on the field data sheets presented in the applicable appendices for each sample parameter.

6 OPERATING CONDITIONS

Operating conditions during the sampling were monitored by Stericycle personnel. All equipment was operated under normal conditions.

Radio contact was kept between the process operators and the sampling team. A member of the RWDI sampling team contacted the operator before each test, to ensure that the process was at normal operating conditions. Appendix L contains the process information supplied by Stericycle.

Table 1: Summary of Sampling Parameters and Methodology

Source Location	No. of Tests	Sampling Parameter	Sampling Method
	6	Velocity, Temperature and Flow Rate	OSTC ^[1] Methods 1-4
	3	Particulate Matter	OSTC ^[1] Methods 5
	3	Metals	U.S. EPA ^[2] Method 29
	3	Semi Volatile Organic Compounds	Environment Canada Method RM/2
	3	Dioxins and Furans	Environment Canada Method RM/2
	3	Ammonia	U.S. EPA ^[2] Method 26
	3	Acrolein	CARB ^[3] 430 Method
Incinerator 3	3	Volatile Organic Compounds	U.S. EPA ^[2] SW846 Method 0030
	3	Sulphur Dioxide	U.S. EPA ^[2] Method 6C (CEM)
	3	Total Oxides of Nitrogen	U.S. EPA ^[2] Method 7E (CEM)
	3	Oxygen	OSTC ^[1] Method 3A
	3	Carbon Dioxide	OSTC ^[1] Method 3A
	3	Carbon Monoxide	U.S. EPA ^[2] Method 10
	3	Hydrogen Chloride/Fluoride	U.S. EPA ^[2] Method 26
	3	Total Hydrocarbons (THC)	U.S. EPA ^[2] Method 25A

Notes:

[1] OSTC - Ontario Source Testing Code - Version 3

[2] U.S. EPA - United States Environmental Protection Agency

[3] CARB - California Air Resources Board

Table 2: Sampling Summary and Sample Log

Source and Test #	Sampling Date	Start Time	End Time	Filter ID / Trap ID	Lab Sample ID
Velocity / Particulate Matter / Metals					
Blank	17-Jun-22	-	-	-	SYG281
Test #1	15-Jun-22	9:18 AM	2:58 PM	22021721	SYG283
Test #2	16-Jun-22	8:58 AM	4:16 PM	22031105	SYG284
Test #3	17-Jun-22	8:36 AM	2:11 PM	22031106	SYG285
Velocity / PAH / Dioxins and Furans					
Blank	17-Jun-22	-	-	-	SYG390
Test #1	15-Jun-22	9:18 AM	2:58 PM	Trap 6	SYG391
Test #2	16-Jun-22	8:58 AM	4:16 PM	Trap 3	SYG392
Test #3	17-Jun-22	8:36 AM	2:11 PM	Trap 2	SYG393
Acrolein					
Blank	17-Jun-22	-	-	-	SYG286
Test #1	15-Jun-22	11:43 AM	1:43 PM	-	SYG287
Test #2	16-Jun-22	2:06 PM	4:06 PM	-	SYG288
Test #3	17-Jun-22	11:00 AM	1:00 PM	-	SYG289
Volatile Organic Compounds					
Blank	17-Jun-22	-	-	-	SYG207
Test #1	15-Jun-22	10:30 AM	11:30 AM	-	SYG208
Test #2	16-Jun-22	10:05 AM	11:05 AM	-	SYG209
Test #3	17-Jun-22	9:47 AM	10:47 AM	-	SYG210
Hydrogen Chloride/ Hydrogen Fluoride/ Ammonia					
Blank	17-Jun-22	-	-	-	SYG273,SYH388,SYG277
Test #1	15-Jun-22	9:20 AM	10:20 AM	-	SYG274,SYG278
Test #2	16-Jun-22	9:00 AM	10:00 AM	-	SYG275,SYG279
Test #3	17-Jun-22	8:40 AM	9:40 AM	-	SYG276,SYG280

Table 3: Sampling Summary - Flow Characteristics

Stack Gas Parameter			Test No. 1		Test No. 2			Test No. 3			TOTAL AVERAGE
		PM ^[1]	SVOC ^[2]	Average	PM ^[1]	SVOC ^[2]	Average	PM ^[1]	SVOC ^[2]	Average	Average
Testing Date		15-Jun-22				16-Jun-22			17-Jun-22		-
Stack Temperature	°F	114	115	115	125	126	126	122	123	123	121
	°C	45.6	46.1	45.8	51.7	52.2	51.9	50.0	50.6	50.3	49.4
Moisture	%	4.0%	3.9%	4.0%	6.1%	6.2%	6.2%	5.9%	6.1%	6.0%	5.4%
Valority	ft/s	22.6	23.0	22.8	25.5	24.9	25.2	23.3	24.5	23.9	24.0
Velocity	m/s	6.87	7.01	6.94	7.77	7.60	7.68	7.10	7.46	7.28	7.30
Actual Flow Rate	CFM	4,251	4,337	4294	4,807	4,697	4752	4,392	4,613	4,502	4,516
D-f[3]	CFM	3,821	3,903	3862	4,133	4,032	4082	3,703	3,876	3,790	3,911
Referenced Flow Rate ^[3]	m³/s	1.80	1.84	1.82	1.95	1.90	1.93	1.75	1.83	1.79	1.84
Sampling Isokinetic Rate	%	98	99	98	100	100	100	98	101	99	99

- [1] PM = Sampling for total particulate matter and metals
- [2] SVOC = Sampling for Semi-Volatile Organic Compounds
- [3] Referenced flow rate expressed as dry at 101.3 kPa, 25 °C, and Actual Oxygen

Table 4: Particulate Matter and Metals - Averaged Results

		Concentration @	
Parameter	Concentration	11% O₂	Emission Rate
Particulate	(mg/m³)	(mg/m³)	(mg/s)
Particulate in Acetone Rinse	-	-	-
Particulate on Filter	-	-	-
Particulate Matter	3.81	4.35	6.97
Metals	(µg/m³)	(µg/m³)	(mg/s)
Aluminum (Al)	40.9	46.7	0.0749
Calcium (Ca)	217	248	0.395
Iron (Fe)	38.6	44.1	0.0701
Lithium (Li)	< 1.95	< 2.23	< 0.00357
Magnesium (Mg)	16.9	19.3	0.0309
Silicon (Si)	57.2	65.3	0.104
Sodium (Na)	917	1047	1.68
Zinc (Zn)	156	178	0.287
Antimony (Sb)	< 1.53	< 1.75	< 0.00280
Arsenic (As)	< 0.455	< 0.520	< 0.000833
Barium (Ba)	4.86	5.55	0.00891
Beryllium (Be)	< 0.102	< 0.117	< 0.000187
Boron (B)	< 30.9	< 35.3	< 0.0565
Cadmium (Cd)	< 0.288	< 0.329	< 0.000550
Chromium (Cr)	< 1.78	< 2.03	< 0.00324
Cobalt (Co)	< 0.102	< 0.117	< 0.000187
Copper (Cu)	5.62	6.42	0.0103
Lead (Pb)	2.65	3.03	0.00488
Manganese (Mn)	1.12	1.28	0.00204
Molybdenum (Mo)	4.24	4.84	0.00775
Nickel (Ni)	1.43	1.63	0.00262
Phosphorus (P)	< 51.2	< 58.5	< 0.0937
Selenium (Se)	< 1.14	< 1.30	< 0.00208
Silver (Ag)	1.17	1.34	0.00217
Strontium (Sr)	< 0.689	< 0.787	< 0.00126
Tin (Sn)	10.7	12.2	0.0196
Titanium (Ti)	5.90	6.74	0.0108
Vanadium (V)	< 0.341	< 0.390	< 0.000624
Mercury	(µg/m³)	(µg/m³)	(mg/s)
Filterable Hg	-		
Non-Filterable Hg	-	-	-
Total Hg	7.98	9.12	0.0147

- -Sampling followed OSTC Method 5 (PM) and U.S. EPA Method 29 (Metals)
- -All referenced concentration values are expressed at 101.3kPa, 25 $^{\circ}$ C,
- -Average of three tests
- -When laboratory analysis was below the detection limit, the Reportable Detection Limit (RDL) was used to calculate the concentration and emission rate

Detailed sampling results including individual test results can be found in Appendix B

Table 5: Polycyclic Aromatic Hydrocarbons (PAH's) - Averaged Results

Parameter	Concentration	Concentration @ 11% O ₂	Emmision Rate
	(µg/m³)	(µg/m³)	(µg/s)
1-Methylnaphthalene	< 0.0475	< 0.0543	< 0.0881
1-Methylphenanthrene	< 0.0475	< 0.0543	< 0.0881
2-Chloronaphthalene	< 0.0475	< 0.0543	< 0.0881
2-Methylanthracene	< 0.0475	< 0.0543	< 0.0881
2-Methylnaphthalene	< 0.0506	< 0.0578	< 0.0940
3-Methylcholanthrene	< 0.0475	< 0.0543	< 0.0881
7,12-Dimethylbenzo(a)anthracene	< 0.190	< 0.217	< 0.353
9,10-Dimethylanthracene	< 0.0475	< 0.0543	< 0.0881
9-Methylphenanthrene	< 0.0475	< 0.0543	< 0.0881
Acenaphthene	< 0.0475	< 0.0543	< 0.0881
Acenaphthylene	< 0.0475	< 0.0543	< 0.0881
Anthracene	< 0.0475	< 0.0543	< 0.0881
Benzo(a)anthracene	< 0.0475	< 0.0543	< 0.0881
Benzo(a)fluorene	< 0.0475	< 0.0543	< 0.0881
Benzo(a)pyrene	< 0.0475	< 0.0543	< 0.0881
Benzo(b)Anthracene	< 0.0475	< 0.0543	< 0.0881
Benzo(b)fluoranthene	< 0.0475	< 0.0543	< 0.0881
Benzo(b)fluorene	< 0.0475	< 0.0543	< 0.0881
Benzo(e)pyrene	< 0.0475	< 0.0543	< 0.0881
Benzo(g,h,i)perylene	< 0.0475	< 0.0543	< 0.0881
Benzo(k)fluoranthene	< 0.0475	< 0.0543	< 0.0881
Biphenyl	< 0.0698	< 0.0797	< 0.129
Chrysene	< 0.0475	< 0.0543	< 0.0881
Coronene	< 0.0475	< 0.0543	< 0.0881
Dibenzo(a,h)anthracene	< 0.0475	< 0.0543	< 0.0881
Dibenzo(a,c)anthracene	< 0.0475	< 0.0543	< 0.0881
Dibenzo(a,e)pyrene	< 0.0475	< 0.0543	< 0.0881
Fluoranthene	< 0.048	< 0.0543	< 0.0881
Fluorene	< 0.0475	< 0.0543	< 0.0881
Indeno(1,2,3-cd)pyrene	< 0.0475	< 0.0543	< 0.0881
m-Terphenyl	< 0.0475	< 0.0543	< 0.0881
Naphthalene	0.894	1.02	1.66
o-Terphenyl	< 0.0475	< 0.0543	< 0.0881
Perylene	< 0.0475	< 0.0543	< 0.0881
Phenanthrene	< 0.123	< 0.141	< 0.228
Picene	< 0.0475	< 0.0543	< 0.0881
p-Terphenyl	< 0.0475	< 0.0543	< 0.0881
Pyrene	< 0.0475	< 0.0543	< 0.0881
Quinoline	< 0.0475	< 0.0543	< 0.0881
Tetralin	< 0.0475	< 0.0543	< 0.0881
Triphenylene	< 0.0475	< 0.0543	< 0.0881

- -Sampling followed Environment Canada Method RM/2
- -All referenced concentration values are expressed at 101.3kPa, 25oC
- -Average of three tests
- -When laboratory analysis was below the detection limit, the Reportable Detection Limit (RDL) was used to calculate the concentration and emission rate.

Detailed sampling results including individual test results can be found in Appendix C

Table 6: Dioxins and Furans - Average Results

			Reg 4	19 Toxic Equivalency	Factors	
Parameter	Average Concentration	Average Concentration @25°C and 11% O₂	TEF	TEF Concentration	TEF Emission Rate	
	(pg/m³)	(pg/m³)		(pg TEQ/m ³)	(pg/s)	
2,3,7,8-Tetra CDD *	< 1.65	< 1.88	1	< 1.88	< 3.06	
1,2,3,7,8-Penta CDD *	< 1.76	< 2.01	1	< 2.01	< 3.27	
1,2,3,4,7,8-Hexa CDD *	< 1.65	< 1.88	0.1	< 0.188	< 0.306	
1,2,3,6,7,8-Hexa CDD *	< 1.44	< 1.64	0.1	< 0.164	< 0.267	
1,2,3,7,8,9-Hexa CDD *	< 1.49	< 1.70	0.1	< 0.170	< 0.277	
1,2,3,4,6,7,8-Hepta CDD *	< 1.37	< 1.56	0.01	< 0.0156	< 0.0254	
1,2,3,4,6,7,8,9-Octa CDD *	< 2.73	< 3.12	0.0003	< 0.000936	< 0.00152	
2,3,7,8-Tetra CDF **	< 1.83	< 2.09	0.1	< 0.209	< 0.340	
1,2,3,7,8-Penta CDF **	< 1.55	< 1.77	0.03	< 0.0531	< 0.0863	
2,3,4,7,8-Penta CDF **	< 1.54	< 1.76	0.3	< 0.528	< 0.858	
1,2,3,4,7,8-Hexa CDF **	< 1.57	< 1.79	0.1	< 0.179	< 0.291	
1,2,3,6,7,8-Hexa CDF **	< 1.42	< 1.62	0.1	< 0.162	< 0.264	
2,3,4,6,7,8-Hexa CDF **	< 1.64	< 1.87	0.1	< 0.187	< 0.304	
1,2,3,7,8,9-Hexa CDF **	< 1.78	< 2.03	0.1	< 0.203	< 0.330	
1,2,3,4,6,7,8-Hepta CDF **	< 1.35	< 1.54	0.01	< 0.0154	< 0.0251	
1,2,3,4,7,8,9-Hepta CDF **	< 1.71	< 1.95	0.01	< 0.0195	< 0.0317	
1,2,3,4,6,7,8,9-Octa CDF **	< 2.27	< 2.59	0.0003	< 0.000778	< 0.00126	
	(ng/m³)	(ng/m³)		(pg TEQ/m ³)	(pg/s)	
33'44'-TetraCB-(77)	8.12	9.28	0.0001	0.928	1.51	
344'5-TetraCB-(81)	< 0.353	< 0.403	0.0003	< 0.121	< 0.197	
233'44'-PentaCB-(105)	16.5	18.8	0.00003	0.565	0.919	
2344'5-PentaCB-(114)	1.03	1.18	0.00003	0.0353	0.0574	
23'44'5-PentaCB-(118)	47.6	54.4	0.00003	1.63	2.65	
23'44'5'-PentaCB-(123)	0.827	0.945	0.00003	0.0283	0.0461	
33'44'5-PentaCB-(126)	0.391	0.447	0.1	44.7	72.6	
HexaCB-(156)+(157)	3.20	3.66	0.00003	0.110	0.178	
23'44'55'-HexaCB-(167)	1.32	1.51	0.00003	0.0452	0.0735	
33'44'55'-HexaCB-(169)	< 0.00837	< 0.00956	0.03	< 0.287	< 0.466	
233'44'55'-HeptaCB-(189)	< 0.0416	< 0.0475	0.00003	< 0.00143	< 0.00232	
		Total T	oxic Equivalency	< 54.4	< 88.4	

- -Sampling followed Environment Canada Method 1/RM/2
- -All referenced concentration values are expressed at 101.3kPa, 25°C, and 11% Oxygen
- -Average of three tests
- -When laboratory analysis was below the detection limit, this detection limit was used to calculate the concentration and emission rate.
- *CCD = Chloro Dibenzo-p-Dioxin,
- **CDF = chlorodibenzo-p-furan
- ***CB = chlorobenzene

Detailed sampling results including individual test results can be found in Appendix C

Table 7: Hydrogen Chloride- Averaged Results

Parameter	Concentration	Concentration @ 11% O ₂	Emission Rate	
	(mg/m³)	(mg/m³)	(mg/s)	
Ammonia (NH ₃)	0.506	0.578	0.934	
Hydrochloric Acid	4.86	5.55	8.97	
Hydrofluoric Acid	< 0.779	< 0.890	< 1.44	

- -Sampling followed U.S. EPA Method 26
- -All referenced concentration values are expressed at 101.3kPa, 25° C
- -Average of three tests
- -When laboratory analysis was below the detection limit, this detection limit was used to calculate the concentration and emission rate.

Detailed sampling results including individual test results can be found in Appendix D

Table 8: Volatile Organic Compounds - Averaged Results

Parameter	Concentration	Concentration @ 11% O ₂	Emmision Rate
	(µg/m³)	(µg/m³)	(mg/s)
Dichlorodifluoromethane (FREON 12)	< 2.56	< 2.92	< 0.00472
Vinyl Chloride	< 2.56	< 2.92	< 0.00472
Bromomethane	6.94	7.93	0.0128
Trichlorofluoromethane (FREON 11)	< 2.56	< 2.92	< 0.00472
Acetone (2-Propanone)	< 3.80	< 4.34	< 0.00701
Methylene Chloride(Dichloromethane)	< 2.56	< 2.92	< 0.00472
1,1-Dichloroethane	< 2.56	< 2.92	< 0.00472
cis-1,2-Dichloroethylene	< 2.56	< 2.92	< 0.00472
Chloroform	< 2.57	< 2.94	< 0.00475
1,2-Dichloroethane	< 2.56	< 2.92	< 0.00472
Methyl Ethyl Ketone (2-Butanone)	< 2.56	< 2.92	< 0.00472
1,1,1-Trichloroethane	< 2.56	< 2.92	< 0.00472
Carbon Tetrachloride	< 2.56	< 2.92	< 0.00472
Benzene	< 3.57	< 4.08	< 0.00659
1,1,2-Trichloroethane	< 2.56	< 2.92	< 0.00472
1,2-Dichloropropane	< 2.56	< 2.92	< 0.00472
Trichloroethylene	< 2.56	< 2.92	< 0.00472
Bromodichloromethane	< 2.56	< 2.92	< 0.00472
Dibromochloromethane	< 2.56	< 2.92	< 0.00472
Toluene	< 58.72	< 67.1	< 0.108
Ethylene Dibromide	< 2.56	< 2.92	< 0.00472
Tetrachloroethylene	< 2.56	< 2.92	< 0.00472
Ethylbenzene	< 2.56	< 2.92	< 0.00472
m / p-Xylene	< 5.12	< 5.84	< 0.00944
Styrene	< 2.56	< 2.92	< 0.00472
o-Xylene	< 2.56	< 2.92	< 0.00472
Bromoform	< 2.56	< 2.92	< 0.00472

- -Sampling followed US EPA Method 0030
- -All referenced concentration values are expressed at 101.3kPa, 25oC
- -Average of three tests
- -When laboratory analysis was below the detection limit, the Reportable Detection Limit (RDL) was used to calculate the concentration and emission rate.

Detailed sampling results including individual test results can be found in Appendix E

Table 9: Acrolein- Averaged Results

Parameter	Concentration	Concentration @ 11% O ₂	Emission Rate	
	(mg/m³)	(mg/m³)	(mg/s)	
Formaldehyde (Methanal)	0.954	1.09	1.76	
Acetaldehyde (Ethanal)	< 0.0586	< 0.0669	< 0.108	
Acrolein	< 0.0503	< 0.0574	< 0.0928	

- -Sampling followed CARB 430
- -All referenced concentration values are expressed at 101.3kPa, 25°C
- -Average of three tests
- -When laboratory analysis was below the detection limit, this detection limit was used to calculate the concentration and emission rate.

Detailed sampling results including individual test results can be found in Appendix F

Table 10: Gaseous Pollutants - Average Results

	C	Concentration		
Parameter	Actual O ₂	Actual O ₂	11% O ₂	Emission Rate
	(ppm)	(mg/m ³)	(mg/m³)	(g/s)
Nitrogen Oxides, expressed as NO ₂ (NO _X)	58.0	109	123	0.228
Sulphur Dioxide (SO ₂)	< 1.00	< 2.62	< 2.96	< 0.00547
Carbon Monoxide	4.53	5.19	5.87	0.0108
	(%)			
Oxygen (O ₂)	12.2	-	-	-
Carbon Dioxide (CO ₂₎	5.65			
Secondary Cha	mber Outlet			
	(ppm)	(mg/m ³)	(mg/m ³)	(g/s)
Total Hydrocarbons (expressed as Methane)	7.91	-	-	-
	(%)			
Oxygen (O ₂)	8.69	-	-	-

- -Sampling followed U.S. EPA Method 3 (O₂ and CO₂), Method 10 (CO), Method 6C (SO₂), Method 7E (NO_X), and Method 25A (THC)
- -All referenced concentration values are expressed at 101.3kPa, 25°C
- -Average of all three tests
- -Emission rate for Incinerator calculated based on average volumetric flow rate of all Isokinetic tests

Detailed sampling results including individual test results can be found in Appendix G

Table 11: ECA Limit Comparisons

Parameter	Stack Tes	sting Results ^[1]	ECA Limit ^[2]
Total Hydrocarbons	7.91	ppm	50 ppm
Carbon Monoxide [3]	5.87	mg/m ³	9 mg/m ³
Oxygen (Secondary Combustion chamber)	8.69	%	> 6%
Hydrogen Chloride	5.55	mg/m ³	7 mg/m ³
Particulate Matter	4.35	mg/m ³	17 mg/m ³
Dioxins and Furans (TEQ)	< 54.4	pg/m ³	80 pg/m ³
Oxides of Nitrogen (NO _X) [3]	123	mg/m ³	187 mg/m ³
Sulphur Dioxide ^[3]	< 2.96	mg/m³	17 mg/m ³
Mercury	9.12	μg/m³	15 µg/m ³
Cadmium	< 0.329	μg/m³	7 μg/m ³
Lead	3.03	μg/m³	26 μg/m³

- [1] Concentration referenced to 25°C, 101.3kPa, and 11% oxygen
- [2] Refer to Section 44 of the ECA.
- [3] Permit has a 24-hr or 12-hr rolling average limit, the values presented only represents that of the test times

Table 12: Modelling Results - Test Contaminants - ECA Contaminants

Scenario	Contaminant	CAS Number	ESDM Estimated Emission Rates	Total Facility Emission Rate (g/s)	Air Dispersion Model Used	Maximum POI Concentratio n (µg/m³) [6]	Averaging Period (Hrs)	ACB (μg/m³) [1]	Limiting Effect	Regulatio n Schedule	Benchmar k Category [2]	Percentage of MECP Standard (%)
Normal	1,2,4-Trichlorobenzene	120-82-1	- Nates	8.81E-08	AERMOD	2.59E-05	24	400	Health	Guideline	B1	< 1%
	Aluminum Oxide	1344-28-1	-	2.83E-04	AERMOD	8.32E-02	24	120	Health	Guideline	B1	< 1%
	Arsenic (As)	7440-38-2	-	8.33E-07	AERMOD	2.45E-04	24	0.3	Health	Guideline	B1	< 1%
	Barium (Ba)	7440-39-3	-	8.91E-06	AERMOD	2.62E-03	24	10	Health	Guideline	B1	< 1%
[3][4]	PCDD/F (ITEQ)	n/a	3.50E-12	8.84E-11	AERMOD	2.60E-08	24	1.00E-07	Health	Standard	B1	26%
[3][4]	PCDD/F (ITEQ)	n/a	3.50E-12	8.84E-11	AERMOD	2.60E-08	24	1.00E-06	Health	URT	URT	3%
1-31-3	Pentachlorophenol	87-86-5	-	8.81E-08	AERMOD	2.59E-05	24	20	Health	Guideline	B1	< 1%
	Phosphorus (P)	10026-13-8	-	9.37E-05	AERMOD	2.75E-02	24	10	Health	Guideline	B1	< 1%
	Total PCB	1336-36-3	-	8.86E-07	AERMOD	2.60E-04	24	0.15	Health	Guideline	B1	< 1%
	Selenium (Se)	7782-49-2	-	2.08E-06	AERMOD	6.12E-04	24	10	Health	Guideline	B1	< 1%
	Cadmium	7440-43-9	4.00E-07	5.50E-07	AERMOD	1.62E-04	24	0.025	Health	Standard	B1	< 1%
	Cadmium	7440-43-9	4.00E-07	5.50E-07	AERMOD	1.62E-04	24	0.25	Health	URT	URT	< 1%
	Carbon Monoxide	630-08-0	8.10E-03	1.08E-02	AERMOD	1.00E+01	0.5	6000	Health	Standard	B1	< 1%
	Hydrochloric Acid	7647-01-0	5.50E-04	8.97E-03	AERMOD	2.64E+00	24	20	Health	Standard	B1	13%
	Hydrochloric Acid	7647-01-0	5.50E-04	8.97E-03	AERMOD	2.64E+00	24	200	Health	URT	URT	1%
	Lead	7439-92-1	1.70E-06	4.88E-06	AERMOD	1.43E-03	24	0.5	Health	Standard	B1	< 1%
	Lead	7439-92-1	1.70E-06	4.88E-06	AERMOD	2.62E-04	720	0.2	Health	Standard	B1	< 1%
	Lead	7439-92-1	1.70E-06	4.88E-06	AERMOD	1.43E-03	24	2	Health	URT	URT	< 1%
	Mercury	7439-97-6	2.50E-06	1.47E-05	AERMOD	4.32E-03	24	2	Health	Standard	B1	< 1%
	Oxides of Nitrogen	10102-44-0	4.30E-01	2.28E-01	AERMOD	1.76E+02	1	400	Health	Standard	B1	44%
	Oxides of Nitrogen	10102-44-0	4.30E-01	2.28E-01	AERMOD	6.70E+01	24	200	Health	Standard	B1	33%
	Particulate Matter	n/a	8.10E-04	6.97E-03	AERMOD	2.05E+00	24	120	Visibility	Standard	B1	2%
	Sulphur dioxide	7446-09-5	5.60E-04	5.47E-03	AERMOD	4.21E+00	1	690	Health	Standard	B1	< 1%
	Sulphur dioxide	7446-09-5	5.60E-04	5.47E-03	AERMOD	1.61E+00	24	275	Health	Standard	B1	< 1%
	Sulphur dioxide	7446-09-5	5.64E-04	5.47E-03	AERMOD	4.21E+00	1	690	Health	URT	URT	< 1%
[5]	Sulphur dioxide	7446-09-5	5.64E-04	5.47E-03	AERMOD	4.21E+00	1	100	Health	Standard	B1	4%
[5]	Sulphur dioxide	7446-09-5	5.64E-04	5.47E-03	AERMOD	2.24E-01	8760	10	Health	Standard	B1	2%

^{*}Modelling was updated in September, 2022. Meterological data was run using MECP Suburban Met. Data Set (v.19191) and modelling was completed using AERMOD v.19191

[1] The term "MECP POI Limit" identified in Table D-4 of Guideline A-10 refers to the following information (there may be more than one relevant MECP POI Limit for each contaminant):

- Air quality Standards, Guidelines or SL-JSLs set out the MECP publication, "Air Contaminants Benchmark (ACB) List: Standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants", 01 April 2018;
- The Daily Assessment Values (DAV) from the MECP ACB List;
- The Annual Assessment Values (AAV) from the MECP ACB List; or,
- Upper Risk Threshold (URT) from the MECP ACB List; or,
- [2] Benchmark Categories are set out in the MECP ACB List; Benchmark 1 (B1) refers to Standards or Guidelines, Benchmark 2 (B2) refers to Screening Levels.
- [3] The PCDD/F (ITEQ) based on the total toxicity equivalent for all individual compounds based on stack sampling program conducted by RWDI
- [4] Concentrations in micrograms per cubic metre
- [5] New ACB Standard for Sulphur Dioxide, effective date July 1, 2023.
- [6] AERMOD maximum 1-hour predicted concentrations multiplied by factor of 1.2 to derive equivalent 1/2 hour concentrations.
 - 1 g/sec modelling rates results in a maximum half-hour POI of 925 µg/m³ 1 g/sec modelling rates results in a maximum 1-hour POI of (from Model) 770 µg/m³
 - 1 g/sec modelling rates results in a maximum 24-hour POI of (from Model) 294 µg/m³ 1 g/sec modelling rates results in a maximum Monthly POI of (from Model) 54 µg/m³
 - 1 g/sec modelling rates results in a maximum Annual Average POI of (from Model) 29 µg/m³
 - Any Annual POI Concentrations in Table 12 were obtained by multiplying the contaminant emission rate by the Annual Average unit dispersion factor with that result multiplied by 140% as specified in MECP Guideline A-10, Secion 11.1.5.

Table 13- Incinerator - Certification Results

Certification Date - June 15, 2022

	dion bate june	RWDI	Time		NO _x			O ₂			СО		
Test	Date	Start Time	End Time	RM	CEM	di (nnm)	RM (dry%)	CEM (dry%)	di (%)	RM	CEM	di (nnm)	
1	15-Jun-22	9:15	9:44	(dppm) 33.17	(ppm) 41.1	(ppm) 7.9	12.0	12.1	0.1	(dppm) 1.4	(ppm) 0.6	(ppm) -0.8	
2	15-Jun-22	9:49	10:18	41.66	41.3	-0.4	11.5	11.6	0.1	1.8	0.5	-1.2	
3	15-Jun-22	10:23	10:52	53.34	50.8	-2.5	11.8	11.7	-0.1	2.0	0.5	-1.5	
4	15-Jun-22	11:04	11:33	64.09	76.8	12.7	12.2	12.1	0.0	8.0	28.0	20.0	
5	15-Jun-22	11:37	12:06	60.15	81.0	20.8	12.5	12.2	-0.3	1.6	37.2	35.6	
6	15-Jun-22	12:10	12:39	50.79	69.8	19.0	11.69	12.4	0.7	2.0	0.5	-1.5	
7	15-Jun-22	12:44	13:13	61.59	66.0	4.4	12.0	12.0	0.1	1.9	0.5	-1.4	
	,												
8	15-Jun-22	13:21	13:50	58.53	70.7	12.2	11.7	11.7	0.0	2.2	0.7	-1.5	
9	15-Jun-22	14:!2	14:41	57.61	65.0	7.4	11.5	11.5	0.0	2.2	0.5	-1.7	
10	15-Jun-22	14:50	15:19	56.34	71.0	14.6	11.8	11.5	-0.3	2.2	0.6	-1.5	
11	15-Jun-22	15:24	15:53	63.71	66.3	2.6	11.3	11.3	0.0	2.1	2.1	0.0	
12	15-Jun-22	15:56	16:25	56.80	72.2	15.4	11.6	11.7	0.1	2.5	0.9	-1.6	
			AVERAGE	54.45	60.99	6.54	11.79	11.76	-0.03	2.01	0.74	-1.27	
			STDS	10.5	13.2	6.0	0.3	0.3	0.1	0.3	0.5	0.5	
			n		9			11			10		
			Full Scale		1000			25			1000		
			t _{0.025}		2.306			2.228			2.262		
			I d I		6.5			0.0			1.3		
			l cc l		4.61			0.10			0.38		
	Bias present? (ldl > lccl)				bias preser	nt		no bias		b	ias preser	ıt	
	Bias (5% limit)				0.2%			-			0.09%		
			′ (10% limit)	1.1%			1.0%			0.2%			
В	ias Adjustment l	Factor (BAF) o	luring RATA		1.000		1.000			1.000			
		Adjustment I			0.893		1.000 2.732						

Notes:

RM = Reference Method (RWDI measurements)

CEM = Continuous Emission Monitors (Lafarge measurements)

di = Difference between CEM and RM for each point

n = number of tests

t _{0.025} = value for a one-tailed t-test

I d I = Absolute mean difference between the CEM and RM results

I cc I = Confidence coefficient

99 indicates test was ommited from calculating criteria

APPENDIX A

Ministry of the Environment, Conservation and Parks

Technical Assessment and Standards Development Branch 40 St. Clair Avenue West 7th Floor Toronto ON M4V 1M2 Phone: 416.327.5519 Ministère de l'Environnement, de la Protection de la nature et des Parcs Direction des évaluations techniques et de

l'élaboration des normes 40, avenue St. Clair Ouest 7° étage Toronto, ON M4V 1M2

Toronto, ON M4V 1M2 Tél: 416 .327.5519 Téléc: 416. 327.2936

Via email: <u>kirk.easto@rwdi.com</u>
TSS File No.: CR:SA:110038:22

2022/02/18

Fax: 416.327.2936

Mr. Kirk Easto **RWDI Air Inc.** 600 Southgate Dr. Guelph, Ontario N1G 4P6

Re.: Pre-test plan for source testing to be conducted at Stericycle ULC. Amended Environmental Compliance Approval No. A680324.

Dear Mr. Easto:

We reviewed your pre-test plan, RWDI Project No. 2202865, dated 2022/02/08, prepared and submitted on behalf of Stericycle ULC, and referring to source testing to be conducted at Stericycle's biomedical waste incinerator, located at 95 Deerhurst Dr., Brampton, Ontario.

The testing is an annual requirement under Condition 48 of the amended Environmental Compliance Approval (ECA) No. A680324, issued on 2019/06/28.

Target contaminants:

- Total suspended particulate matter (TSP),
- Selected metals (29 metals, as listed in the ECA's Schedule 7),
- SVOCs Dioxins and furans (29 dioxin-like compounds, as listed in O.Reg.419/05, Schedule 8),
- SVOCs Chlorinated benzenes, chlorophenols and PCBs functional groups, and targeted polycyclic organic matter compounds (benzo(a)pyrene, naphthalene and biphenyl), as listed in the ECA's Schedule 7,
- VOCs (30 compounds, as listed in the ECA's Schedule 7),
- Aldehydes (acetaldehyde, acrolein, formaldehyde),
- Ammonia (NH₄)
- Hydrogen chloride (HCl),
- Hydrogen Fluoride (HF),
- Nitrogen oxides (NOx),
- Sulphur dioxide (SO₂),

- Total hydrocarbons (THC), and
- Combustion gases (CO, CO₂, and O₂).

Notes: It is indicated in the pre-test plan that oxygen will be measured at two locations: undiluted from the gas stream at the outlet of the secondary combustion chamber (for validation of excess combustion oxygen levels), and at the stack (to normalize the concentrations of the target contaminants to 11% oxygen).

THC will also be monitored undiluted, at the outlet of the secondary combustion chamber.

Reference methodologies:

• For TSP: Ontario Source Testing Code's Method ON-5,

• For Metals: US EPA 40CFR60 Method 29,

• For SVOCs: Environment Canada's Report EPS 1/RM/2,

• For VOCs: US EPA SW846 Method 0030,

• For Aldehydes: Ashland Modified CARB Method 430,

For halides (HCl, HF), and ammonia: US EPA 40CFR60 Method 26,
For THC: US EPA 40CFR60 Method 25A,
For SO₂: US EPA 40CFR60 Method 6C,
For NOx: US EPA 40CFR60 Method 7E,

• For combustion gases: US EPA 40CFR60 Method 3A for oxygen and

carbon dioxide, and US EPA 40CFR60 Method 10

for CO; and

Stack Gas Parameters
 OSTC Method ON-1 to ON-4.

Notes: A relative accuracy certification will be carried out on Stericycle's continuous emissions monitoring system, following the requirements of Environment Canada's Report EPS 1/PG/7.

Sampling Strategies:

Triplicate samples will be collected for each of the contaminants (or group of contaminants) of interest.

Two sampling ports for isokinetic sampling will be used, 90° apart, at the same vertical height and located about 1 m above the roof. These ports are located at an "ideal" location. Two additional sampling ports for non-isokinetic combustion gas and halides sampling are located about 0.4 m above the isokinetic sampling ports.

It is expected all sampling be conducted in accordance with the methodologies and procedures stated in Table 3.1 and Section 5 of the PTP.

Otherwise, no modifications to the sampling methodologies have been identified.

Brief Process Description:

Stericycle ULC operates a two-stage starved air incinerator to treat biomedical waste, having a design operating capacity of 670 kg/h, located at 95 Deerhurst Drive, Brampton, Ontario.

The treatment of the biomedical waste starts when the waste (in containers) is fed into the primary chamber of the incinerator using a hydraulic ram feed system. Auxiliary natural gas burners are used to ignite the waste which burns under sub-stoichiometric conditions. Combustion gases pass into a secondary chamber where the combustion process is completed. The combustion gases are retained for a minimum of 2 seconds above 1000°C in the secondary chamber.

Gases exiting the secondary chamber are the treated by various control devices before being exhausted to atmosphere.

Although waste material is fed in batches to the incinerator (on average every 9 minutes), the incinerator operates continuously and is only shutdown periodically for maintenance work.

The facility operates under NAICS code 562211 "Hazardous Waste Treatment & Disposal".

Target Process Condition during the Source Testing Program:

Stericycle will be conducting the source testing targeting operating the facility at the maximum feet rate achievable during the test program (anticipated to be a biomedical waste feed rate of approximately 500 kg/h).

Note: It is stated in the ECA's Schedule 1, Part A.1 that the Incinerator, having a design operating capacity of 670 kilograms per hour.

The PTP states, operating at the 500 kg/hr feed rate allows for a constant feed rate over 24-hours. Operating at the ECA listed maximum would result in shutdowns and start ups each day.

Process Parameters to be monitored and reported during the source testing program:

Stericycle's personnel will be responsible for the monitoring, collection, compilation and reporting of pertinent process data during the test program, to establish waste processing rate levels.

The incinerator's operating parameters are automatically recorded for each minute of operation, by Stericycle. The process parameters to be monitored and recorded include:

- Waste incinerator feed rate (kg/h)
- Waste description
- Primary chamber temperature (°C)
- Secondary chamber temperature (°C)
- Demister exit temperature (°C)
- Carbon bed inlet temperature (°C)

- Cooling tower return water temperature (°C)
- ID fan temperature (°C)
- Atomizers amperage (A)
- Atomizer, quench and condenser pH
- Oxygen concentration (%)
- Carbon monoxide concentration
- Nitrogen oxides concentration

Our review indicated that the pre-test plan is approved, based on the proposed reference methodologies, sampling strategies, and process monitoring strategies during the source testing program.

We noted your intention at testing the incinerator exhaust during the week of 2022/05/09, with the actual testing conducted over three consecutive days from 2022/02/10 thru 2022/02/12. If there are changes to the sampling schedule change, please notify (via email) both the MECP's Halton-Peel District Office and the Technology Standards Section source testing group at sourcetesting@ontario.ca.

Just a reminder that the source testing report is required to be submitted **only** in electronic format to the Technology Standards Section source testing group at sourcetesting@ontario.ca; and in electronic and hardcopy formats to the MECP's Halton-Peel District Office.

If you have any questions with regard to this assessment, I can be reached by phone at 416-705-4660, or by email at sourcetesting@ontario.ca.

Regards,

Bill Fullerton

Source Assessment Specialist (A)

Willan Fullets

Technology Standards Section

cc: D. Kokol - Stericycle Inc. (via email: dkokol@stericycle.com)

C. Broux – MECP Halton-Peel District Office (via email: christelle.broux@ontario.ca)

D. Lee – MECP EPB (via email: <u>david.w.lee@ontario.ca</u>)

J. McKerrall – MECP TASDB TSS (via email: jeffrey.mckerrall@ontario.ca)

C. Ruddy – MECP TASDB TSS (via email: caitlyn.ruddy@ontario.ca)

File AQ-02 (Stericycle ULC - Brampton)

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A680324 Issue Date: June 28, 2019

Stericycle, ULC 95 Deerhurst Dr Brampton, Ontario L6T 5R7

Site Location:

95 Deerhurst Drive

Brampton City, Regional Municipality of Peel

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

the use and operation of a Waste Disposal Site which includes the use of the Site for the transfer, processing and incineration of the following categories of waste:

Waste Class Nos. 148 (Miscellaneous waste inorganic chemicals), 261 (Pharmaceutical), except bulk liquids, 262 (Detergents and Soaps), 264 (Photoprocessing) and 312 (Pathological), as defined in the New Ontario Waste Classes dated January, 1986 or the most recent revision; Biomedical Waste and solid non-hazardous wastes, including but not limited to controlled substances as defined in the *Controlled Drug and Substances Act*, currency, stamps, confiscated videos and other media.

For the purpose of this environmental compliance approval, the following definitions apply:

"Act" means the Environmental Protection Act, R.S.O. 1990, C. E-19 as amended;

"Activated Carbon Maintenance and Replacement Plan" means the document amended as item (52) of Schedule "A":

"AERMOD" is as defined in Ontario Regulation 419/05 subsection 6(1).

"Air Pollution Control System" means the quench pre-scrubber tower, the cooling tower, the caustic storage and delivery system, the condensing column, the two rotary atomizer modules, the acid absorber and demister system, the induced draft fan, the steam re-heat system, the carbon filter, the HEPA filtration system, the NOx selective non-catalytic reduction (SNCR) system, the Main Stack and all auxiliary equipment necessary for proper operation of the main components listed in the attached Schedule 1 and approved by this ECA;

"Autoclave" means either of the two autoclave sterilization systems, referred to in this ECA as the North and South Autoclaves, complete with the condenser, as described in the Company's application, Schedule 1 of this ECA and in the supporting documentation referred to herein, to the extent approved by this ECA;

"Baseline Parameters" means the operation and emissions parameters listed in Column 1 of Schedule 2 of this ECA;

"Biomedical Waste" is as defined in the Guideline and generated by any of the following:

- (a) human health care and residential facilities;
- (b) animal health care facilities;
- (c) medical research and medical teaching establishments;
- (d) veterinary research and veterinary teaching establishments;
- (e) health care teaching establishments for human health care;
- (f) health care teaching establishments for animal health care;
- (g) clinical testing or research laboratories;
- (h) the professional office of a health professional within the meaning of the Regulated Health Professions Act, 1991;
- (i) the professional office of a member of the College of Veterinarians of Ontario;
- (j) mortuaries and funeral establishments, including any similar establishments for pets and other animals:
- (k) facilities involved in the production of vaccines;
- (1) facilities involved in mobile health care for humans; and
- (m) facilities involved in mobile health care for animals,

"**Boilers**" means the two boilers as described in the Company's application, Schedule 1 of this ECA and in the supporting documentation referred to in Schedule "A";

"Bottom Ash" means the ash residue resulting from combustion of waste and being discharged from the primary chamber of the Incinerator into an ash pit using a hydraulic ram;

"Carbon Bed" means the carbon filter bed associated with the Air Pollution Control System and as

specified in the Activated Carbon Maintenance and Replacement Plan;

"Company" means any person(s) that is responsible for the operation of the Site and its Equipment, and includes Stericycle, Inc., its successors and assigns;

"Continuous Monitoring and Control System" means the differential pressure gauges, the pH monitoring devices, flow rate measuring devices, waste feed measuring device the continuous temperature monitors, continuous carbon monoxide monitor, continuous oxygen monitor together, NO_x monitoring system with all associated sampling lines, analysers, recording devices, computer hardware and software and other appurtenances necessary for proper operation of the Continuous Monitoring and Control System, as described in Schedule 1 of this ECA;

"Controlled Shutdown" means the complete cessation of operation of the incinerator after lockout, if the exceeded operational and/or emission performance parameters cannot be normalized below required ECA limits within a 24-hour period.

"**Director**" means a Director of the Environmental Assessment and Permissions Branch of the Ministry of the Environment, Conservation and Parks, or successor;

"**District Manager**" means the District Manager of the Halton-Peel District Office of the Ministry of the Environment, Conservation and Parks, or successor;

"ECA" means the Environmental Compliance Approval number A680324, including its schedules, issued under the Act, as amended from time to time;

"Emergency Bypass Stack" means the exhaust stack that discharges emissions generated during combustion of waste in the primary chamber of the Incinerator after those emissions have been controlled by the secondary chamber of the Incinerator;

"Emergency Power Supply" means a diesel fuel fired generator set, described in Schedule 1 of this ECA, rated at 500 kilowatts, capable of supplying sufficient electrical power to maintain the proper functioning of the Incinerator, the Air Pollution Control System and the Continuous Monitoring and Control System to ensure compliance with the Performance Conditions during external power supply failures;

"Emergency Shutdown" means an immediate cut-off of all waste into the primary chamber of the Incinerator; followed by natural gas standby until the emergency condition has been resolved, or the controlled termination of the combustion process when all the residual waste has been combusted;

"**Equipment**" means the North Autoclave, the South Autoclave, the Boiler, the Incinerator, the Air Pollution Control System, the Reusable Container System, the Continuous Monitoring and Control System together with all associated pieces of equipment necessary for the proper functioning of the major components listed in the above, as described in Schedule 1 of this ECA;

"ESDM Report" means the most current Emission Summary and Dispersion Modelling Report that describes the Facility. The ESDM Report is based on the Original ESDM Report and is updated after the

issuance of this ECA in accordance with section 26 of O. Reg. 419/05 and the Procedure Document;

"Guideline" means the Ministry document, "Guideline C-4: The Management of Biomedical Waste in Ontario", dated November 2009, as amended from time to time;

"Incineration Waste" means any other waste, approved by this ECA, that is not a Treatable Waste;

"Incinerator" means JOY ECOLAIRE 2500 TESI W/SR62H, or equivalent, controlled air 2-stage incinerator, described in Schedule 1 of this ECA;

"Lockout" means a temporary termination of the waste feed to the incinerator; either triggered by a waste feed lockout set point alarm, as prescribed in Schedule 2 of this ECA; and/or while the Incinerator is under shutdown mode; and/or when the Incinerator or the Continuous Monitoring and Control System is under maintenance or inoperative;

"Main Stack" means the exhaust stack that discharges emissions generated during combustion of waste in the primary chamber of the Incinerator after those emissions have been controlled by the secondary chamber of the Incinerator and the Air Pollution Control System, as described in Schedule 1 of this ECA;

"Manager" means the Manager, Technology Standards Section, Technical Assessment and Standards Development Branch of the Ministry of the Environment, Conservation and Parks, or successor, including any other person who represents and carries out the duties of the Manager, or successor, as those duties relate to the conditions of this ECA;

"Ministry" means the Ontario Ministry of the Environment, Conservation and Parks, or successor, unless specific reference is made to another ministry;

"North Autoclave" means the autoclave sterilization system, complete with one condenser, as described in Schedule 1 and Item 37 of Schedule "A" of this ECA;

"O. Reg. 419/05" means the Ontario Regulation 419/05, Air Pollution – Local Air Quality, as amended;

"OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;

"PA" means the <u>Pesticides Act</u>, R.S.O. 1990, c. P-11, as amended from time to time;

"Pathological Waste" is as defined in Reg. 347;

"**Performance Conditions**" means the conditions listed in Section D of this ECA, entitled "Design and Performance Requirements for the Equipment and the Site";

"**Point of Impingement**" means any point outside the Site in the natural environment and as defined in section 2 of O. Reg. 419/05;

"Pre-Test Plan" means a document, part of the Source Testing, prepared following the requirements of

Part A, Section 5 of the Source Testing Code;

"Process" means:

- (a) in relation to Treatable Waste, the receipt of Treatable Waste at the Site, its treatment in an Autoclave to achieve sterilization and the segregation of the treated waste into the appropriate storage area; and
- (b) in relation to Incineration Waste, the receipt, segregation of the Incineration Waste into the appropriate storage or staging area, Destruction of the Incineration Waste in the primary chamber of the Incinerator, and segregation, handling and disposal of the Residual Waste,

Note: "Processed" and "Processing" have a corresponding meaning;

"Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the OWRA or section 5 of the EPA or section 17 of PA;

"**Publication NPC-103**" means the technical publication NPC-103, as amended, included in the "Model Municipal Noise Control By-Law, Final Report, August 1978" document;

"Publication NPC-233" means Ministry Publication NPC-233, Information to be Submitted for Approval of Stationary Sources of Sound, October 1995, as amended;

"**Publication NPC-300**" means the Ministry Publication NPC-300, "Environmental Noise Guideline, Stationary and Transportation Sources – Approval and Planning, Publication NPC-300", August, 2013, as amended.

"Reg. 347" means Regulation 347, R.R.O. 1990, as amended;

"Rejected Waste" means any waste that cannot be processed at the facility or waste which the Site is not approved to accept;

"Residence Time" means the period of time combustion gases are subjected to the minimum temperature and oxygen content as specified by conditions 43(1) and 44(1)(c) of this ECA after the flame front where the combustion is fully developed and after the point of final addition of air in the secondary chamber of the Incinerator;

"Report EPS 1/PG/7" means Environment Canada Report EPS 1/PG/7, "Protocols and Performance Specifications for Continuous Monitoring of Gaseous Emissions from Thermal Generation", December, 2005;

"Residual Waste" means the spent filter material from the carbon filter and the HEPA filter and the Bottom Ash generated as a result of Processing waste in the Incinerator;

"Reusable Container System" means all equipment and materials associated with the Biosystems

reusable sharps container system.

"Site" means the waste disposal site permitted under this ECA, located at 95 Deerhurst Drive, City of Brampton, in the Regional Municipality of Peel;

"**Source Testing Code**" means the Ontario Source Testing Code, dated June 2010, prepared by the Ministry, as amended;

"Source Testing" means sampling and testing to measure emissions resulting from operating the Incinerator under conditions which yield the worst case emissions within the approved operating range of the Incinerator which satisfies paragraph 1 of subsection 11(1) of O. Reg. 419/05;

"South Autoclave" means the autoclave sterilization system, complete with one condenser, as described in Item 37 of Schedule "A" of this ECA, that was originally installed at 95 Deerhurst Drive in Brampton;

"Test Contaminants" means those contaminants set out in Schedule 7 of this ECA;

"**Trained**" means competent and knowledgeable in the operation of the Site through instruction and practice, as required and detailed in condition 54(1) of this ECA.;

"Treatable Waste" means that waste which is to be treated using the North or South Autoclave. More specifically, "Treatable Waste" means Biomedical Waste that is limited to non-anatomical Waste Class 312P; and

"Undiluted Gases" means the flue gas stream which contains oxygen, carbon monoxide, total hydrocarbons and all contaminants in the same concentrations as they exist in the flue gas stream emerging from an individual piece of equipment.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

A. GENERAL REQUIREMENTS

1. Compliance

- (1) The Company shall ensure compliance with all the conditions of this ECA and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this ECA and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this ECA.

2. In Accordance

- (1) Except as otherwise provided by these conditions, the Site shall be designed, developed, used, maintained and operated, and all facilities, equipment and fixtures shall be built and installed, in accordance with the Applications for a Certificate of Approval (Waste Disposal Site) dated October 27, 1998 and June 7, 2000, and the Applications for a Certificate of Approval (Air) dated October 27, 1998 and June 7, 2000 and the supporting documentation, plans and specifications listed in Schedule "A".
- (2) Use of the Site for any other type of waste, or other waste management activity, is not permitted under this ECA, and requires obtaining a separate approval amending this ECA.

3. Interpretation

- (1) Where there is a conflict between a provision of any document, including the application, referred to in this ECA, and the conditions of this ECA, the conditions in this ECA shall take precedence.
- (2) Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application, and that the Ministry approved the amendment.
- (3) Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.

(4) The conditions of this ECA are severable. If any condition of this ECA, or the application of any condition of this ECA to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this ECA shall not be affected thereby.

4. Other Legal Obligations

- (1) The issuance of, and compliance with, this ECA does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or
 - (b) limit in any way the authority of the Ministry to require certain steps be taken or to require the Company to furnish any further information related to compliance with this ECA.
- (2) All wastes at the Site shall be managed and disposed in accordance with the EPA and Reg. 347.

5. Change of Owner

- (1) The Company shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
 - (a) the ownership of the Site;
 - (b) appointment of, or a change in, the operator of the Site;
 - (c) the name or address of the Company;
 - (d) the partners, where the Company is or at any time becomes a partnership and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R. S. O. 1990, c. B.17, shall be included in the notification.
- (2) No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- (3) In the event of any change in ownership of the Site, other than change to a successor municipality, the Company shall notify the successor of and provide the successor with a copy of this ECA, and the Company shall provide a copy of the notification to the District Manager and the Director.

6. Inspections

- (1) No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the OWRA, the EPA, or the PA, of any place to which this ECA relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this ECA are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this ECA;
 - (c) to inspect the Site, related equipment and appurtenances;
 - (d) to inspect the practices, procedures, or operations required by the conditions of this ECA; and
 - (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this ECA or the EPA, the OWRA or the PA.

7. Information and Record Retention

- (1) Any information requested, by the Ministry, concerning the Site and its operation under this ECA, including but not limited to any records required to be kept by this ECA shall be provided to the Ministry, upon request, in a timely manner.
- (2) The Company shall maintain and retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation of the Equipment, and monitoring and recording activities, in both hard copy and electronic formats.
- (3) The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action, under this ECA or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the Ministry of any act or omission of any person that contravenes any term or condition of this Approval or any statute, regulation or other legal requirement; or
 - (b) acceptance by the Ministry of the information's completeness or accuracy.
- (4) Any information relating to this ECA and contained in Ministry files may be made available to the public in accordance with the provisions of the <u>Freedom of Information</u> and Protection of Privacy Act, R.S.O. 1990, C. F-31.

8. Financial Assurance

- (1) The Company shall maintain Financial Assurance, as defined in Section 131 of the Act, for the amount of two hundred twenty-five thousand Canadian dollars (225 000 CAD). This Financial Assurance shall be in a form acceptable to the Director and shall provide sufficient funds for compliance with and performance of any action specified in the Certificate, including waste analysis, monitoring and disposal of all quantities of waste at the Site at any one time, transportation of waste, Site clean-up as well as closure and post-closure care of the Site.
- (2) Commencing on March 31, 2020 and at intervals of three (3) years thereafter, the Company shall submit to the Director, a re-evaluation of the amount of Financial Assurance to implement the actions required under condition 8(1). The re-evaluation shall include an assessment based on any new information relating to the environmental conditions of the Site and shall include the costs of additional monitoring and/or implementation of contingency plans required by the Director upon review of the closure plan, quarterly and annual reports. The Financial Assurance must be submitted to the Director within twenty (20) days of written acceptance of the re-evaluation by the Director.
- (3) The amount of Financial Assurance is subject to review at any time by the Director and may be amended at his/her discretion. If any Financial Assurance is scheduled to expire or notice is received, indicating Financial Assurance will not be renewed, and satisfactory methods have not been made to replace the Financial assurance at least sixty (60) days before the Financial Assurance terminates, the Financial Assurance shall forthwith be replaced by cash.

9. Liability Insurance

(1) The Company shall, at all times while the Site is operating, maintain an environmental impairment liability insurance policy in the amount of at least two million Canadian dollars (2 000 000 CAD) and a general third party liability insurance policy in the amount of at least ten million Canadian dollars (10 000 000 CAD).

10. Complaint Response Procedure

- (1) If at any time, the Company receives complaints regarding the operation of the Site, the Company shall respond to these complaints according to the following procedure:
 - (a) The Company shall record each complaint on a formal complaint form entered in a sequentially numbered log book. The information recorded shall include the nature of the complaint, the name, address and the telephone number of the complainant and the time and date of the complaint;
 - (b) The Company, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, noting and recording the prevalent weather conditions, wind strength and wind direction at the time of the complaint, and shall proceed to take the necessary actions to eliminate the cause

- of the complaint, forward a formal reply to the complainant and within 24 hours of the complaint having been received notify by telephone and in writing the District Manager of the complaint and the actions taken; and
- (c) The Company shall prepare a report within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the reoccurrence of similar incidents.

11. Spill Response and Reporting

- (1) The Company shall promptly take all necessary steps to contain and clean up any spills which result from the operation of the Site.
- All spills, upsets, exceedance of any concentration limit prescribed in condition 44(1), as well as any instance of the use of the Emergency Bypass Stack, shall be immediately reported to the Ministry's Spills Action Centre at (416) 325-3000 or 1-800-268-6060, with the following information to be recorded:
 - (a) the nature and cause of the spill or upset, and
 - (b) the action taken for clean-up, as well as any corrective or preventative measures taken to avoid any similar occurrences in the future.

B. RECEIPT, STORAGE AND HANDLING OF WASTE

12. General

- (1) Except as otherwise provided by these conditions, the collection, handling and disposal of Biomedical Waste shall be carried out in accordance with the Guideline.
- (2) All waste unloading shall occur indoors at all times;
- (3) All waste received at, but not Processed at the Site, shall be stored indoors at all times, pending transfer to final disposal with the exception of waste stored in accordance with conditions 20(1) and 20(2);
- (4) Treatable Waste must be stored, pending Processing, as described in the information listed in Schedule "A"; and
- (5) Only Treatable Waste may be Processed in an Autoclave;
- (6) All other acceptable wastes received at the Site shall be stored, transferred and/or Processed in the Incinerator, in accordance with this ECA and information listed in Schedule "A".

(7) The Company shall ensure that only waste haulers approved by the Ministry to handle these wastes are used to transport waste to and from the Site.

13. Service Area

- (1) The Company may only receive waste generated within Canada and the United States of America.
- (2) No Biomedical Waste shall be received from the United States of America unless:
 - (a) the Biomedical Waste is being transferred from a facility under the control of Stericycle, Inc.; and
 - (b) the Biomedical Waste has been identified as being equivalent to waste class 312P by being identified on the manifest with code UN 3291.
- (3) Any waste received from the United States of America that does not meet the labelling and/or packaging standards listed in Guideline C-4 shall be immediately re-labelled upon receipt to provide a clear indication of the nature of the waste and the treatment requirements for that waste. Any waste that is not clearly identified shall be incinerated on-site.
- (4) All waste received from the United States of America shall be segregated from all other waste on-site.

14. Acceptable Waste Types

(1) Only Waste Class Nos. 148 (Miscellaneous waste inorganic chemicals), 261 (Pharmaceutical), 262 ((Detergents and Soaps), 264 (Photoprocessing), and 312 (Pathological) as defined in the New Ontario Waste Classes, and dated January 1986 or as revised, Biomedical wastes and solid non-hazardous wastes contracted for product destruction may be received at this Site.

15. Approved Waste Receiving Rate

(1) The total, maximum rate at which the Company may receive waste at the Site for Processing in an Autoclave and/ or Transfer and/ or Processing in the Incinerator shall be 95 tonnes per day.

16. Approved Waste Storage Capacity

(1) The maximum amount of Processed, unprocessed and Residual Waste that may be present at the Site is limited to 250 tonnes at any time.

17. Waste Screening

- (1) Incoming waste containers shall be visually inspected by a Trained employee, prior to being accepted at the Site, to ensure that the Site is approved to accept that type of waste. This inspection does not require opening the containers, but shall include inspection to determine that the containers are undamaged and correctly and appropriately labelled and that the wastes are properly packaged.
- (2) All incoming waste that arrives in leaking, damaged, improperly labelled, packaged or identified containers shall be repackaged to contain any leakage and re-labelled appropriately.
- (3) Only properly identified, packaged, undamaged and labelled waste containers shall be Processed at the Site.
- (4) Upon receipt at the Site, incoming materials must be categorized, by a Trained employee, as either Treatable Waste or Incineration Waste;

18. Waste Storage and Receiving Restrictions

- (1) The Company shall ensure that all Treatable Waste except sharps received at the Site are Processed within 72 hours of receipt. If, for any reason, this is not possible, the Company shall ensure that all wastes are placed in refrigerated storage or removed from the Site, within 24 hours of the equipment or process failure or otherwise in accordance with the procedures as described in the information listed in Schedule "A", and disposed at an approved waste disposal site;
- (2) Subject to Condition 18(1), if Treatable Waste is not Processed within 72 hours of receipt, no additional waste may be received at the Site for Processing in an Autoclave, until such time as the Site can operate in compliance with the conditions of this ECA;
- (3) Waste Class 261 may be stored at the Site for a maximum of 30 days;
- (4) All anatomical waste, including anatomical waste which is also cytotoxic, shall be refrigerated as soon as the waste has been weighed, inspected, time-stamped and recorded into the database unless it can be fed into the primary chamber of the Incinerator within 12 hours of having been recorded into the database; and
- (5) All cytotoxic waste shall be immediately stored in separate, secure and clearly marked areas.

19. Treatable Waste Received in Biosystems Reusable Containers

- (1) Treatable Waste received at the Site in Biosystems containers shall be unloaded and stored prior to processing in an area specified for only Biosystems containers.
- (2) Biosystems containers received at the site that have been bagged prior to receipt at the

- site shall be manually removed from the rack and disposed of immediately in the next load of waste being prepared for an Autoclave. These containers shall not be reused.
- (3) Biosystems containers that will not be treated on site shall be stored in a designated area inside the building or in a locked authorized vehicle outside in a fenced area.
- (4) Biosystems containers for storage or transport shall be removed from the site within 15 days of receipt at the Site.
- (5) In the event that legislation is promulgated that regulates biomedical waste containers, the requirements of this condition may be amended in order to conform to any new regulatory requirements.

20. Outdoor Activities

- (1) Unprocessed waste shall not be stored outside the building in any containers or in any vehicles, but may remain in refrigerated vehicles within a fenced, secure area at the Site, up to a maximum of four 10-tonne refrigerated truckloads, for a maximum of 12 hours while waiting to be unloaded; and
- Only Bottom Ash, demonstrated to be non-hazardous, up to a maximum of two 10-tonne lugger bins, and waste Processed in an Autoclave, up to a maximum of five 15-tonne compactor bins, may be stored outside the building in leak-proof, completely covered containers within a secure, fenced and paved area; and
- (3) All waste present outdoors at the Site is subject to the overall limitation referred to in condition 16(1).

21. Processed Waste Handling

- (1) Each load of Processed material and other waste, including Residual Waste, destined for final disposal, shall be removed from the Site in accordance with the information listed in Schedule "A".
- (2) All biomedical waste Processed in an Autoclave, destined for final disposal, shall be packaged in accordance with the Guideline.

22. Signage and Security

- (1) The Site shall be maintained in a secure manner to prevent unauthorized persons from entering the Site.
- (2) A sign shall be posted outside the building in a prominent location to indicate when the Site is open, and shall include a telephone number for an emergency response contact.

23. Nuisance Impacts

(1) The Company shall ensure that the Site is operated in a manner that is clean, orderly and hygienic and that prevents any off-site impacts, including the impacts of vermin, vectors, dust, litter, noise and traffic on the environment and the public.

24. Wastewater Management

(1) The Company shall ensure that all wastewater generated is discharged in accordance with the applicable municipal sewer use by-laws or shipped off-site for treatment.

25. Disposal of Residual Waste

- (1) The Company shall transfer the spent carbon and spent HEPA filters for disposal at a site approved to accept hazardous waste for disposal.
- (2) Bottom Ash that is not leachate toxic is not considered hazardous waste and may therefore be disposed of as solid, non-hazardous waste at a landfill site approved to receive and dispose of such waste.
- (3) Waste Processed in an Autoclave is not considered hazardous waste and may therefore be disposed of as solid, non-hazardous waste at a landfill site approved to receive and dispose of such waste.

C. OPERATION AND MAINTENANCE OF THE EQUIPMENT AND SITE

26. General

(1) The Company shall ensure that the Equipment and the Site are properly operated and maintained at all times.

27. Operating and Maintenance Manual

- (1) Maintain an operating and maintenance manual that outlines the operating procedures and a maintenance program for the all Equipment on-site that includes, but is not limited to the following:
 - (a) routine operating procedures in accordance with recommendations of the equipment manufacturers and good engineering practices and other requirements contained in this ECA;
 - (b) a detailed waste acceptance protocol, including appropriate characterization and pre-screening procedures for all incoming wastes and acceptance procedures for waste received in the Biosystems reusable containers, maintenance and cleaning procedures associated with the cleaning of Biosystems containers and operation instructions and safety requirements for the associated washing equipment, with

- special attention to Incineration Waste from any new customers with a view on combustion characteristics as well as potential impact on Bottom Ash quality;
- (c) inspection programs, including frequency of inspection of all pieces of Equipment, and the methods or tests employed to detect when maintenance is necessary;
- (d) repair and maintenance programs, including the frequency of routine maintenance of all pieces of Equipment;
- (e) emergency procedures;
- (f) instructions for any record keeping activities relating to operation, inspection and maintenance of the Equipment;
- (g) any other plans and procedures which are necessary because of the special nature of the Site, the materials used at the Site, or the location thereof;
- (h) a list of personnel positions responsible for operation and maintenance, including supervisory personnel and personnel responsible for recording and reporting pursuant to the requirements of this ECA, along with the training and experience required for the positions and a description of the responsibilities;
- (i) a list and location of spare parts to be kept available at the Site;
- (j) the procedures for recording and responding to environmental complaints;
- (k) all appropriate measures to minimize dust, odours, noise and other nuisances generated from all potential sources at the Site; and
- (1) the Activated Carbon Maintenance and Replacement Plan
- (2) provide the operating and maintenance manual for inspection by staff of the Ministry upon request; and
- (3) implement the recommendations of the operating and maintenance manual.

28. Emergency Response and Spill Contingency Plan

(1) The Company shall maintain an emergency response and spill contingency plan at the Site at all times when the Site is operational and shall submit the same to the District Manager for their information, the local Fire Department and the City of Brampton for their reference before any waste is received at the Site. The emergency response and contingency plan shall contain, as a minimum:

- (a) emergency response procedures, including notification procedures in case of spills, fires and explosions;
- (b) list of home and business phone numbers and work locations of all person(s) responsible for the Site;
- (c) list of emergency phone numbers for the local Ministry office, Ministry's Spills Action Centre, and the Local Fire Department;
- (d) measures to prevent spills, fires and explosions;
- (e) description and procedures for use of fire fighting as well as spill clean-up related equipment and control and safety devices;
- (f) maintenance and testing program for spill clean-up equipment and fire fighting equipment;
- (g) training of Site operators and Site emergency response personnel;
- (h) an emergency Site plan, identifying the location and nature of wastes on Site.
- (2) The Company shall, as a minimum, review the emergency response and spill contingency plan on an annual basis, and, if amended, immediately submit the amended emergency response and contingency plan to the District Manager for their information, the local Fire Department and the City of Brampton.
- (3) The Company shall ensure that at all times that equipment and material are kept on hand and in good repair for immediate use in the event of:.
 - (a) any change in process parameters which results or potentially could result in an excursion from approved operational ranges;
 - (b) any fire or explosion;
 - (c) any unauthorized discharge of a contaminant into the natural environment or interior of any building; or
 - (d) any spill within the meaning of Part X of the Act.

29. Equipment and Site Inspections

(1) The Company shall conduct regular inspections of the Equipment and Site to ensure that all pieces of Equipment and the Site are operated in a manner that will not negatively impact the environment. Any deficiencies detected during these regular inspections, that might negatively impact the environment, shall be promptly corrected. A written record shall be prepared, which includes the following:

- (a) name and signature of Trained employee conducting the inspection;
- (b) date and time of the inspection;
- (c) list of pieces of Equipment inspected and all deficiencies that might negatively impact the environment observed;
- (d) recommendations for remedial action and actions undertaken;
- (e) date and time of maintenance activity; and
- (f) a detailed description of the maintenance activity.

30. Emergency Power Supply

(1) The Company shall maintain the Emergency Power Supply in proper working condition at all times so that it is capable of maintaining the proper operation of all components of the Incinerator, the Air Pollution Control System and the Continuous Monitoring and Control System in order to ensure compliance with the Performance Conditions and to continue to operate the Incinerator and the Air Pollution Control System within the Operating Window.

31. Refrigerated Storage Units

(1) The Company shall ensure that the refrigerated storage units are operated at a temperature equal to or lower than 4 °C at all times when waste is required to be refrigerated;

32. Autoclaves

- (1) The Company shall Process a maximum of 70 tonnes per day of Treatable waste in the Autoclaves.
- (2) The Company shall ensure that each of the two Autoclaves is operated at all times in such a manner that:
 - (a) the load per cycle does not exceed 1,590 kilograms;
 - (b) the sterilization temperature is maintained at 149 °C +/ or one (1) percent; and
 - (c) the sterilization cycle per load lasts at least 20 minutes when using the North Autoclave and 30 minutes when using the South Autoclave.

33. Incinerator and Air Pollution Control System

- (1) The Company shall ensure that the waste feed into the Incinerator does not exceed 670 kilograms per hour, up to a maximum of 10 tonnes per day, at any time.
- (2) The Company shall ensure that the temperature of the flue gas at the exit of the de-mister section of the Air Pollution Control System maintaining a minimum of 10 °C difference with the Carbon Bed inlet temperature.
- (3) The Company shall ensure that the flue gas is reheated to a temperature not exceeding 57° C before entering the Carbon Bed.
- (4) The Company shall plan any Carbon replacement to occur eight (8) weeks after the annual source testing has been completed to confirm, based on the Source Testing results, that the Carbon half-life has been adequately determined for the Carbon Bed to effectively control the emissions of mercury, as well as dioxins, furans and dioxin-like PCB compounds.
- (5) The Company shall ensure that appropriate equipment and systems are available to continuously monitor and provide visual and audible warnings for the warning set points detailed in Schedule 2.

34. Failure to Operate in Accordance

(1) The Company shall forthwith bring the Incinerator to a waste feed Lockout if one or more Baseline Parameters exceeds the waste feed Lockout set point continuously for a period of time longer than the time referred to in Column 6 of the attached Schedule 2; or under Controlled Shutdown if the Approval exceeded Baseline Parameters cannot be normalized below required limits within a 24-hour period.

35. Power Failure

- (1) Upon the reduction, loss or failure of the external power source to the Site, the Company shall forthwith, in order to maintain compliance with the Performance Conditions of this ECA, take all reasonable steps to minimize all discharges from the Site, including steps to switch to the Emergency Power Supply within two minutes of the external power failure having occurred, and to control, reduce or halt combustion in the Incinerator, as may be necessary to ensure continued compliance with Performance Conditions and the ability to operate within the Operating Window.
- (2) Despite subsection (a), the Company shall forthwith proceed to an Emergency Shutdown of the Incinerator, if there is a loss or failure of the external power supply; pursuant to subsection (a), and the Emergency Power Supply is not available within 2 minutes of the failure of the external power supply having occurred or the Emergency Power Supply fails while the external power supply is not available.

36. Air Pollution Control System Failure

(1) In the event that the Air Pollution Control System fails and/or malfunctions, the Company shall forthwith initiate an Emergency Shutdown of the Incinerator, while maintaining the temperature of the secondary chamber of the Incinerator in accordance with conditions 43(1) and 43(2).

37. Continuous Monitoring and Control System Failure

(1) In the event that the Continuous Monitoring and Control System fails and/or malfunctions, the Company shall bring the Incinerator to a waste feed Lockout, and not resume the waste feed to the Incinerator until such time that the Continuous Monitoring and Control System has been repaired and operates in compliance with the design and performance specifications set out in Schedules 3, 4, 5 and 6.

38. Use of Emergency Bypass Stack

- (1) The Company shall not use the Emergency Bypass Stack, except during the following conditions:
 - (a) start-up of the Incinerator, when no waste has been fed into the Incinerator; or
 - (b) failure and/or malfunction of the Air Pollution Control System pursuant to condition 36(1) above.
- (2) When use of the Emergency Bypass Stack is necessary, pursuant to condition 38(1)(b) above, the Company shall forthwith bring the Incinerator to an Emergency Shutdown, while maintaining the temperature in the secondary chamber of the Incinerator at a minimum temperature of 1000 °C by burning natural gas only, until all waste is completely incinerated and the Bottom Ash discharged from the primary chamber of the Incinerator.
- (3) The Company shall forthwith notify the District Manager and Spills Action Centre by telephone, when use of the Emergency Bypass Stack occurs.
- (4) In the event of any use of the Emergency Bypass Stack, the Company shall prepare and submit a report to the District Manager within five (5) calendar days of the use, which shall include the following:
 - (a) date of the occurrence;
 - (b) general description of the occurrence;
 - (c) duration of the occurrence;
 - (d) effect of the occurrence on the emissions from the Incinerator;

- (e) measures taken to alleviate the effect of the occurrence on the emissions from the Incinerator; and
- (f) measures taken to prevent the occurrence of the same or similar occurrence in the future.

D. DESIGN AND PERFORMANCE REQUIREMENTS FOR THE EQUIPMENT AND THE SITE

39. Site (Noise)

(1) The Company shall ensure that the noise emissions from the Site comply with the limits set in accordance with Publication NPC-300.

40. Refrigerated Storage Units

(1) The Company shall ensure that there is a minimum of 130 cubic metres of refrigerated storage space available to accommodate 35 tonnes of waste.

41. Autoclaves:

(1) The Company shall ensure that the Autoclaves meets the requirements set out in the Guideline at all times when waste is Processed in either Autoclave.

42. Bottom Ash Quality

(1) The Company shall ensure that the organic content, measured as carbon, of the Bottom Ash does not exceed 10 percent by weight.

43. Secondary Chamber of the Incinerator

- (1) The Company shall have the Incinerator designed in such a manner as to ensure that the Incinerator is capable of maintaining, on a continuous basis, a temperature of not less than 1100°C in the secondary chamber of the Incinerator.
- (2) The Company shall have the Incinerator designed and operated in such a manner as to ensure that the following performance conditions are met at all times:
 - (a) The Incinerator shall be capable of regulating, by means of auxiliary fuel control, the temperature at the outlet of the secondary chamber of the Incinerator, so as to ensure that a temperature of not less than 1000 °C is attained prior to introduction of any waste into the primary chamber of the Incinerator during the start-up, and that the said temperature is thereafter maintained during the entire incineration cycle and subsequent shutdown until all waste combustion is completed in the primary chamber of the Incinerator, and until the final Bottom Ash is discharged from the primary chamber of the Incinerator.

- (b) The Incinerator shall include primary and secondary air control systems, which are capable of automatically adjusting the distribution and the quantity of combustion air, in such a manner that changes in the waste feed rate and/or waste composition or irregularities in the loading and/or combustion shall not adversely affect the performance of the Incinerator.
- (c) The Residence Time for the combustion gases in the secondary chamber of the Incinerator shall be a minimum of one second at a temperature of 1000 °C, and shall be calculated from the point where most of the combustion has been completed and the incineration temperature fully developed, to the last thermocouple, where the temperature of not less than 1000 °C is maintained.
- (d) The Incinerator shall provide and maintain a high degree of gas turbulence and mixing in the secondary chamber of the Incinerator.
- (e) The Incinerator shall achieve the temperature, Residence Time, residual oxygen and turbulence requirements over the complete range of operating parameters, including feed rate, feed characteristics, combustion air, flue gas flow rate and heat losses.

44. Concentration Limits

- (1) The Company shall, at all times, operate the Incinerator and the Air Pollution Control System in such a manner as to ensure that the following performance conditions are met:
 - (a) The concentration of nitrogen oxides at the Main Stack shall be not more than 187 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, calculated as the rolling arithmetic average of 24 hours of data derived from one-hour rolling average amounts measured by the Continuous Monitoring and Control System.
 - (b) The concentration of carbon monoxide at the Main Stack, shall be not more than 9 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, calculated as the rolling arithmetic average of 12 hours of data derived from one-hour rolling average amounts measured by the Continuous Monitoring and Control System.
 - (c) The residual oxygen in the Undiluted Gases at the outlet of the secondary combustion chamber of the incinerator shall be not less than 6 percent by volume on a dry basis, calculated as the rolling arithmetic average of 6 minutes of data measured by the Continuous Monitoring and Control System.
 - (d) The concentration of hydrochloric acid at the Main Stack shall be not more than 7 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined

- by Compliance Source Testing.
- (e) The concentration of suspended particulate matter at the Main Stack shall be not more than 17 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (f) The Toxic Equivalent Concentrations of dioxins, furans and dioxin-like PCBs at the Main Stack:
 - (A) Shall be not more than 80 picograms per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
 - (B) The toxicity equivalent concentration of dioxins, furans and dioxin-like PCBs shall be calculated in accordance with Schedule 8 of O. Reg. 419/05. The Toxic Equivalent Factors (TEF) scheme is intended to be used with isomer specific analytical results. In cases where results are reported by congener group only, staff at Ministry's Technical Assessment and Standards Development Branch shall be contacted for appropriate procedures to convert non-isomer specific data to Toxic equivalents (TEQs).
- (g) The concentration of organic matter having a carbon content, expressed as equivalent methane, in the Undiluted Gases at the outlet of the secondary chamber of the Incinerator and being an average of ten measurements taken at approximately one minute intervals, shall be not more than 50 parts per million by volume on dry basis, as measured by the Continuous Monitoring and Control System during Compliance Source Testing.
- (h) The concentration of sulphur dioxide at the Main Stack shall be not more than 17 milligrams per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, calculated as the rolling arithmetic average of 24 hours of data measured by Compliance Source Testing.
- (i) The concentration of mercury at the Main Stack shall be not more than 15 micrograms per dry cubic metre normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (j) The concentration of cadmium at the Main Stack shall be not more than 7 micrograms per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.

- (k) The concentration of lead at the Main Stack shall be not more than 26 micrograms per dry cubic metres normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, as determined by Compliance Source Testing.
- (2) The data reporting for the Baseline Parameters requires the following:
 - (a) Data recording minute-by-minute whenever the averaging time for a parameter limit is less than or equal to an hour; in such cases, the data acquisition system is expected to "roll the data" minute-by-minute to produce a series of rolling averages.
 - (b) Data recording every fifteen minutes whenever the averaging time for a parameter limit is more than an hour; in such cases, the data acquisition system is expected to "roll the data" every fifteen minutes to produce a series of rolling averages.

E. MONITORING

45. Noise

- (1) The Company shall carry out acoustic audit measurements on the actual noise emissions due to the operation of the Site, in accordance with the procedures in Publication NPC-103.
- (2) The Director may not accept the results of the acoustic audit if the requirements of Publication NPC-233 were not followed.
- (3) If the Director does not accept the results of the acoustic audit the Director may require the Company to repeat the acoustic audit.

46. Autoclaves

- (1) Every sixth day of operation of each of the two Autoclaves, the Company shall undertake Verification Testing as outlined in the Guideline.
- (2) Waste loads tested shall be representative of the waste normally Processed in the Autoclaves to confirm that the outgoing waste is acceptable for disposal at an approved sanitary landfill site;
- (3) Spore vials associated with the testing shall be cultured and monitored in accordance with the specifications of the manufacturers;
- (4) If any tested load fails, as indicated by Verification Testing, the waste loads shall be reprocessed and the next load retested;

- (5) Subject to condition 46(4), if a second tested load fails as well, no further waste may be received to be Processed in the Autoclaves or Processed in the Autoclave until the Company is able to ensure that the Treatable Waste can be effectively Processed in the Autoclaves; and
- (6) All failures shall be immediately reported verbally to the District Office or Spills Action Centre and in writing to the District Manager and details of the failure(s) recorded in the Annual Report required under condition 51(1).

47. Continuous Monitoring and Control System

- (1) The Continuous Monitoring and Control System shall be equipped with continuous recording devices and comply with the requirements outlined in the attached Schedules 3, 4, 5, and 6.
- (2) The Company shall conduct and maintain a program to continuously monitor:
 - (a) the temperature in the primary chamber of the Incinerator,
 - (b) the temperature in the secondary chamber of the Incinerator,
 - (c) the concentration of carbon monoxide in the Undiluted Gases leaving the secondary chamber of the Incinerator or at the outlet of the Main Stack,
 - (d) on an interim basis, the concentration of oxygen in the gases leaving the Air Pollution Control System, which can be used as an indicator of oxygen levels in the Undiluted Gases leaving the secondary combustion chamber of the Incinerator.
 - (i) Any proposed upgrade to the Air Pollution Control System will require a relocation of the oxygen probe to a location that will monitor oxygen in the Undiluted Gases.
 - (e) the concentration of nitrogen oxides in the undiluted gases leaving the Air Pollution Control System.
 - (f) all other Baseline Parameters.
- (3) The Company shall, in consultation with the Manager, develop and implement quality assurance and quality control procedures ("QA/QC plan") for the Continuous Monitoring and Control System in accordance with Report EPS 1/PG/7, to be implemented upon written acceptance from the Manager.
- (4) The Company shall assess the accuracy of the information contained in the QA/QC plan every three years or sooner to reflect the actual configuration of the Continuous

Monitoring and Control System. If the assessment indicates the need for an update of the QA/QC plan, the Company shall submit updated quality assurance procedures and quality control activities plan shall to the Manager for written acceptance.

- (a) Notwithstanding condition 47(4) above, by no later than March 31, 2020, the Company shall submit to the Manager and the District Manager, updated quality assurance procedures and quality control activities which will be employed in connection with the Continuous Monitoring and Control System.
- (5) The Company shall not alter the quality assurance procedures and quality control activities unless the Director has approved the updated procedures in accordance with condition 47(4) above.

48. Source Testing

- (1) The Company shall perform Source Testing to determine the rate of emission of the Test Contaminants in the Main Stack while processing a waste mix that may be encountered during the normal operation of the Incinerator yielding worse case emissions scenario.
- (2) The Company shall perform Source Testing following the procedure outlined in Schedule 8 of this ECA to determine the rate of emission of the Test Contaminants from the Incinerator.
- (3) The Company shall repeat the Source Testing on an annual basis ("Compliance Source Testing") for all Test Contaminants except for the polycyclic organic matter (excluding benzo(a)pyrene) and volatile organic contaminants, using one waste feed mix as agreed upon in writing by the Manager in consultation with the District Manager.
- (4) If the annual Compliance Source Testing indicates that the toxicity equivalent concentration of dioxins, furans and dioxin-like PCBs has remained consistently below 32 picograms per dry cubic metre, normalized to 11 percent oxygen, at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals, for five (5) consecutive years, then the Company may exclude dioxins, furans and dioxin-like PCBs from the annual Source Testing every second year as long as the toxicity equivalent concentration of dioxins, furans and dioxin-like PCBs continues to remain below 32 picograms per dry cubic metre normalized to 11 percent oxygen at a reference temperature of 25°C and a reference pressure of 101.3 kilopascals.
- (5) If the annual Compliance Source Testing indicates that benzo(a)pyrene (as a surrogate of polycyclic aromatic compounds with no set standards or guidelines in O. Reg. 419/05) exceeds O. Reg. 419/05 upper risk threshold, speciation for the polycyclic aromatic compounds listed in Schedule 9 will be required during the following Compliance Source Testing, or sooner if requested by the Director.

49. Testing of Bottom Ash

- (1) The Company shall conduct periodic verification testing of the Bottom Ash in accordance with the following:
 - (a) The Company shall conduct Bottom Ash sampling using the method described in the Ministry document entitled "Protocol for Sampling and Evaluating Fly Ash from Non-Hazardous Solid Waste Incineration Facilities, Ministry of the Environment and Energy, October 1990"; except for the sampling frequency and analytical requirements which are set out in this condition.
 - (b) The Company shall test the Bottom Ash no less than once per year.
 - (c) The Company shall analyze the samples in accordance with the Toxicity Characteristic Leaching Procedure described in Section 1 of Reg. 347 for compliance with the contaminant limits set out in Schedule 4 of Reg. 347
- (2) If at any time Bottom Ash is produced from waste that includes a new waste stream, the Company shall test that Bottom Ash in accordance with condition 49(1)(a) above before disposing of it.
- (3) The Company shall prepare a report on each verification test on the Bottom Ash and submit this report to the District Manager no later than one month after the sampling has been completed in accordance with conditions 49(1)(a) or 49(2) above.
- (4) If any of the tests indicate that the Bottom Ash is hazardous based on the results of sampling and analysis, the Company shall immediately notify the District Manager by telephone as well as in writing take action to ensure that hazardous waste is not disposed of at a site that is not approved to accept hazardous waste for storage, transfer and/or final disposal.

F. RECORD KEEPING AND REPORTING

50. General

- (1) All records, monitoring data and reports required by the conditions of this ECA shall be maintained at the Site for a minimum period of at least five (5) years from the date of their creation in a hard copy format and as an electronic record and shall be made available for inspection by staff of the Ministry. The records shall include, as a minimum, the following daily records:
 - (a) the sources, types and weights of all wastes received;
 - (b) the types, weights and destinations of all wastes transferred from the Site;
 - (c) the types and weights of all wastes present at the Site at the end of each operating day;

- (d) the types and weights of wastes Processed in the Autoclaves;
- (e) the types and weights of wastes Processed in the Incinerator;
- (f) start time, end time and weight for each Autoclave and Incinerator batch or operating period together with the Trained employee's name responsible for the proper Processing of the respective batch;
- (g) any needle stick injuries or accidental direct exposure to Biomedical Waste (e.g., splashing of blood from a container into an employee's face) resulting from the operation of the Site;
- (h) results of verification testing required by condition 46(1) of this ECA;
- (i) any records related to inspection, repair and maintenance of the Equipment;
- (j) records produced by the recording devices associated with the Continuous Monitoring and Control Systems; and
- (k) records obtained during Source Testing.

51. Annual Report for the Autoclave and the Site

- (1) By March 31st, 2020, and thereafter by each subsequent March 31st, the Company shall prepare and submit to the District Manager, and post on a web site identified by the Company name, an Annual Report covering the operation of the Autoclaves and all waste handling activities relating to the Site during the previous calendar year. Each such report shall include, but not be limited to, the following information:
 - (a) monthly summaries of tonnages of all wastes Processed at, stored at and/or transferred to the Site:
 - (b) details of any incidents involving improperly labelled incoming wastes and actions taken to ensure proper handling of all wastes and to minimize the potential for reoccurrence of the improper labelling;
 - (c) dates when each of the two Autoclaves was operated during the reporting period, including start and finish times as well as the names of the Trained employees who were responsible for the proper operation of the Autoclaves;
 - (d) details of any loads that failed the Autoclave verification testing required under condition 46(1);
 - (e) any environmental and operational problems, including spills, that may have negatively impacted the quality of the environment, encountered during the

operation of either of the two Autoclaves and any mitigating actions taken, including a summary of any complaints received regarding the operation of the Autoclaves, as described under condition 10(1);

- (f) a summary of all complaints received and any actions taken to mitigate;
- (g) a statement as to compliance with all conditions of the ECA and with the inspection and reporting requirements of the conditions contained herein; and
- (h) any recommendations to minimize environmental impacts and improve Site operations and monitoring programs.

52. Quarterly Report for the Incinerator

- (1) The Company shall prepare and submit to the District Manager, and post on a website identified by the Company name, a Quarterly Report covering the operation of the Incinerator, the Air Pollution Control System and Continuous Monitoring and Control System, due not later than one (1) month after the end of the quarter being reported on. Each report shall include, but not be limited to, the following information:
 - (a) dates when the Incinerator was operated during the reporting period, including start and finish times as well as the names of the Trained employees responsible for the operation of the Incinerator;
 - (b) hourly and daily waste feed rates into the Incinerator for each day when the Incinerator was operated during the reporting period;
 - (c) daily minimum, maximum and average values for all Baseline Parameters for the averaging times referred to in the Performance Conditions;
 - (d) duration of any secondary warning for carbon monoxide concentration, as triggered by the criteria detailed in Schedule 2, the concentration of carbon monoxide read during each warning period, and the corrective actions taken in response.
 - (e) duration of any Lockout triggered by an exceedance of the Waste Feed Lockout Set Point values listed in Schedule 2;
 - (f) detailed explanation of any Lockout triggered by an exceedance of the Waste Feed Lockout Set Point values listed in Schedule 2, and the course of action taken to resume the waste feed;
 - (g) summary table describing each incident in which any of the concentration limits prescribed in condition 45(1) of this Approval are exceeded. The table shall include for each exceedance:

- (i) date of exceedance;
- (ii) duration of exceedance;
- (iii) the exceeded parameter;
- (iv) a description of the exceedance, including the suspected cause; and
- (v) corrective actions taken to ensure operation resumes within the approved concentration limits.

the data in the table shall be expressed in the same units of measurement used in Condition 44(1).

- (h) dates, duration and reason for any use of the Emergency Bypass Stack as well as actions taken to eliminate the need for using the Emergency Bypass Stack;
- (i) any environmental and operational problems that may have negatively impacted the quality of the environment, encountered during the operation of the Incinerator and any mitigative actions taken, including a summary of any complaints received regarding the operation of the Incinerator. as described under condition 10(1);
- (j) a statement as to compliance with all Conditions of this ECA and with the inspection and reporting requirements of the Conditions contained herein, including compliance with Design and Performance Specifications for the Continuous Monitoring and Control System, as set out in Schedules 3, 4, 5 and 6 as well as the quality assurance and quality control procedures for the methods and devices used to monitor the Baseline Parameters;
- (k) any recommendations to minimize environmental impacts and improve Incinerator operations and monitoring programs; and
- (l) summary of maintenance and repair activities in relation to the Incinerator, Air Pollution Control System and/or the Continuous Monitoring and Control System, including calibration and testing activities, during the reporting period.

53. Incinerator Transient Operation

(1) The Company shall prepare a monthly Incinerator's Transient Operation report to be maintained for at least two years by the Company and made available to the Ministry upon request. Each report shall be prepared in hard and electronic formats, and shall include, but not be limited to, the dates of any Baseline Parameter warning alarm triggered in accordance with criteria in Schedule 2, start and finishing times, the names of the Trained employees responsible for managing the alarm, and the course of action taken to resume operation of the Incinerator.

G. TRAINING

54. Training Requirements

- (1) The Company shall ensure that staff receiving and/or Processing waste, handling waste, disinfecting or servicing equipment at the Site wear adequate protective clothing at all times in compliance with applicable provincial legislation and are trained with respect to:
 - (a) the terms, conditions and operating requirements of this ECA;
 - (b) the procedures for all waste receipt, transfer, Processing and storage operations;
 - (c) the operation and maintenance of the specific equipment which they operate at the Site;
 - (d) all emergency and spill response procedures;
 - (e) any environmental concerns pertaining to the Site and wastes to be handled; and
 - (f) relevant waste management legislation, regulations and guidelines.
- (2) The Company shall maintain an updated training manual at the Site at all times. The manual shall include sufficient material to satisfy the requirements detailed in condition 54(1) above.
- (3) The Company shall develop, and periodically update, a training plan, that includes, but is not limited to:
 - (a) the credentials of the trainer(s);
 - (b) the duration of the training course;
 - (c) the specific content of the training course, including any updated and supplementary information;
 - (d) the schedule for updating staff; and
 - (e) criteria to determine whether an individual trainee has met all the training objectives.
- (4) Staff shall be deemed to be Trained, if they successfully pass the appropriate components of the training courses, and annually, or more often, update their knowledge and skills with respect to the maintenance and operation of the equipment that they are responsible for.
- (5) A listing of all Trained employee responsible for the Processing of waste shall be placed in a visible and conspicuous location at the Site.

H. SITE CLOSURE

55. Closure Plan

- (1) Three (3) months prior to the planned closure of this Site, the Company shall provide to the Director, for approval, a written Closure Plan for the Site. This plan shall include, as a minimum, a description of the work that will be done to facilitate closure of the Site and a schedule for completion of that work; and
- (2) Within four (4) months of closure of the Site, the Company shall provide the Director with a report, written by an independent, qualified consultant which confirms that the Site has been closed in accordance with the Closure Plan submitted and approved in accordance with Condition 55(1).

SCHEDULE "A"

This Schedule "A" forms part of this ECA.

- 1. Document entitled "Applications for Certificates of Approval in accordance with the regulations under the EPA For the Establishment of a Biomedical, Pharmaceutical and Product Destruction Operation in the City of Brampton", submitted Thursday, September 3, 1998 by Medical Waste Management Inc.
- 2. Revised application for Approval of a Waste Disposal Site (Transfer/Processing) dated October 27, 1998, and signed by Daniel Kennedy, President, Medical Waste Management Inc.
- 3. Letter from I. Parrott, MOE, to D. Kennedy, Medical Waste Management Inc., dated November 24, 1998, re: Request for Additional Information.
- 4. Letter from D. Kennedy, Medical Waste Management Inc., to I. Parrott, MOE, dated November 27, 1998, re: Response to November 24, 1998, re: Request for Additional Information.
- 5. Application for a Certificate of Approval (Air) for a condenser dated September 1, 1998 as amended by Application for a Certificate of Approval (Air) dated October 27, 1998.
- 6. Application for a Certificate of Approval (Air) for a boiler dated September 1, 1998 as amended by Application for a Certificate of Approval (Air) dated October 27,1998.
- 7. Application for Amendment to Certificate of Approval Air, and supporting information, dated June 7, 2000.
- 8. Application for Amendment to Certificate of Approval Waste Disposal Site, and supporting information, dated June 7, 2000.
- 9. A letter, dated August 17, 2000, signed by N. Shah, P. Eng. And John E. Coulter of J.E. Coulter Associates Limited, re: "Medical Waste Management 95 Deerhurst Drive, Brampton, Noise Monitoring".
- 10. Letter dated August 28, 2000 signed by Daniel Kennedy.
- 11. Additional information binder with a cover letter dated September 7, 2000, signed by Daniel Kennedy.
- 12. Letter dated September 20, 2000 signed by Daniel Kennedy.
- 13. Response package with a cover letter dated October 9, 2000, signed by Daniel Kennedy.
- 14. Emissions Inventory and Dispersion Modelling for the Medical Waste Management (MWM) Inc. Proposed Medical Waste Incinerator, Prepared by Environmetrex Corporation, dated October

2000.

- 15. Human Health Risk Assessment for the Medical Waste Management Inc. Proposed Medical Waste Incinerator System Final Report. Prepared by Cantox Environmental, dated October 16, 2000.
- 16. E-mail message dated December 18, 2000 from Jim Gallant of Medical Waste Management Inc., including "Emergency Generator Addendum 1 to Human Health Risk Assessment For The Medical Waste Management Inc. Proposed Medical Waste Incinerator System, Brampton, Ontario" prepared by Cantox Environmental, December 2000 and "Human Health Risk Assessment Results for Santa Maria Foods Addendum 2 to Human Health Risk Assessment For The Medical Waste Management Inc. Proposed Medical Waste Incinerator System, Brampton, Ontario" prepared by Cantox Environmental, December 2000.
- 17. E-mail message dated December 21, 2000 from Richard Kolomeychuk of Envirometrex Corporation, including "Emergency Generator Dispersion Modelling Addendum 1 to Emissions Inventory and Dispersion Modelling For Medical Waste Management Inc. Proposed Medical Waste Incinerator prepared by Envirometrex Corporation November 30, 2000, revised December 21, 2000" and "Dispersion Modelling Results for Santa Maria Foods Addendum 2 to Emissions Inventory and Dispersion Modelling For Medical Waste Management Inc. Proposed Medical Waste Incinerator prepared by Envirometrex Corporation November 30, 2000, revised December 21, 2000".
- 18. E-mail message dated January 3, 2001 from Dan Kennedy regarding a financial assurance estimate.
- Letter from Daniel Kennedy to Steve Klose, Ministry of the Environment, dated July 27, 2001, together with documentation referred to as "Medical Waste Management Inc.
 Pre-Commencement Date Reporting Requirements for the Ministry of the Environment.
- 20. Application for Approval of a Waste Disposal Site (transfer/processing) dated August 27, 2001, and signed by Daniel Kennedy.
- 21. Letter from Daniel Kennedy to Ian Parrott, Ministry of the Environment, dated August 28, 2001.
- 22. Letter from Jim Gallant on behalf of Medical Waste Management Inc. to Ken Smith, Ministry of the Environment, dated October 5, 2001.
- 23. Letter from Jim Gallant on behalf of Medical Waste Management Inc. to Ken Smith, Ministry of the Environment, dated October 23, 2001.
- 24. Medical Waste Management Inc. Continuous Emission Monitors QA/QC Program Updated: July 10, 2001.
- 25. Medical Waste Management Inc. Incinerator Air Pollution Control System Activated Carbon Monitoring & Replacement Program, December 11, 2001.

- 26. Medical Waste Management Inc. Incinerator Updated Activated Carbon Monitoring & Replacement Program, January 31, 2002 to replace Medical Waste Management Inc. Incinerator Air Pollution Control System Activated Carbon Monitoring & Replacement Program, December 11, 2001.
- 27. Letter from Jim Gallant on behalf of Medical Waste Management Inc. to Anne-Maria Pennanen, Ministry of the Environment, dated February 4, 2002.
- 28. Letter dated August 27, 2002 from Daniel Kennedy, Medical Waste Management Inc., to Ian Parrott, P. Eng., MOE, re: Provisional Certificate of Approval Number A-680324.
- 29. Letter dated August 21, 2002 from Paul Oldford, P. Eng., Manager of Solid Waste, Cape Breton Regional Municipality, to Ian Parrott, P. Eng., MOE, regarding the labour dispute in Sydney, Nova Scotia.
- 30. Letter dated February 4, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, describing the requested amendment.
- 31. Fax dated February 26, 2003 enclosing a revised letter dated February 4, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, describing the requested amendment.
- 32. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated July 9, 2003 and signed by Daniel Kennedy, President, Medical Waste Management Inc.
- 33. Cover letter dated Thursday July 10, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, describing the requested amendment and enclosing the application form.
- 34. Letter dated December 31, 2003 from Daniel Kennedy, President, Medical Waste Management Inc., to Ian Parrott, MOE, supplying additional required information regarding Michigan waste contingency plan and receipt of waste class 262.
- 35. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated April 20, 2004 and signed by L. A. Hurley, Operations Manager, Medical Waste Management Inc. including all attached supporting information and covering letter.
- 36. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated July 6, 2006 including all attached information, plans, drawings and specifications.
- 37. Application for approval, signed by Daniel Kennedy, dated December 18, 2007, together with a cover letter, dated December 17, 2007, signed by John Chandler, A. J. Chandler & Associates Ltd., and attachments prepared by John Chandler, A. J. Chandler & Associates Ltd.
- 38. An e-mail from John Chandler to Anne-Maria Pennanen on January 21, 2008 including a letter, dated January 18, 2008, signed by John Chandler, A. J. Chandler & Associates Ltd., addressed to

- Anne-Maria Pennanen, Ministry of the Environment".
- 39. A letter, dated February 1, 2008, signed by John Chandler, A. J. Chandler & Associates Ltd., addressed to Anne-Maria Pennanen, Ministry of the Environment regarding re-location of the Sharp Smart operation.
- 40. An e-mail from John Chandler to Anne-Maria Pennanen on February 10, 2008, including Figure 2: "Future Layout Inside Building, revised February 8, 2008" and "Design & Operating Report, Autoclave Waste Receipt and Handling Operations for Stericycle, Inc., revised February 8, 2008".
- 41. An e-mail from John Chandler to Anne-Maria Pennanen on February 11, 2008, including Figure 1: "Site Layout Showing Building Access and Outside Storage Areas", revised February 8, 2008.
- 42. An e-mail from Daniel Kennedy of Stericycle, Inc. to Anne-Maria Pennanen on February 18, 2008, including a copy of a neighbor notification letter and list of recipients.
- 43. An e-mail from Jean-Pierre Pepin of Stericycle, Inc. to Anne-Maria Pennanen on February 22, 2008, including a letter dated February 21, 2008 regarding a proposal for financial assurance.
- 44. A copy of a Notice of Decision, dated April 1, 2008, certified to be a correct copy and signed by Eileen Collie, City of Brampton, approving a minor variance or special permission to extend a non-conforming use (building addition to facilitate a compactor and walking floor trailer).
- 45. A copy of a letter, dated April 22, 2008, signed by Eileen Collie, City of Brampton, notifying that the Decision on minor variance is final and binding.
- 46. A copy of Engineer's General Review Certificate Sprinkler & Life Safety, date of Inspection & Review April 30, 2008, signed by Francis P. Sim, P. Eng.
- 47. A copy of Building Permit, dated May 1, 2008, issued by B.L. Campbell, City of Brampton.
- 48. A copy of a Pest Control program prepared by Orkin PCO Services.
- 49. An e-mail message dated May 26, 2008 from John Chandler of A. J. Chandler & Associates Ltd. containing an e-mail message dated May 26, 2008 from Daniel Kennedy of Stericycle Inc. to John Chandler of A. J. Chandler & Associates Ltd.
- 50. A letter dated October 10, 2008, signed by Jean-Pierre Pepin.
- 51. Carbon Management Plan, Stericycle Brampton, Ontario, dated March 2009, together with a cover letter, dated April 6, 2009, signed by Jean Pierre Pepin, Director, Environment, Safety and Health, Stericycle Inc.
- 52. Letter dated May 4, 2010, from Jean-Pierre Pepin, Director, Environmental Health and Safety, Stericycle, Inc., to Director, MOE, including the attached document entitled "Carbon Management Plan,

- Stericycle Brampton, Ontario, May 2010".
- 53. Application for a Provisional Certificate of Approval for a Waste Disposal Site dated June 15, 2010 signed by Dan Kokol, Stericycle Inc. on July 30, 2010, requesting a service area change to include the United States of America.
- 54. Report entitled "Ash Sampling Results in Support of Designation as Non-Hazardous Waste for the Medical Waste Management (Stericycle) Incineration Facility" dated March 2008 prepared by A.J. Chandler & Associates Ltd.

This Schedule 1 forms part of this ECA (Air and Waste Disposal Site).

List of Main Pieces of Equipment at the Site:

- A. one (1) incineration facility, to burn a maximum of 10 tonnes per day of a mixture of biomedical waste, pharmaceutical waste and solid non-hazardous waste, complete with all auxiliary equipment and the following major components:
 - 1. one (1) JOY ECOLAIRE 2500 TESI W/SR62H, or equivalent, controlled air 2-stage incinerator, referred to as the Incinerator, having a design operating capacity of 670 kilograms per hour, equipped with:
 - a. a hydraulic ram waste feed system with internal stoker;
 - b. a primary chamber complete with a fixed hearth, a natural gas fired burner rated at 1.95 gigajoules per hour, a combustion air fan with a maximum volumetric flowrate of 0.18 cubic metre per second, and two modulating under fire air blowers, one capable of delivering approximately 0.35 cubic metre per second, and the other approximately 0.25 cubic metre per second;
 - c. hydraulic rams for removal of Bottom Ash from the primary chamber into an ash pit with a volume of approximately 4.6 cubic metres, complete with a water quench system;
 - d. an in-line ash hoe for wet ash removal from the ash pit into ash collection bins, each with a volume of approximately 2.5 cubic metres;
 - e. a secondary chamber, complete with a natural gas fired burner, rated at 4.48 gig joules per second, a combustion air fan with a maximum volumetric flowrate of 1.2 cubic metres per second, and a flameport blower to provide combustion air at a volumetric flowrate of 2.6 cubic metres per second at 20 °C;
 - f. an Emergency Bypass Stack, having an exit diameter of 1.07 metres, extending 17.66 metres above grade, complete with a diverter valve and connection to route gases via a refractory lined hot gas duct into the Air Pollution Control System during normal operating conditions, discharging products of combustion and other Incinerator emissions during upset conditions into the natural environment at a maximum volumetric flowrate of 12.2 actual cubic metres per second at approximately 1000 °C;
 - 2. one Air Pollution Control System, manufactured by EMCOTEK, including the following components:
 - a. one (1) quench pre-scrubber tower, having an internal diameter of 1.55 metres

and a height of 5.2 metres, complete with a recirculation pump delivering 19.0 litres per hour of caustic into the spray nozzles at the upper parts of the pre-scrubber quench and condenser vessels, and an emergency potable water supply at 95 litres per hour into the spray nozzles at the top of the pre-scrubber quench vessel;

- b. one (1) roof mounted single-cell, mechanical draft evaporative cooling tower, having a height of 12.8 metres, rated at 15.8 gigajoules per hour cooling capacity, equipped with single two- speed air coil fan, powered by a motor rated at 80 kilowatts, complete with a chemical water treatment system to control scaling, corrosion and biofouling, a drain down tank :having a capacity of 9,462 litres, and two pumps, installed in parallel providing 100 percent redundancy, each rated at 54 kilowatts, to deliver cooling water at an approximate flow rate of 82 litres per second at approximately 26 °C into the two heat exchangers associated with the Air Pollution Control System;
- c. a caustic storage and delivery system, complete with a high density polyethylene tank capable of storing 18,928 litres of 50 percent caustic soda (sodium hydroxide) solution, three metering pumps, each rated at 30.28 litres per hour with one pump injecting caustic into the suction side of the quench vessel recirculation pump and the other two into the suction side of each of the two condenser vessel recirculation pumps with the combined flow of 50 percent caustic soda (sodium hydroxide) to be approximately 21 litres per hour;
- d. one (1) condensing column, having an internal diameter of 1.55 metres and a height of 5.2 metres, complete with a recirculation pump delivering approximately 10 litres per hour of caustic, cooled in a heat exchanger, into the spray nozzles at the top of the condensing column;
- e. two (2) rotary atomizer modules, each incorporating EmcoTek proprietary spray discs, spun at more than 10,000 revolutions per minute (rpm) by motors, rated at 67 kilowatts, to create a high shear energy water wall, complete with a pump circulating approximately 750 litres per minute of process water, cooled in a heat exchanger, such that the gases exit the rotary atomizers maintaining a minimum of 10 °C difference with the Carbon Bed Inlet Temperature;
- f. one (1) 3-stage MistFree polypropylene acid absorber and de-mister system;
- g. steam re-heat system, complete with a steam supply at 113 kilograms per hour from the boiler referenced in B. below, to raise temperature of the gases to approximately 52 °C before Carbon Bed;
- h. Carbon Bed filter, complete with two carbon layers each measuring 2.29 metres by 4.88 metres by 0.2 metre and each containing at least 1 tonne of carbon;
- i. a HEPA filtration system, containing one array, measuring 2.44 metres by 2.44

- metres, complete with filters each measuring 0.61 metre by 0.61 metre by 0.30 metre;
- j. Selective non-catalytic reduction system (SNCR), to inject ammonia or an equivalent rate of urea to the water feed used to cool the incinerator gases; injecting ammonia or an equivalent rate of urea with range of 1.89 to 3.79 litres per hour.
- k. one induced draft fan equipped with a motor, rated at 30 kilowatts, and variable' frequency drive, mounted at floor level, exhausting tangentially upwards directly into the Main Stack;
- 1. one Main Stack, discharging Undiluted Gases exiting the Air Pollution Control System at a maximum volumetric flowrate of 9,668 actual cubic metres per hour at 52 °C, having an exit diameter of 0.67 metre, extending 18.29 metres above grade;
- 3. a Continuous Monitoring and Control System, including, but not limited to the following:
 - a. waste feed rate;
 - b. shielded "R"-type thermocouples, or equivalent, to measure the temperature at the following locations:
 - i. primary combustion chamber of the incinerator (two locations);
 - ii. outlet duct of the secondary combustion chamber of the incinerator, at a location where a flue gas retention time of a minimum of one second is achieved:
 - iii. inlet of reheat section:
 - iv. fan exhaust I stack inlet;
 - c. one Rosemount World Class 3000, in-situ oxygen analyzer, or equivalent, to measure the concentration of oxygen at a location where the concentration of oxygen is representative of the operating condition at the exit of the secondary combustion chamber;
 - d. one Rosemount Model 5100A, in-situ carbon monoxide analyzer, or equivalent, to measure the concentration of carbon monoxide at a location where the concentration of carbon monoxide is representative of the operating condition at the exit of the secondary combustion chamber or the outlet of the Main Stack;
 - e. One in-situ Chemiluminescence analyzer, or equivalent, to measure the concentration of nitrogen oxides where the concentration of nitrogen oxides is representative of the operating conditions at the exit of the Air Pollution Control System.

- f. differential pressure gauges to measure the differential pressure across each of the carbon filter and HEPA filter;
- g. sodium hydroxide flow rate into each of the pre-quench scrubber and condensing tower;
- h. amperage for each rotary atomizer;
- i. pre-scrubber liquor pH;
- j. condensing tower liquor pH;
- k. atomizer/de-mister tank liquor pH (two);
- 1. Ammonia or an equivalent urea injection rate to the SNCR.

All being recorded and monitored (and some automatically controlled) by either the Incinerator or EmcoTek Process Control System.

- 4. Process Control System to control the operation of the Incinerator, Air Pollution Control System, Continuos Monitoring and Control System, waste conveyors, caustic injection system, cooling tower system, and all associated pieces of equipment necessary for the proper functioning the aforementioned systems, complete with a computer-based data acquisition, alarm and reporting system.
- B. 1. one (1) natural gas fired boiler, used as a back up boiler, to supply steam for an air pollution control reheat system associated with the incineration facility and also for two (2) autoclave sterilization systems, to sterilize a maximum of 70 tonnes per day of solid biomedical waste, having a maximum heat input of 9,284,000 kilojoules per hour, exhausting into the atmosphere through a stack, having an exit diameter of 0.46 metre, extending 2.5 metres above the roof and 9.71 metres above grade; and
 - 2. one (1) natural gas fired boiler, to be used as the main boiler, to supply steam for an air pollution control reheat system associated with the incineration facility and also for two (2) autoclave sterilization systems, to sterilize a maximum of 70 tonnes per day of solid biomedical waste, having a maximum heat input of 18,700,000 kilojoules per hour, discharging to the air at a maximum volumetric flow rate of 3.18 cubic metres per second, through a stack, having an exit diameter of 0.60 metre, extending 2.03 metres above the roof and 9.23 metres above grade.
- C. one (1) condenser, connected in series with the autoclave sterilization system, used for controlling discharge from the autoclave, having a heat capacity of 2,563,000 kilojoules per hour, a minimum diameter of 0.76 metre and a height of 3.05 metre, discharging into the atmosphere through a vent having an exit diameter of 0.2 metre, extending 2.5 metres above the roof and 9.71 metres above grade;

- D. a compactor located in the sterilized Treatable Waste shipping area to be used for loading treated waste into a walking floor trailer.
- E. an Emergency Power Supply, consisting of a 500-kilowatt generator complete with a diesel fuel fired engine having a maximum fuel consumption rate of 117 litres per hour, and a manually operated transfer switch, to provide back up power during a power failure, discharging the products of combustion into the atmosphere through a stack having an exit diameter of 0.254 metre, extending 18.24 metres above grade.

This Schedule 2 forms part of this ECA (Air and Waste Disposal Site).

The Company shall ensure that appropriate equipment and systems are available to continuously monitor and provide visual and audible warnings for the following warning set points:

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Baseline	Monitoring	Warning Value	Warning	Waste Feed	Waste Feed
Parameter	Capabilities	Set Point (1)	Activation	Lockout Set	Lockout Average
			Average Period	Point ⁽²⁾	Period
Residual Oxygen	1 minute	< 7.5% ⁽³⁾	3 minutes	$<7.5\%^{(3)}$	6 minutes
Carbon Monoxide (4)	1 minute	> 8 ppmvd	First:	> 8 ppmvd	12 hours
			30 minutes		(based on 1-hour
					rolling averages)
			Second:		
			4 hours (based on		
			30-minute rolling		
			averages)		
Nitrogen Oxides	1 minute	> 98 ppmvd	6 hours	> 98 ppmvd	24 hours
Waste Feed Rate	1 hour	< 670 kg/h	1 hour	< 670 kg/h	1 hour
into the Incinerator					
Primary Chamber	1 minute	[TBD]	[TBD]	[TBD]	[TBD]
Temperature					
Secondary Chamber	1 minute	≥1000 °C	1 minute	≥1000 °C	30 minutes
Temperature					
De-mister	1 minute	10 °C	30 minutes	10 °C	3 hours
Exit/Carbon Bed					
Inlet differential					
Temperature Carbon Bed/HEPA	1 minute	. 	30 minutes	. 55 °C	3 hours
Filter Inlet	1 mmute	≤ 57 °C	30 minutes	≤ 57 °C	3 hours
Temperature					
HEPA Filter	1 minute	>4" WC	30 minutes	>4" WC	3 hours
Differential	1 mmace	'''		7 1 W.C	3 hours
Pressure Drop					
Carbon Filter	[TBD]	[TBD]	[TBD]	[TBD]	[TBD]
Differential					
Pressure Drop					
Quench pH	1 minute	[TBD] ⁽⁵⁾	30 minutes	[TBD] ⁽⁵⁾	3 hours
Atomizers pH	1 minute	[TBD] ⁽⁵⁾	30 minutes	[TBD] ⁽⁵⁾	3 hours
Condenser pH	1 minute	[TBD] ⁽⁵⁾	30 minutes	[TBD] ⁽⁵⁾	3 hours
Atomizers	1 minute	< 36 A	30 minutes	< 36 A	3 hours

Amperage					
Ammonia Injection	1 hour	< 1.89 Lph or	1 hour	< 1.89 Lph or	3 hours
Rate		> 3.79 Lph		> 3.79 Lph	

⁽¹⁾Warning set points are based on the occurrence of abnormal conditions that will trigger a warning, requiring the attention by the operator.

- 1. The calculation of the performance limits for determining compliance starts when the waste feed resumes after a shutdown or lockout
- 2. The set points for those parameters, for which this Approval does not stipulate any value, shall be established not later than during the first Source Testing campaign after the issuance of this Approval.
- 3. All monitoring systems shall be operated and maintained so that accurate data is obtain during a minimum of 95% on an annual basis, excluding calibration time.
- 4. The expressed time duration in the "Waste Feed Locked Average Period" is continuous.
- 5. The lockout period includes the 4 hours immediately after the cessation of the waste feed

Waste Feed Lockout set points are based on the occurrence of abnormal conditions showing exceedances beyond the average time of the ECA set emissions limits, or non-conformance of the acceptable operating range of the target process parameters beyond the transitional period of such abnormal condition; which requires corrective maintenance to bring back the emissions and/or process parameters within acceptable limits.

⁽³⁾Interim value. Shall be set to 6% when the probe is relocated to measure oxygen in the Undiluted Gases.

⁽⁴⁾Carbon Monoxide has two warning set points before Lockout. Triggering of the second warning requires reporting to the Ministry as part of the Quarterly Reports detailed in condition 54(1)

⁽⁵⁾A Site Standard Operating Procedure (SSOP) is to be prepared by the Company providing the strategy to be used for setting up the pH values, based on latest HCl testing results, with annual revision of the pH values undertaken based on the latest source testing results.

This Schedule 3 forms part of ECA (Air and Waste Disposal Site).

PARAMETER:

Temperature

LOCATION:

The sample point for the Continuous Temperature Monitor shall be located at the exit of the secondary chamber of the Incinerator where the retention time of flue gases has reached a minimum of one second at a minimum temperature of 1000°C.

PERFORMANCE:

The Continuous Temperature Monitor shall meet the following minimum performance specifications for the following parameters.

PARAMETERS SPECIFICATION

Type: shielded "R" type thermocouple, or equivalent.
 Accuracy: ± 1.5 percent of the minimum gas temperature

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor without a significant loss of accuracy and with a time resolution of one minute or better.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 95 percent of the time for each calendar quarter, excluding calibration time.

This Schedule 4 forms part of ECA (Air and Waste Disposal Site).

PARAMETER:

Oxygen

INSTALLATION:

The Continuous Oxygen Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of oxygen in the undiluted gases leaving the secondary chamber of the Incinerator and shall meet the following installation specifications:

PARAMETERS SPECIFICATION

1. Range (percentage): 0-20 or 0-25

2. Calibration Gas Ports: close to the sample point

PERFORMANCE:

The Continuous Oxygen Monitor shall meet the following minimum performance specifications for the following parameters:

PARAMETERS SPECIFICATION

1. Span Value (percentage): 2 times the average normal concentration of the source

2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data

3. Calibration Error: 0.25 percent O

4. System Bias: \leq 4 percent of the mean value of the reference method test data

5. Procedure for Zero and

Span Calibration Check: all system components checked

6. Zero Calibration Drift (24-hour): ≤ 0.5 percent O₂
 7. Span Calibration Drift (24-hour): ≤ 0.5 percent O₃

8. Response Time (90 percent response

to a step change): ≤ 90 seconds

9. Operational Test Period: \geq 168 hours without corrective maintenance

CALIBRATION:

Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of

Report EPS 1/PG/7.

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of a minimum of one (1) minute.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 90 percent

of the time for each calendar quarter during the first full year of operation, and 95 percent, thereafter, excluding calibration time.	

This Schedule 5 forms part of this ECA (Air and Waste Disposal Site).

PARAMETER:

Carbon Monoxide

INSTALLATION:

The Continuous Carbon Monoxide Monitor shall be installed at an accessible location where the measurements are representative of the actual concentration of carbon monoxide in the undiluted gases leaving the secondary chamber of Incinerator or the outlet of the Main Stack and shall meet the following installation specifications.

PARAMETERS SPECIFICATION

1. Range (parts per million, ppm): $0 \text{ to } \ge 100 \text{ ppm by volume (dry)}$

2. Calibration Gas Ports: close to the sample point

PERFORMANCE:

The Continuous Carbon Monoxide Monitor shall meet the following minimum performance specifications for the following parameters:

PARAMETERS	SPECIFICATION

1. Span Value (percentage): 2 times the average normal concentration of the source

2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data

or \pm 5 ppm, whichever is greater

3. Calibration Error: ≤ 2 percent of actual concentration

4. System Bias: \leq 4 percent of the mean value of the reference method test data

5. Procedure for Zero and

DADAL (EEED C

Span Calibration Check: all system components checked

6. Zero Calibration Drift (24-hour): ≤ 5 percent of span value

7. Span Calibration Drift (24-hour): ≤ 5 percent of span value

8. Response Time (90 percent response

to a step change): ≤ 90 seconds

9. Operational Test Period: \geq 168 hours without corrective maintenance

CALIBRATION:

Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS I/PG/7.

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor with an accrracy of 0.5 percent of a full scale reading or better and with a time resolution of a minimum of one (1) minute.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 90 perce of the time for each calendar quarter during the first full year of operation, and 95 percent, thereafter, excluding talibration time.	

This Schedule 6 forms part of this ECA (Air and Waste Disposal Site)

PARAMETER:

Nitrogen Oxides

INSTALLATION:

The Continuous Nitrogen Oxide Monitor shall be installed at the Main Stack where the measurements are representative of the actual concentration of nitrogen oxides in the Undiluted Gases leaving the Air Pollution Control System and shall meet the following specifications.

PARAMETERS SPECIFICATION

1. Range (parts per million, ppm): 0 to 200 ppm by volume (dry)

2. Calibration Gas Ports: close to the sample point

PERFORMANCE:

The Continuous Nitrogen Oxides Monitor shall meet the following minimum performance specifications for the following parameters:

PARAMETERS	SPECIFICATION
	DI Len leation

1. Span Value (percentage): 2 times the average normal concentration of the source

2. Relative Accuracy: ≤ 10 percent of the mean value of the reference method test data

or 5 ppm, whichever is greater

3. Calibration Error: ≤ 2 percent of actual concentration

4. System Bias: \leq 4 percent of the mean value of the reference method test data

5. Procedure for Zero and

Span Calibration Check: all system components checked
6. Zero Calibration Drift (24-hour): ≤ 2.5 percent of span value
7. Span Calibration Drift (24-hour): ≤ 2.5 percent of span value

8. Response Time (90 percent response

to a step change): ≤ 90 seconds

9. Operational Test Period: \geq 168 hours without corrective maintenance

CALIBRATION:

Daily calibration drift checks on the monitor shall be performed and recorded in accordance with the requirements of Report EPS 1/PG/7.

DATA RECORDER:

The data recorder must be capable of registering continuously the measurement of the monitor with an accuracy of 0.5 percent of a full scale reading or better and with a time resolution of 1 minute.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 95 percent

of the time for each calendar quarter.

This Schedule 7 forms part of this ECA (Air and Waste disposal Site).

Test Contaminants

Gases and Particulate (Testing)

1. Gases:

Hydrogen Chloride Carbon Monoxide Carbon Dioxide Oxides of Nitrogen Oxygen Sulphur Dioxide Total Hydrocarbons Ammonia

2. Particulate:

Total suspended particulate matter and particulate matter with the associated gaseous/vapour phase for the following materials:

Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, . Copper, Fluorides, Iron, Lead, Lithium, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Phosphorous, Selenium, Silicon, Silver, Sodium, Strontium, Tin, Titanium, Vanadium, Zinc

Testing for Other Chlorinated Organics

Total Dichlorobenzenes
Total Trichlorobenzenes
Total Tetrachlorobenzenes
Pentachlorobenzene
Hexachlorobenzene
Total Dichlorophenols
Total Trichlorophenols
Total Tetrachlorophenols
Total Pentachlorophenols
Total Polychlorinated Biphenyls

SCHEDULE 7 (cont.)

Testing for Polycyclic Organic Matter

Acenaphthylene

Acenaphthene

Anthracene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(a)fluorene

Benzo(b)fluorene

Benzo(ghi)perylene

Benzo(a)pyrene

Benzo(e)pyrene

2-chloronaphthalene

Chrysene

Coronene

Dibenzo(a,c)anthracene

9,10 - Dimethylanthracene

7,12 - Dimethylbenzo(a)anthracene

Fluoranthene

Fluorene

Indeno(1,2,3 - Cd)pyrene

- 2 Methylanthracene
- 3 Methylcholanthrene
- 1 Methylnaphthalene
- 2 Methylnaphthalene
- 1 Methylphenanthrene
- 9 Methylphenanthrene

Naphthalene

Perylene

Phenanthrene

Picene

Pyrene

Tetralin

Triphenylene

Dibenzo(a,h)anthracene

Dibenzo(a,e)pyrene

Quinoline

Biphenyl

0-terphenyl

M-terphenyl

P-terphenyl

SCHEDULE 7 (cont.)

Volatile Organic Matter

Acetaldehyde

Acetone

Acrolein

Benzene

Bromodichloromethane

Bromoform

Bromomethane

Butadiene

1,3 - Butanone

2 - Carbon Tetrachloride

Chloroform

Cumene

Dibromochloromethane

Dichlorodifluoromethane

Dichloroethane,

1,2 - Dichloroethene,

Trans- 1,2- Dichloroethene,

1,1 - Dichloropropane,

1,2 - Ethylbenzene

Ethylene Dibromide

Formaldehyde

Mesitylene

Methylene Chloride

Styrene

Tetrachloroethene

Toluene

Trichloroethane,

1,1,1 - Trichloroethene

Trichloroethylene,

1,1,2 - Trichlorofluoromethane

Trichlorotrifluoroethane

Vinyl Chloride

Xylenes, M-, P- and O-

SCHEDULE 7 (cont.)

Dioxins, Furans and Dioxin-Like Polychlorinated Biphenyls

Dioxin Isomers

- 2,3,7,8-Tetrachlorodibenzo-p- dioxin [2,3,7,8-TCDD]
- 1,2,3,7,8-Pentachlorodibenzo-p-dioxin [1,2,3,7,8-PeCDD]
- 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin [1,2,3,4,7,8-HxCDD]
- 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin [1,2,3,6,7,8-HxCDD]
- 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin [1,2,3,7,8,9-HxCDD]
- 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin [1,2,3,4,6,7,8-HpCDD]
- 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin [1,2,3,4,6,7,8,9-OCDD]

Furan Isomers

- 2,3,7,8-Tetrachlorodibenzofuran [2,3,7,8-TCDF]
- 1,2,3,7,8-Pentachlorodibenzofuran [1,2,3,7,8-PeCDF]
- 2,3,4,7,8-Pentachlorodibenzofuran [2,3,4,7,8-PeCDF]
- 1,2,3,4,7,8-Hexachlorodibenzofuran [1,2,3,4,7,8-HxCDF]
- 1,2,3,6,7,8-Hexachlorodibenzofuran [1,2,3,6,7,8-HxCDF]
- 1,2,3,7,8,9-Hexachlorodibenzofuran [1,2,3,7,8,9-HxCDF]
- 2,3,4,6,7,8-Hexachlorodibenzofuran [2,3,4,6,7,8-HxCDF]
- 1,2,3,4,6,7,8-Heptachlorodibenzofuran [1,2,3,4,6,7,8-HpCDF]
- 1,2,3,4,7,8,9-Heptachlorodibenzofuran [1,2,3,4,7,8,9-HpCDF]
- 1,2,3,4,6,7,8,9-Octachlorodibenzofuran [1,2,3,4,6,7,8,9-OCDF)

Co-Planar PCBs (Dioxin-like PCBs)

- 3,3',4,4'-Tetrachlorobiphenyl [3,3',4,4'-tetraCB (PCB 77)]
- 3,4,4',5- Tetrachlorobiphenyl [3,4,4',5-tetraCB (PCB 81)]
- 2,3,3',4,4'- Pentachlorobiphenyl [2,3,3',4,4'-pentaCB (PCB 105)]
- 2,3,4,4',5- Pentachlorobiphenyl [2,3,4,4',5-pentaCB (PCB 114)]
- 2,3',4,4',5- Pentachlorobiphenyl [2,3',4,4',5-pentaCB (PCB 118)]
- 2',3,4,4',5- Pentachlorobiphenyl [2',3,4,4',5-pentaCB (PCB 123)]
- 3,3',4,4',5- Pentachlorobiphenyl (PCB 126)
- 2,3,3',4,4',5- Hexachlorobiphenyl [2,3,3',4,4',5-hexaCB (PCB 156)]
- 2,3,3',4,4',5'- Hexachlorobiphenyl [2,3,3',4,4',5'-hexaCB (PCB 157)]
- 2,3',4,4',5,5'- Hexachlorobiphenyl 2,3',4,4',5,5'-hexaCB (PCB 167)
- 3,3',4,4',5,5'- Hexachlorobiphenyl [3,3',4,4',5,5'-hexaCB (PCB 169)]
- 2,3,3',4,4',5,5'- Heptachlorobiphenyl [2,3,3',4,4',5,5'-heptaCB (PCB 189)]

SCHEDULE 8

This Schedule 8 forms part of this ECA (Air and Waste Disposal Site).

Source Testing Procedure:

- (1) The Company shall submit, within nine (9) months of the previous Source Testing, to the Manager a Pre-Test Plan for the Source Testing required under this Approval;
- (2) The Company shall finalize the Pre-Test Plan in consultation with the Manager;
- (3) The Company shall not commence the Source Testing required under this Approval until the Manager has approved the Pre-Test Plan;
- (4) The Company shall complete the Source Testing not later than six (6) months after the Manager has approved the Pre-Test Plan;
- (5) The Company shall notify the Manager and District Manager in writing of the location, date and time of any impending Source Testing required by this Approval, at least fifteen (15) days prior to the Source Testing;
- (6) The Company shall submit a report (hardcopy and electronic format) on the Source Testing to the Manager and District Manager not later than three (3) months after completing the Source Testing. The report shall be in the format described in the Source Testing Code, and shall also include, but not be limited to:
 - (a) an executive summary;
 - (b) an identification of the applicable North American Industry Classification System code (NAICS) for the Facility; and
 - (c) records of operating conditions at the time of Source Testing, including but not limited to the following:
 - (i) types of waste;
 - (ii) hourly feed rates of the wastes;
 - (iii) all relevant records produced by the Continuous Monitoring and Control Systems;
 - (iv) results of Source Testing, including the emission rate and emission concentration of the Test Contaminants:
 - (v) where the analytical results indicate that the amount of a particular isomer of the dioxin-like compound is less than the detection limit reported by the

laboratory analyzing the source testing samples, the Company shall determine the amount of dioxin-like compound to be reported as the toxicity equivalent concentration by using the reported detection limit as the amount present for that isomer. The reported detection limits are to be determined by the laboratory at the time the source testing samples are analysed based on analysis of appropriate replicate low level samples or blanks;

- (vi) results of dispersion calculations in accordance with AERMOD, or any other method accepted by the Director, indicating the Point of Impingement concentrations of the Test Contaminants listed in Schedule 7 of this Approval; and
- (vii) a tabular comparison of Source Testing results for the Incinerator and Test Contaminants to original emission rates described in the Company's application and the ESDM Report.
- (7) The Director may not accept the results of the Source Testing if:
 - (a) the Source Testing Code or the requirements of the Manager were not followed;
 - (b) the Company did not notify the Manager and the District Manager of the Source Testing; or
 - (c) the Company failed to provide a complete Report on the Source Testing.

The reasons for the imposition of these terms and conditions are as follows:

The reason for conditions 1(1), 1(2), 3(1) through 3(4), 4(1), 7(1) through 7(3), 9(1) is to clarify the legal rights and responsibilities of the Company.

The reason for conditions 2(1), 2(2), 12(1) through 12(7), and 22(1) through 22(3) is to ensure that the Site is operated in accordance with the application and supporting documentation submitted by the Company, and not in a manner which the Director has not been asked to consider.

The reasons for condition 5(1) is to ensure that the Site is operated under the corporate name which appears on the application form submitted for this Approval and to ensure that the Director is informed of any changes.

The reasons for condition 5(2) are to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Approval.

The reason for the condition 6(1) is to ensure that appropriate Ministry staff have ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this Approval. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the EPA and OWRA.

The reason for conditions 8(1) through 8(4) is to ensure that sufficient funds are available to the Ministry to clean up the Site in the event that the Company is unable or unwilling to do so.

The reason for condition 10(1) is to ensure that any complaints regarding Site operations are responded to and recorded in a timely and appropriate manner.

The reason for conditions 11(1) and 11(2) is to ensure that all spills, as defined in Reg. 347, are reported and acted upon in the appropriate manner.

The reason for conditions 13(1) through 13(4) is to specify the approved service area from which waste may be accepted at the Site.

The reason for conditions 14(1) and 15(1) is to specify the types and amounts of waste that may be received at the Site on a daily basis.

The reasons for condition 16(1) and 18(1) through 18(5) is to specify the amounts of waste that may be stored at the Site at any one time and to specify any storage restrictions imposed to minimize the potential for an adverse impact.

The reason for conditions 17(1) through 17(5) is to specify the waste screening procedures to be employed at the Site to ensure that any unacceptable wastes received at the Site are managed appropriately.

The reason for conditions 19(1) through 19(5) is to approve the use of the proprietary Biosystems reusable containers for biomedical waste management purposes and detail any restrictions regarding its use.

The reason for conditions 21(1), 21(2), 26(1), 27(1) through 27(3), 29(1), 30(1), 31(1), 33(1) through 38(4), is to ensure that the Site is operated in a manner which does not result in a nuisance or a hazard to the health and safety of any person or the environment.

The reason for conditions 20(1) through 20(3) is to specify the waste management activities that may be conducted outdoors.

The reason for conditions 22(1) and 22(2) is to ensure the controlled access and integrity of the Site by preventing unauthorized access.

The reason for condition 24(1), 25(1) through 25(3) is to ensure that waste and wastewater is managed and processed in accordance with the Act and its regulations and not in a manner which may results in an adverse impact or a potential hazard to the health and safety of any person or the environment.

The reasons for conditions 28(1) through 28(3) are to ensure that an Emergency Response and Contingency Plan is developed and maintained at the Site and that the Company is prepared and properly equipped to take immediate action in the event of an emergency or contingency situation.

The reason for conditions 39(1) through 44(2) is to outline the minimum performance requirements considered necessary to prevent an adverse effect resulting from the operation of the Equipment.

The reason for conditions 45(1) through 49(4) is to require the Company to gather accurate information so that the environmental impact and subsequent compliance with the Act, the Regulations and this ECA can be verified.

The reason for conditions 50(1) through 53(1) is to require the Company to retain records and provide information to the Ministry so that the environmental impact and subsequent compliance with the Act, the Regulation and this ECA can be verified.

The reason for conditions 54(1) through 54(5) is to ensure that the Site is operated by properly trained staff to minimize the potential for a hazard or nuisance to the natural environment or any person.

The reason for conditions 55(1) and 55(2) is to ensure that the Site is closed in accordance with Ministry standards and to protect the health and safety of the public and the environment.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A680324 issued on March 5, 2001 and all its amending notices.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall

state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

<u>AND</u>

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment, Conservation and Parks 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 28th day of June, 2019

Mohsen Keyvani, P.Eng.

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

DL/

c: District Manager, MOECC Halton-Peel Dan Kokol, Stericycle, ULC

Particulate Matter and Metals Sampling Results Incinerator

Test : Sample Volume (Rm³) ^[1] : Stack Flow Rate (Rm³/s) ^[1] :		Test #1 6.04 1.80			Test #2 6.61 1.95			Test #3 5.85 1.75			AVERAGE RESULTS	5
Parameter	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Concentration	Concentration	Emission Rate
Particulate	(mg)	(mg/m³)	(mg/s)	(mg)	(mg/m³)	(mg/s)	(mg)	(mg/m³)	(mg/s)	(mg/m³)	11% O ₂ (mg/m ³)	(mg/s)
Particulate in Acetone Rinse	5.40	- (-	5.50	- (8,)	-	8.00	-	-	- (8)	- · · · · · · · · · · · · · · · · · · ·	-
Particulate on Filter	10.9	-	-	20.8	-	-	19.8	-	-	-	-	-
Particulate Matter	16.3	2.70	4.87	26.3	3.98	7.76	27.8	4.75	8.30	3.81	4.35	6.97
Metals	(µg)	(µg/m³)	(mg/s)	(µg)	(µg/m³)	(mg/s)	(µg)	(μg/m³)	(mg/s)	(µg/m³)	11% O ₂ (µg/m ³)	(mg/s)
Aluminum (Al)	255	42.2	0.0760	253	38.3	0.0746	248	42.3	0.0739	40.9	46.7	0.0749
Calcium (Ca)	2192	363	0.655	926	140	0.273	857	146	0.256	217	248	0.395
Iron (Fe)	183	30.3	0.0546	203	30.6	0.0597	322	55.0	0.0960	38.6	44.1	0.0701
Lithium (Li)	< 12.0	< 1.99	< 0.00358	< 12.0	< 1.81	< 0.00354	< 12.0	< 2.05	< 0.00358	< 1.95	< 2.23	< 0.00357
Magnesium (Mg)	114	18.9	0.0342	92.1	13.9	0.0272	105	17.9	0.0313	16.9	19.3	0.0309
Silicon (Si)	327	54.2	0.0976	325	49.1	0.0958	400	68.4	0.119	57.2	65.3	0.104
Sodium (Na)	5026	833	1.50	6326	957	1.87	5634	963	1.68	917	1047	1.68
Zinc (Zn)	1063	176	0.317	1051	159	0.310	782	134	0.234	156.0	178	0.287
Antimony (Sb)	< 9.40	< 1.56	< 0.00281	< 9.40	< 1.42	< 0.00277	< 9.40	< 1.61	< 0.00281	< 1.53	< 1.75	< 0.00280
Arsenic (As)	< 2.80	< 0.464	< 0.000836	< 2.80	< 0.423	< 0.000826	< 2.80	< 0.478	< 0.000836	< 0.455	< 0.520	< 0.000833
Barium (Ba)	29.3	4.85	0.00875	31.3	4.73	0.00923	29.3	5.01	0.00875	4.86	5.55	0.00891
Beryllium (Be)	< 0.630	< 0.104	< 0.000188	< 0.630	< 0.0953	< 0.000186	< 0.630	< 0.108	< 0.000188	< 0.102	< 0.117	< 0.000187
Boron (B)	< 190	< 31.5	< 0.0567	< 190	< 28.7	< 0.0560	< 190	< 32.5	< 0.0567	< 30.9	< 35.3	< 0.0565
Cadmium (Cd)	0.640	0.106	0.000191	4.31	0.652	0.00127	< 0.630	< 0.108	< 0.000188	< 0.288	< 0.329	< 0.000550
Chromium (Cr)	< 10.5	< 1.74	< 0.00314	< 10.50	< 1.59	< 0.00310	11.7	2.00	0.00349	< 1.78	< 2.03	< 0.00324
Cobalt (Co)	< 0.630	< 0.104	< 0.000188	< 0.630	< 0.0953	< 0.000186	< 0.630	< 0.108	< 0.000188	< 0.1020	< 0.117	< 0.000187
Copper (Cu)	42.1	6.97	0.0126	30.6	4.62	0.00901	30.9	5.28	0.00922	5.62	6.42	0.0103
Lead (Pb)	8.53	1.41	0.00255	22.4	3.38	0.00659	18.4	3.14	0.00549	2.65	3.03	0.00488
Manganese (Mn)	8.09	1.34	0.00242	6.45	0.975	0.00190	6.08	1.04	0.00182	1.12	1.28	0.00204
Molybdenum (Mo)	25.7	4.26	0.00767	25.3	3.83	0.00746	27.2	4.65	0.00812	4.24	4.84	0.00775
Nickel (Ni)	7.38	1.22	0.00220	9.19	1.39	0.00271	9.85	1.68	0.00294	1.43	1.63	0.00262
Phosphorus (P)	< 315	< 52.2	< 0.0941	< 315	< 47.6	< 0.0929	< 315	< 53.8	< 0.0941	< 51.20	< 58.5	< 0.0937
Selenium (Se)	< 7.00	< 1.16	< 0.00209	< 7.00	< 1.06	< 0.00206	< 7.00	< 1.20	< 0.00209	< 1.14	< 1.30	< 0.00208
Silver (Ag)	5.60	0.928	0.00167	11.2	1.69	0.00329	5.16	0.882	0.00154	1.170	1.34	0.00217
Strontium (Sr)	6.35	1.05	0.00190	< 3.15	< 0.476	< 0.000929	< 3.15	< 0.538	< 0.000941	< 0.689	< 0.787	< 0.00126
Tin (Sn)	54.5	9.03	0.0163	63.8	9.65	0.0188	79.4	13.6	0.0237	10.7	12.2	0.0196
Titanium (Ti)	41.0	6.79	0.0122	34.3	5.19	0.0101	33.4	5.71	0.00997	5.90	6.74	0.0108
Vanadium (V)	< 2.10	< 0.348	< 0.000627	< 2.10	< 0.318	< 0.000619	< 2.10	< 0.359	< 0.000627	< 0.341	< 0.390	< 0.000624
Mercury	(µg)	(µg/m³)	(mg/s)	(µg)	(µg/m³)	(mg/s)	(µg)	(μg/m³)	(mg/s)	(µg/m³)	11% O ₂ (µg/m ³)	(mg/s)
Filterable Hg	5.64	-	-	13.8	-	-	24.2	-	-	-	-	-
Non-Filterable Hg	34.6	-	-	50.6	-	-	20.0	-	-	-	-	-
Total Hg	40.3	6.67	0.0120	64.4	9.74	0.0190	44.1	7.54	0.0132	7.98	9.12	0.0147

^[1] Sample volume and volumetric flow rate based on dry referenced conditions (101.3 kPa and 25 °C)

'<' indicates that laboratory results were below the detection limit. The Reportable Detection Limit (RDL) was used to calculate the concentration and emission rate.

Concentration and Emission Rate has been reported to 3 significant figures.

Particulate Matter and Metals Sampling Incinerator

Facility: Stericycle ULC City: Brampton Source: Incinerator Reference Method: OSTC Method 5/29				Operator: Entered by: Checked by:	BRS
DATA INPUTS	Symbol	Units	Test #1 TPM/Metals	Test #2 TPM/Metals	Test #3 TPM/Metals
Date			15-Jun-22	16-Jun-22	17-Jun-22
Start Time			9:18 AM	8:58 AM	8:36 AM
End Time			2:58 PM	4:16 PM	2:11 PM
Round Stack, Diameter (Inside)	d _s	in	24	24	24
Standard Temperature	T _s	°F	77	77	77
Standard Pressure	P _s	in.Hg	29.92	29.92	29.92
Nozzle Diameter	D _n	in	0.320	0.320	0.320
Average Stack Temperature	T _s	°F	114	125	122
Average Meter Temperature	T _m	°F	81	81	75
Barometric Pressure	P _{bar}	" Hg	29.96	29.85	29.06
Stack Static Pressure	Pg	" H ₂ O	0.07	0.07	0.07
Average Delta H	dH	" H ₂ O	1.37	1.35	1.07
Average Velocity Head (root mean square)	dP _{rms}	" H ₂ O	0.16	0.20	0.16
Pitot Coefficient	Cp	-	0.827	0.827	0.827
		t ID :		RWDI 4ft #4	
Gas Sample Volume	V _m	ft³	217.36	239.04	215.00
DGM Calibration Factor	Y	-	0.9843	0.9843	0.9843
	DGN	И ID:		Console G	
Total Sampling Time	min	minutes	320	320	320
Stack Gas Oxygen Concentration	O ₂	%	12.2	12.6	11.9
Stack Gas Carbon Dioxide Concentration	CO ₂	%	5.7	5.4	6.1
Impinger Gain	W _w	g	185.8	317.4	269.2

Particulate Matter and Metals Sampling

Facility: Stericycle ULC

City: Brampton

Source: Incinerator

Reference Method: OSTC Method 5/29

Operator: OO/SRR

Entered by: BRS

Checked by: MOS

Reference Method: OSIC Metho	· · · · · · · · · · · · · · · · · · ·					41/554.65
Emissions Calculations	Symbol	Units	Test #1	Test #2	Test #3	AVERAGE
			TPM / Metals	TPM / Metals	TPM / Metals	TPM / Metals
Nozzle Area	A _n	ft²	5.59E-04	5.59E-04	5.59E-04	
Stack Area	A_s	ft²	3.14	3.14	3.14	
Average Stack Temperature	T _s	°R	574	585	582	581
Average DGM Temperature	T _m	°R	541	541	535	
Sample Volume at Reference Conditions	V_{mStd}	ft³	213.32	233.67	206.77	
	V _{mmstd}	m³	6.04	6.61	5.85	
Vol. of Water Vapour	V_{wStd}	ft³	8.92	15.24	12.92	
Water Fraction	B _{ws}		4.0%	6.1%	5.9%	5.3%
Molecular Weight, dry	M_d	g/mole	29.52	29.48	29.57	29.52
Molecular Weight, wet	$M_{\rm w}$	g/mole	29.05	28.78	28.89	28.91
Absolute Stack Pressure	P _s	in. Hg	29.97	29.86	29.07	29.63
Stack Gas Velocity	U _s	ft/s	22.55	25.50	23.30	23.79
	U _{sm}	m/s	6.87	7.77	7.10	7.25
Actual Gas Flow Rate	Q _{act}	acf/min	4,251	4,807	4,392	4,483
Dry Gas Flow Rate (dry, ref)	Q _{ref}	dscf/min	3,821	4,133	3,703	3,886
	Q _{mref}	m³/min	108	117	105	110
	Qmref (Actual O ₂)	m³/s	1.80	1.95	1.75	1.83
Isokinetic Rate	ı	%	98	100	98	99

Particulate Matter and Metals Sampling

Facility: Stericycle ULC

		Brampton	LC		F	ntered by:						
		Incinerator				hecked by:						
Refere	ence Method:					Test Date:						
		Metals Test										
Pt.	Time	Velocity	Orifice	Meter	Stack	Probe	Box	lmp	Meter	Vac	Percentage	Stack
		Press.	Press.	Volume	Temp	Temp	Temp	Temp	Temp	Pressure	Isokinetic	Velocity
	(min)	("H ₂ O)	("H ₂ O)	(ft³)	(°F)	(°F)	(°F)	(°F)	(°F)	("Hg)	(%)	(ft/sec)
Traverse 1 -												
Pre-Test Leak		<0.02 @ 10	_									
1	0	0.15	1.40	654.19	112	250	250	65	83	-2	98	22.16
	2.5	0.15	1.40	655.87	112	250	249	65	83	-2	99	22.16
	5 7.5	0.15	1.40	657.56 659.25	110 119	250	250 250	62	83 83	-2 -2	99	22.12
	7.5 10	0.11 0.11	1.00 1.00	660.70	122	250 250	250	60 58	82	-2 -2	99 98	19.09 19.14
	12.5	0.11	1.00	662.13	111	250	249	58	82	-2	98	18.96
	15	0.15	1.30	663.57	110	250	251	58	82	-2	99	22.12
	17.5	0.15	1.30	665.26	111	250	249	57	82	-2	98	22.14
2	20	0.15	1.30	666.94	112	250	249	57	82	-2	98	22.16
	22.5	0.15	1.30	668.61	112	250	250	57	82	-2	97	22.16
	25	0.15	1.30	670.27	112	250	250	57	82	-2	98	22.16
	27.5	0.15	1.30	671.94	112	250	250	57	82	-2	98	22.16
	30	0.15	1.30	673.62	112	250	249	56	82	-2	97	22.16
	32.5	0.15	1.30	675.28	112	250	250	56	82	-2	98	22.16
	35	0.15	1.30	676.96	113	249	250	58	83	-2	98	22.18
	37.5	0.15	1.30	678.63	113	250	250	58	83	-2	98	22.18
3	40	0.13	1.10	680.31	113	250	250	59	83	-2	98	20.65
	42.5	0.13	1.10	681.88	113	249	250	59	83	-2	97	20.65
	45	0.13	1.10	683.42	113	249	249	59	84	-2	97	20.65
	47.5	0.13	1.10	684.97	113	247	251	60	84 84	-2	98	20.65
	50 52.5	0.13 0.13	1.10 1.10	686.53 688.08	113 113	250 251	252 250	60 60	84 84	-2 -2	97 98	20.65 20.65
	52.5 55	0.13	1.10	689.64	113	251	250	62	84	-2 -2	98	20.65
	57.5	0.13	1.10	691.20	113	249	252	61	84	-2	98	20.65
4	60	0.15	1.30	692.76	113	249	252	60	84	-2	97	22.18
	62.5	0.15	1.30	694.42	113	252	252	60	84	-2	98	22.18
	65	0.15	1.30	696.10	113	250	250	58	84	-2	98	22.18
	67.5	0.15	1.30	697.78	113	250	249	58	84	-2	96	22.18
	70	0.15	1.30	699.42	113	251	251	57	84	-2	97	22.18
	72.5	0.15	1.30	701.08	113	251	250	57	84	-2	98	22.18
	75	0.15	1.30	702.76	113	250	249	57	84	-2	97	22.18
	77.5	0.15	1.30	704.42	113	252	250	57	84	-2	97	22.18
5	80	0.11	1.00	706.09	114	251	250	57	86	-2	100	19.01
	82.5	0.11	1.00	707.56	114	251	250	57	86	-2	99	19.01
	85 07.5	0.11	1.00	709.02	114	250	249	57	86	-2 -2	100	19.01
	87.5 90	0.11 0.11	1.00 1.00	710.49 711.95	114 114	248 248	250 250	57 57	86 86	-2 -2	99 99	19.01 19.01
	92.5	0.11	1.30	711.93	115	250	250	58	86	-2 -2	96	22.22
	95	0.15	1.30	715.06	115	249	250	58	87	-2	98	22.22
	97.5	0.15	1.30	716.74	115	250	249	58	87	-2	97	22.22
6	100	0.15	1.30	718.41	115	250	250	59	87	-2	99	22.22
	102.5	0.15	1.30	720.12	115	251	249	59	87	-2	99	22.22
	105	0.15	1.30	721.82	115	250	250	59	87	-2	98	22.22
	107.5	0.15	1.30	723.51	115	250	250	59	87	-2	98	22.22
	110	0.15	1.30	725.19	115	250	250	59	87	-2	96	22.22
	112.5	0.15	1.30	726.85	115	250	249	60	87	-2	96	22.22
	115	0.15	1.30	728.50	116	250	249	61	87	-2	96	22.24
_	117.5	0.15	1.30	730.15	116	250	249	62	87 87	-2	98	22.24
7	120 122.5	0.15	1.30	731.83	116 116	250	251	62 63	87 97	-2	97	22.24
	122.5	0.11 0.11	1.00 1.00	733.50 734.96	116 116	250 250	250 251	62 62	87 87	-2 -2	99 100	19.04 19.04
	127.5	0.11	1.00	736.44	116	250	249	62	87	-2	99	19.04
	130	0.11	1.00	737.90	116	251	250	62	87	-2	100	19.04
	132.5	0.10	0.85	739.38	115	251	250	64	87	-2	99	18.14
	135	0.10	0.85	740.77	116	250	250	64	87	-1	100	18.16
	137.5	0.10	0.85	742.18	116	249	250	64	87	-1	99	18.16
8	140	0.10	0.85	743.57	116	250	250	65	86	-1	98	18.16
	142.5	0.10	0.85	744.95	116	251	250	65	86	-1	96	18.16
	145	0.10	0.85	746.30	116	250	251	66	86	-1	97	18.16
	147.5	0.10	0.85	747.66	116	250	250	66	86	-1	98	18.16
	150	0.10	0.85	749.03	116	248	250	66	86	-1	99	18.16
	152.5	0.10	0.85	750.42	116	249	249	66	86	-1	100	18.16
	155	0.10	0.85	751.82	116	249	248	66	84	-1	99	18.16
	157.5	0.10	0.85	753.20	116	251	251	66	84	-1	99	18.16
	160			754.59								

Operator: OO/SRR

Facility: Stericycle ULC
City: Brampton
Source: Incinerator Reference

Operator: OO/SRR Entered by: BRS Checked by: MOS Test Date: 15-Jun-22

e Method:	OSTC Method 5/29
Run:	Metals Test #1

Pt.	Time	Velocity Press.	Orifice Press.	Meter Volume	Stack Temp	Probe Temp	Box Temp	Imp Temp	Meter Temp	Vac Pressure	Percentage Isokinetic	Stack Velocity
	(min)	("H ₂ O)	("H ₂ O)	(ft ³)	(°F)	(°F)	(°F)	(°F)	(°F)	("Hg)	(%)	(ft/sec)
Traverse 2 - '		, , , ,	, , ,							, , ,,	, ,	, ,
1	0	0.17	1.50	754.59	114	249	250	61	81	-2	98	23.63
	2.5	0.17	1.50	756.36	114	249	250	62	81	-2	97	23.63
	5 7.5	0.17 0.17	1.50 1.50	758.12 759.88	113 113	251 250	249 249	62 62	81 81	-2 -2	97 99	23.61 23.61
	10	0.17	1.50	761.67	113	250	250	62	81	-2 -2	98	23.61
	12.5	0.17	1.50	763.45	114	249	251	63	80	-2	98	23.63
	15	0.17	1.50	765.23	113	250	250	65	80	-2	99	23.61
	17.5	0.17	1.50	767.02	113	250	250	65	80	-2	95	23.61
2	20	0.17	1.50	768.74	113	251	249	62	79	-2	97	23.61
	22.5	0.17	1.50	770.49	113	250	250	62	79	-2	97	23.61
	25	0.17	1.50	772.24	114	250	250	60	79	-2	97	23.63
	27.5	0.17	1.50	774.00	114	250	250	60	79	-2	98	23.63
	30	0.17	1.50	775.77	115	251	251	60	78	-2	99	23.65
	32.5	0.17	1.50	777.55	115	250	249	60	78	-2	99	23.65
	35	0.17	1.50	779.33	116	252	249	60	78	-2	99	23.67
_	37.5	0.17	1.50	781.11	116	250	249	60	78	-2	98	23.67
3	40	0.22	1.90	782.87	116	250	249	60	78	-3	98	26.93
	42.5	0.22	1.90	784.87	117	250	251	60	78	-3	98	26.95
	45 47.5	0.22	1.90	786.87	117	249	249	60	78 77	-3	97	26.95
	47.5	0.22	1.90	788.86	116	250	250	59 50	77 77	-3 2	100	26.93
	50 52.5	0.22 0.22	1.90 1.90	790.90 792.92	116 116	250	251 251	59 59	77 77	-3 -3	99 99	26.93 26.93
	52.5 55	0.22	1.90	792.92 794.95	116	250 251	250	59 59	77 77	-3 -3	99 97	26.93
	57.5	0.22	1.90	796.94	116	250	249	59	77 77	-3	97	26.93
4	60	0.15	1.30	798.93	116	250	250	58	77	-3	100	22.24
7	62.5	0.15	1.30	800.61	116	251	249	58	77	-3	98	22.24
	65	0.15	1.30	802.27	115	248	250	58	77	-3	99	22.22
	67.5	0.15	1.30	803.94	117	249	252	57	77	-3	98	22.26
	70	0.15	1.30	805.60	116	251	249	57	77	-2	99	22.24
	72.5	0.15	1.30	807.27	116	250	250	57	77	-2	100	22.24
	75	0.15	1.30	808.95	116	248	250	57	76	-2	98	22.24
	77.5	0.15	1.30	810.60	117	250	250	57	76	-2	126	22.26
5	80	0.25	2.20	812.72	117	250	250	62	76	-4	98	28.73
	82.5	0.25	2.20	814.84	117	250	250	62	76	-4	98	28.73
	85	0.25	2.20	816.97	117	250	250	61	76	-4	98	28.73
	87.5	0.25	2.20	819.10	117	250	250	61	76	-4	98	28.73
	90	0.25	2.20	821.22	116	250	250	61	76	-4	99	28.71
	92.5	0.25	2.20	823.37	116	250	250	61	76	-4	100	28.71
	95	0.25	2.20	825.53	116	250	250	61	77	-4	98	28.71
6	97.5	0.25	2.20	827.66	116	250	250	61	77 77	-4	98	28.71
6	100 102.5	0.20 0.20	1.70 1.70	829.79 831.68	116 115	250 251	250 250	61 63	77 77	-4 -3	97 99	25.68 25.65
	102.3	0.20	1.70	833.60	115	250	250	63	77 77	-3	99	25.65
	107.5	0.20	1.70	835.52	115	250	250	63	77 77	-3	98	25.65
	110	0.20	1.70	837.43	115	250	251	63	77	-3	98	25.65
	112.5	0.20	1.70	839.34	114	249	250	63	77	-3	99	25.63
	115	0.20	1.70	841.28	114	251	249	63	77	-3	99	25.63
	117.5	0.20	1.70	843.21	113	250	250	63	77	-3	98	25.61
7	120	0.15	1.30	845.12	114	250	250	66	77	-3	98	22.20
	122.5	0.15	1.30	846.77	114	251	250	66	77	-3	99	22.20
	125	0.15	1.30	848.44	113	250	250	66	77	-3	98	22.18
	127.5	0.15	1.30	850.10	113	250	250	66	77	-3	97	22.18
	130	0.15	1.30	851.75	113	250	250	66	77	-3	97	22.18
	132.5	0.15	1.30	853.40	113	250	250	66	77	-3	97	22.18
	135	0.15	1.30	855.04	112	249	251	66	77	-3	98	22.16
	137.5	0.15	1.30	856.70	112	249	250	66	77	-3	99	22.16
8	140	0.15	1.30	858.37	112	249	250	66	77 77	-3	97	22.16
	142.5	0.15	1.30	860.01	113	249	251	66 66	77 77	-3 2	99 97	22.18
	145 147.5	0.15	1.30 1.30	861.68 863.32	113 113	250 250	250 250	66 66	77 77	-3	97 97	22.18 22.18
	147.5 150	0.15 0.15	1.30	863.32 864.97	113	250 250	250 250	66	77 77	-3 -3	97 97	22.18 22.18
	152.5	0.15	1.30	866.61	113	250 251	250 250	64	77 77	-3 -3	97 97	22.18
	152.5	0.15	1.30	868.25	113	250	251	64	77 77	-3	97	22.18
	157.5	0.15	1.30	869.90	113	250	251	64	77 77	-3	97	22.18
	160	5.15	50	871.55	5	_50		J-1	.,	3	٠,	
Post-test Lea		< 0.02 @ 10	O" Hg									
	Average	0.16	1.37	217.36	114	250	250	61	81	-	98	22.55
	0-											

Particulate Matter and Metals Sampling

	City: Source:	Stericycle L Brampton Incinerator			Cł	Operator: ntered by: necked by:	BRS MOS					
	Run:	OSTC Meth Metals Test	#2				16-Jun-22					
Pt.	Time	Velocity Press.	Orifice Press.	Meter Volume	Stack Temp	Probe Temp	Box Temp	Imp Temp	Meter Temp	Vac Pressure	Percentage Isokinetic	Stack Velocity
raverse 1 - We	(min)	("H ₂ O)	("H ₂ O)	(ft³)	(°F)	(°F)	(°F)	(°F)	(°F)	("Hg)	(%)	(ft/sec)
re-Test Leak Ch		<0.02 @ 9"	Нσ									
1	0	0.27	1.84	871.88	121	250	250	68	84	-3	98	30.16
	2.5	0.28	1.91	874.08	121	250	250	68	84	-3	94	30.71
	5	0.27	1.84	876.23	124	250	250	68	84	-3	99	30.24
	7.5	0.27	1.84	878.45	124	250	250	68	84	-3	99	30.24
	10	0.28	1.91	880.67	124	250	250	68	84	-3	102	30.79
	12.5	0.30	2.05	883.00	126	250	250	68	83	-3	102	31.93
	15	0.32	2.18	885.39	126	250	250	68	83	-3	96	32.97
2	17.5	0.32	2.18	887.72	126	250	250	68	83	-3	99	32.97
2	20 22.5	0.31 0.31	2.12 2.12	890.13 892.52	125 125	250 250	250 250	67 67	83 83	-3 -3	100 96	32.43
	25.5	0.31	2.12	894.82	125	250	250	67	83	-3 -3	98	32.43 32.95
	27.5	0.32	2.18	897.19	125	250	250	66	83	-3 -3	100	32.95
	30	0.32	2.25	899.61	125	250	250	65	83	-3	97	33.46
	32.5	0.33	2.25	902.01	125	250	250	65	83	-3	94	33.46
	35	0.30	2.05	904.34	125	250	250	64	83	-3	97	31.90
	37.5	0.29	1.98	906.63	125	250	250	64	83	-3	100	31.36
3	40	0.29	1.98	908.95	125	250	250	64	83	-3	100	31.36
	42.5	0.29	1.98	911.26	125	250	250	64	83	-3	100	31.36
	45	0.29	1.98	913.58	127	250	250	64	83	-3	99	31.42
	47.5	0.30	2.05	915.86	127	250	250	64	83	-3	98	31.95
	50	0.30	2.05	918.17	127	250	250	64	83	-3	97	31.95
	52.5	0.31	2.12	920.45	127	250	250	64	83	-3	98	32.48
	55	0.29	1.98	922.80	127	250	250	64	83	-3	93	31.42
	57.5	0.29	1.98	924.96	127	250	250	64	83	-3	98	31.42
4	60	0.26	1.77	927.23	127	250	250	64	83	-3	98	29.75
	62.5 65	0.25 0.25	1.71 1.71	929.38 931.55	127 127	250 250	250 250	66 66	83 83	-3 -3	101 101	29.17 29.17
	67.5	0.25	1.71	933.72	127	250	250	67	83	-3 -3	100	29.17
	70	0.25	1.71	935.87	127	250	250	67	83	-3	100	29.17
	72.5	0.25	1.71	938.02	127	250	250	67	83	-3	100	29.17
	75	0.26	1.71	940.16	127	250	250	67	84	-3	98	29.75
	77.5	0.25	1.71	942.31	127	250	250	67	84	-3	101	29.17
5	80	0.27	1.84	944.48	127	250	250	67	83	-3	98	30.31
	82.5	0.27	1.84	946.67	126	249	249	67	83	-3	82	30.29
	85	0.14	0.96	948.50	126	249	248	67	83	-3	106	21.81
	87.5	0.14	0.96	950.20	126	249	248	67	83	-3	102	21.81
	90	0.14	0.96	951.84	126	249	248	67	83	-3	101	21.81
	92.5	0.14	0.96	953.46	126	249	248	67	83	-3	99	21.81
	95	0.13	0.89	955.06	126	250	249	67	83	-3	101	21.02
6	97.5	0.15	1.02	956.63	126	250	249	67	83	-3	96	22.58
6	100 103 F	0.15	1.02	958.23	126	251	249	67 67	83	-3	98	22.58
	102.5 105	0.12 0.13	0.82 0.89	959.87 961.48	126 126	251 250	249 249	67 67	83 83	-3 -2	108 99	20.19 21.02
	107.5	0.13	0.89	963.01	126	250	249	67	83	-2 -2	99	21.02
	110	0.13	0.83	964.55	126	250	249	67	83	-2	103	20.19
	112.5	0.12	0.75	966.08	126	250	249	67	83	-2	105	19.33
	115	0.11	0.75	967.58	126	250	249	67	83	-2	100	19.33
	117.5	0.11	0.75	969.01	126	250	248	67	83	-2	97	19.33
7	120	0.10	0.68	970.40	126	250	248	67	83	-2	98	18.43
	122.5	0.12	0.82	971.73	127	250	248	67	83	-2	96	20.21
	125	0.11	0.75	973.16	127	250	248	67	83	-2	102	19.35
	127.5	0.11	0.75	974.61	127	250	248	67	82	-2	97	19.35
	130	0.11	0.75	975.99	125	250	248	66	82	-2	97	19.32
	132.5	0.11	0.75	977.37	126	250	248	66	82	-2	98	19.33
	135	0.11	0.75	978.77	126	249	249	67	83	-2	99	19.33
0	137.5	0.11	0.75	980.18	126	249	249	67	83	-2	99	19.33
8	140	0.11	0.75	981.59	125	249	249	67	83	-2	99	19.32
	142.5	0.12	0.82	983.00	125	249	249	67	83	-2	97	20.18
	145	0.10	0.68	984.45	125	250	249	66	82	-2	109	18.42
	147.5	0.11	0.75	985.93	125	250	249	66 66	82 82	-2 2	104	19.32
	150 152.5	0.09 0.05	0.61 0.34	987.42 988.78	125 125	250 250	249 250	66 66	82 82	-2 -2	105 127	17.47 13.02
	152.5	0.05	0.34	988.78	125	250 250	250 250	66	82 82	-2 -2	142	13.02 13.02
	157.5	0.05	0.34	991.37	125	250	250	66	82	-2 -2	111	13.02
	160			992.44	-				- -			

Facility: Stericycle ULC
City: Brampton
Source: Incinerator
Reference Method: OSTC Method 5/29

Operator: SRR Entered by: BRS Checked by: MOS Test Date: 16-Jun-22

	Run:	Metals Test	#2									
Pt.	Time	Velocity	Orifice	Meter	Stack	Probe	Box	Imp	Meter	Vac	Percentage	Stack
		Press.	Press.	Volume	Temp	Temp	Temp	Temp	Temp	Pressure	Isokinetic	Velocity
	(min)	("H ₂ O)	("H ₂ O)	(ft³)	(°F)	(°F)	(°F)	(°F)	(°F)	("Hg)	(%)	(ft/sec)
Traverse 2 - N	lorth											
1	0	0.12	0.82	992.44	117	250	249	67	83	-2	86	20.04
	2.5	0.13	0.89	993.73	119	250	249	67	83	-2	99	20.89
	5	0.12	0.82	995.28	119	250	249	67	83	-2	105	20.07
	7.5 10	0.08 0.08	0.55 0.55	996.85 998.20	118 117	250 248	248 248	67 67	81 81	-2 -2	110 104	16.37 16.36
	12.5	0.08	0.33	998.20	117	248	248	67	81	-2 -2	151	10.02
	15	0.03	0.68	1000.60	117	250	248	67	81	-2	96	18.29
	17.5	0.13	0.89	1000.00	117	250	248	67	81	-2	99	20.85
2	20	0.13	0.89	1003.46	117	250	248	67	81	-2	99	20.85
_	22.5	0.12	0.82	1005.01	117	250	248	67	81	-2	79	20.04
	25	0.10	0.68	1006.20	117	250	248	67	81	-2	126	18.29
	27.5	0.09	0.61	1007.93	116	250	248	67	81	-2	90	17.34
	30	0.07	0.48	1009.10	129	250	248	67	77	-2	189	15.46
	32.5	0.25	1.71	1011.23	129	250	248	67	77	-2	99	29.22
	35	0.25	1.71	1013.32	129	250	248	67	77	-2	101	29.22
	37.5	0.24	1.60	1015.46	127	250	248	67	77	-2	97	28.58
3	40	0.24	1.60	1017.48	127	250	248	67	77	-2	98	28.58
	42.5	0.20	1.40	1019.51	126	250	248	67	77	-2	97	26.07
	45	0.15	1.00	1021.36	126	250	250	67	77	-2	102	22.58
	47.5	0.16	1.07	1023.05	126	250	253	67	77	-2	95	23.32
	50 52.5	0.17	1.13	1024.67	126	251	250	67	77 77	-2	95	24.03
	52.5 55	0.19	1.27	1026.33 1028.04	126	251	249	67 67	77 77	-2	92	25.41
	55 57.5	0.23 0.25	1.53 1.67	1028.04	128 128	251 251	249 246	67 67	77 77	-2 -2	96 93	28.00 29.19
4	60	0.25	1.73	1029.99	128	251	246	67	77 77	-2 -2	95 95	29.77
4	62.5	0.25	1.66	1031.97	127	250	245	67	77 77	-2	99	29.17
	65	0.25	1.66	1034.03	127	250	243	67	78	-2	97	29.17
	67.5	0.24	1.60	1038.20	127	251	245	67	78	-2	97	28.58
	70	0.27	1.80	1040.23	127	251	244	67	78	-2	94	30.31
	72.5	0.20	1.33	1042.30	127	251	243	67	78	-2	100	26.09
	75	0.21	1.40	1044.21	127	251	243	67	78	-2	96	26.73
	77.5	0.21	1.40	1046.09	127	251	243	67	78	-2	97	26.73
5	80	0.20	1.33	1047.98	127	250	246	67	79	-2.0	100	26.09
	82.5	0.21	1.40	1049.89	127	250	246	67	79	-2.0	98	26.73
	85	0.21	1.40	1051.81	127	250	246	67	79	-2.0	97	26.73
	87.5	0.21	1.40	1053.71	127	250	246	67	79	-2.0	98	26.73
	90	0.24	1.60	1055.62	128	250	246	67	79	-3.0	99	28.61
	92.5	0.25	1.66	1057.68	128	250	246	67	80	-3.0	98	29.19
	95 07.5	0.27	1.80	1059.77	129	251	246	67	80	-3.0	105	30.37
6	97.5 100	0.24 0.24	1.60 1.60	1062.09 1064.02	129 129	251 250	246 246	67 67	80 80	-3.0 -3.0	92 109	28.63 28.63
0	102.5	0.24	1.66	1064.02	128	250	246	67	80	-3.0	99	29.19
	102.5	0.25	1.66	1068.40	128	250	246	67	80	-3.0	99	29.19
	107.5	0.25	1.66	1070.52	128	250	246	67	80	-3.0	57	29.19
	110	0.25	1.66	1071.74	128	250	246	67	80	-3.0	92	29.19
	112.5	0.25	1.66	1073.71	128	250	246	67	80	-3.0	142	29.19
	115	0.25	1.66	1076.73	128	250	246	67	80	-3.0	97	29.19
	117.5	0.20	1.34	1078.80	128	250	246	67	80	-3.0	107	26.11
7	120	0.20	1.34	1080.85	127	250	246	67	80	-3.0	107	26.09
	122.5	0.20	1.34	1082.90	127	250	246	67	81	-3.0	98	26.09
	125	0.20	1.34	1084.78	127	250	246	67	81	-3.0	96	26.09
	127.5	0.20	1.34	1086.61	127	250	246	67	81	-3.0	95	26.09
	130	0.20	1.34	1088.43	125	250	250	67	82	-3.0	94	26.05
	132.5	0.20	1.34	1090.23	123	250	250	67	82	-3.0	95	26.00
	135	0.21	1.40	1092.05	123	251	250	67 67	81	-3.0	100	26.64
8	137.5 140	0.21 0.23	1.40 1.54	1094.02 1096.05	123 123	251 251	250 250	67 67	81 81	-3.0 -3.0	103 103	26.64 27.88
•	142.5	0.23	1.54	1096.05	123	248	250 249	67	81	-3.0 -3.0	99	27.88
	142.5	0.19	1.27	1100.02	122	248	249	67	82	-3.0 -3.0	99 97	25.32
	147.5	0.19	1.27	1100.02	122	248	249	67	82	-3.0	89	25.32
	150	0.19	1.27	1101.63	122	250	250	67	82	-3.0	96	25.32
	152.5	0.19	1.27	1105.33	122	250	250	67	81	-3.0	102	25.32
	155	0.19	1.27	1107.24	122	250	250	67	81	-3.0	98	25.32
	157.5	0.18	1.22	1109.07	122	250	250	67	81	-3.0	101	24.65
	160			1110.92								
Post-test Leak		<0.02 @ 9"										
	Average	0.20	1.35	239.04	125	250	248	67	81	-	100	25.50

Particulate Matter and Metals Sampling

Facility: Stericycle ULC Operator: SRR

	City:	Brampton			E	ntered by:	BRS					
Referer	Source: ace Method:	Incinerator OSTC Meth				necked by: Test Date:						
		Metals Test					., jan 22					
Pt.	Time	Velocity Press.	Orifice Press.	Meter Volume	Stack Temp	Probe Temp	Box Temp	Imp Temp	Meter Temp	Vac Pressure	Percentage Isokinetic	Stack Velocity
raverse 1 - N	(min)	("H ₂ O)	("H ₂ O)	(ft³)	(°F)	(°F)	(°F)	(°F)	(°F)	("Hg)	(%)	(ft/sec)
r averse i - iv re-Test Leak (<0.02 @ 10	" Нσ									
1	0	0.17	1.16	111.01	116	250	250	67	77	-2	117	24.10
•	2.5	0.14	0.95	113.11	116	250	250	67	77	-2	104	21.87
	5	0.14	0.95	114.80	117	250	248	67	77	-2	99	21.89
	7.5	0.14	0.95	116.42	118	251	248	67	77	-2	99	21.91
	10	0.14	0.95	118.03	118	249	248	67	77	-2	99	21.91
	12.5	0.14	0.95	119.64	117	250	248	67	76	-2	98	21.89
	15	0.14	0.95	121.24	118	250	248	67	76	-2	99	21.91
	17.5	0.14	0.95	122.85	117	248	245	67	76	-2	98	21.89
2	20	0.14	0.95	124.45	117	252	253	66	75	-2	99	21.89
	22.5	0.14	0.95	126.05	116	250	247	66	75	-2	98	21.87
	25	0.14	0.95	127.64	118	250	248	65	75	-2	99	21.91
	27.5	0.14	0.95	129.24	118	250	248	65	75 75	-2	99	21.91
	30	0.14	0.95	130.85	120	249	249	64	75 75	-2	99	21.95
	32.5	0.14	0.95	132.45	120 119	249	249	64	75 75	-2 -2	98	21.95
	35 37.5	0.14 0.14	0.95 0.95	134.04 135.62	119	249 250	249 249	64 63	75 74	-2 -2	98 99	21.93 21.93
3	37.5 40	0.14	0.95	137.22	119	250 251	250	63	74 74	-2 -2	98	21.93
3	42.5	0.14	0.95	138.80	119	251	250	64	74 75	-2 -2	99	21.93
	45	0.16	1.09	140.41	119	250	250	64	75 75	-2	94	23.45
	47.5	0.14	0.95	142.03	119	250	250	65	75	-2	99	21.93
	50	0.14	0.95	143.63	119	251	251	65	75	-2	99	21.93
	52.5	0.14	0.95	145.24	119	247	245	65	75	-2	100	21.93
	55	0.14	0.95	146.86	119	251	250	65	75	-2	98	21.93
	57.5	0.14	0.95	148.45	119	250	251	65	75	-2	99	21.93
4	60	0.14	0.95	150.05	119	249	247	66	75	-2	99	21.93
	62.5	0.14	0.95	151.65	119	250	250	66	75	-2	98	21.93
	65	0.14	0.95	153.24	118	252	249	66	75	-2	99	21.91
	67.5	0.14	0.95	154.85	118	251	250	66	75	-2	97	21.91
	70	0.15	1.01	156.43	119	251	250	66	75	-2	100	22.70
	72.5	0.15	1.01	158.10	119	248	246	67	75	-2	101	22.70
	75 77 -	0.15	1.01	159.80	119	248	246	67	75 75	-2	100	22.70
_	77.5 80	0.15	1.01	161.47	120	248	246	67 67	75 75	-2	94	22.72
5	80 82.5	0.15 0.15	1.01 1.01	163.05 164.74	118 118	251 251	249 249	67 67	75 75	-2 -2	101 100	22.68 22.68
	85	0.15	1.01	166.41	118	251	249	67	75 75	-2 -2	100	22.68
	87.5	0.15	1.01	168.08	118	251	249	67	75 75	-2	85	22.68
	90	0.13	0.74	169.50	121	251	249	67	75 75	-2	101	19.47
	92.5	0.15	1.01	170.95	121	251	249	67	75 75	-2	96	22.74
	95	0.15	1.01	172.56	121	251	249	67	75	-2	102	22.74
	97.5	0.15	1.01	174.26	124	251	249	67	75	-2	93	22.80
6	100	0.15	1.01	175.82	124	251	249	67	75	-2	101	22.80
	102.5	0.15	1.01	177.50	125	252	252	67	75	-2	101	22.82
	105	0.15	1.01	179.19	125	249	248	67	75	-2	97	22.82
	107.5	0.15	1.01	180.8	127	250	249	67	75	-2	102	22.86
	110	0.17	1.15	182.49	126	250	249	67	75	-3	103	24.31
	112.5	0.17	1.15	184.32	125	251	249	67	75	-3	97	24.29
	115	0.17	1.15	186.05	125	251	249	67	75	-3	99	24.29
-	117.5	0.17	1.15	187.80	125	251	249	67	75 75	-3	98	24.29
7	120	0.12	0.81	189.54	124	250	248	67	75 75	-3	103	20.39
	122.5	0.12	0.81	191.08	123	250	249	67 67	75 75	-3	101	20.37
	125 127 E	0.13	0.88	192.59	123	250	249	67 67	75 75	-3 2	100	21.21
	127.5 130	0.13 0.13	0.88 0.88	194.15 195.70	125 125	250 250	249 249	67 67	75 75	-2 -2	100 99	21.24
	130	0.13	0.88	195.70 197.23	125	250 250	249 250	67 67	75 75	-2 -2	99 99	21.24 21.26
	132.5	0.13	0.88	197.23	125	250 250	250 250	67	75 75	-2 -2	99 97	21.26
	137.5	0.13	0.88	200.27	123	253	250	67	75 75	-2 -2	97 97	21.24
8	140	0.13	0.88	200.27	127	253	251	67	75 75	-2 -2	101	21.26
Ü	142.5	0.13	0.88	203.35	125	253	251	67	75 75	-2	97	21.24
	145	0.13	0.88	204.86	125	253	252	67	75 75	-2	99	21.24
	147.5	0.13	0.88	206.39	126	250	248	67	75 75	-2	100	21.26
	150	0.13	0.88	207.94	126	249	248	67	75	-2	99	21.26
	152.5	0.13	0.88	209.48	125	249	249	67	75	-2	99	21.24
	155	0.13	0.88	211.01	123	251	249	67	75	-2	100	21.21
	157.5	0.13	0.88	212.56	123	250	249	67	75	-2	98	21.21
	160			214.09								

Facility: Stericycle ULC
City: Brampton
Source: Incinerator
Reference Method: OSTC Method 5/29
Run: Metals Test #3

Operator: SRR Entered by: BRS Checked by: MOS Test Date: 17-Jun-22

Pt.	Time	Velocity	Orifice	Meter	Stack	Probe	Box	Imp	Meter	Vac	Percentage	Stack
1		Press.	Press.	Volume	Temp	Temp	Temp	Temp	Temp	Pressure	Isokinetic	Velocity
	(min)	("H ₂ O)	("H ₂ O)	(ft ³)	(°F)	(°F)	(°F)	(°F)	(°F)	("Hg)	(%)	(ft/sec)
Traverse 2 -		(1120)	(1120)	(10)	(')	(1)	(1)	(1)	(')	(118)	(70)	(It/Sec)
ilaveise 2 -	Mest											
1	0	0.45	3.04	214.09	125	251	251	67	75	-4.0	74	39.52
' '	2.5	0.43	2.03	216.22	125	251	251	62	73 74	-4.0	99	32.27
	5	0.30	2.03	218.54	125	250	249	62	74	-4.0	99	32.27
	7.5	0.30	2.03	220.87	123	251	249	61	74 75	-4.0 -4.0	115	26.98
	10	0.21	1.40	223.14	124	250	250	60	73 74	-4.0		26.95
	12.5		1.40	225.14	123	250	250		74 75		101	
	15.5	0.21			123		250	61	75 75	-4.0	98	26.95
		0.21	1.40	227.06		250		62		-4.0	98	26.98
2	17.5	0.21	1.40	229.00	124	250	250	62	75 75	-4.0	98	26.98
2	20	0.21	1.40	230.94	123	250	250	62	75	-4.0	97	26.95
	22.5	0.21	1.40	232.86	122	250	248	63	75	-3	98	26.93
	25	0.21	1.40	234.79	124	250	248	63	75	-3	97	26.98
	27.5	0.21	1.40	236.71	124	250	248	63	75	-3	100	26.98
	30	0.21	1.40	238.69	123	250	249	64	75	-3	98	26.95
	32.5	0.21	1.40	240.62	125	250	249	64	75	-3	99	27.00
	35	0.21	1.40	242.58	125	250	249	65	75	-3	98	27.00
	37.5	0.21	1.40	244.52	123	251	249	65	75	-3	98	26.95
3	40	0.21	1.40	246.46	123	251	249	66	75	-3	96	26.95
	42.5	0.21	1.40	248.36	122	251	250	66	75	-3	99	26.93
	45	0.21	1.40	250.31	122	251	250	67	75	-3	98	26.93
	47.5	0.18	1.20	252.25	124	251	250	67	76	-3	104	24.98
	50	0.18	1.20	254.15	125	252	249	66	75	-3	99	25.00
	52.5	0.18	1.20	255.95	125	251	250	67	75	-3	99	25.00
	55	0.18	1.20	257.76	124	250	249	67	75	-3	98	24.98
	57.5	0.18	1.20	259.55	124	250	249	67	75	-3	99	24.98
4	60	0.18	1.20	261.35	124	251	248	67	75	-3	98	24.98
	62.5	0.18	1.20	263.14	124	251	248	67	75	-3	100	24.98
	65	0.18	1.20	264.97	125	250	249	67	76	-3	91	25.00
	67.5	0.18	1.20	266.63	125	250	249	67	76	-3	95	25.00
	70	0.12	0.80	268.36	125	250	249	67	76	-3	104	20.41
	72.5	0.17	1.13	269.92	125	250	249	67	76	-3	86	24.29
	75	0.17	1.13	271.45	125	250	249	67	76	-3	85	24.29
	77.5	0.17	1.13	272.97	125	250	249	67	75	-3	101	24.29
5	80	0.17	1.13	274.77	125	250	249	67	75	-3.0	96	24.29
	82.5	0.17	1.13	276.47	125	251	249	66	75	-3.0	99	24.29
	85	0.17	1.13	278.23	125	250	249	66	75	-3.0	98	24.29
	87.5	0.17	1.13	279.97	125	249	247	66	75 75	-3.0	100	24.29
	90	0.18	1.20	281.74	124	249	247	66	75 75	-3.0	100	24.98
	92.5	0.18	1.20	283.56	125	249	249	65	75 75	-3.0	99	25.00
	95	0.18	1.20	285.37	125	248	248	65	76	-3.0	98	25.00
	97.5	0.18	1.20	287.17	125	248	248	65	76	-3.0	95	25.00
6	100	0.18	1.20	288.91	125	248	248	65	76 76	-3.0	97	25.00
0	102.5	0.18	1.20	290.69	125	249	248	65	76 76	-3.0	98	25.00
	102.5	0.18	0.73	290.09	123	249	248	65	76 76	-3.0	89	19.52
	107.5	0.11	0.73	292.49	124	251	251	66	76 76	-3.0	104	19.52
	110 112.5	0.11 0.11	0.73 0.73	295.25 296.69	124 121	250 251	251 249	66 67	76 76	-3.0 -3.0	100 93	19.52 19.47
	112.5											
	115 117.5	0.11	0.73	298.03 299.38	124 124	247 247	246 246	67 67	76 76	-3.0	94 99	19.52
7	117.5 120	0.11	0.73 0.73			247 247				-3.0 -3.0		19.52 19.52
'		0.11		300.80	124		246	67 67	76 76	-3.0	98	
	122.5	0.11	0.73	302.20	122	247	246	67 67	76 76	-3.0	98	19.49
	125	0.11	0.73	303.61	122	249	247	67 67	76 76	-3.0	98	19.49
	127.5	0.11	0.73	305.02	124	249	247	67	76 76	-3.0	98	19.52
	130	0.15	1.00	306.42	124	249	247	67	76 76	-3.0	85	22.80
	132.5	0.15	1.00	307.84	123	249	247	63	76 76	-3.0	100	22.78
	135	0.15	1.00	309.51	123	250	247	59	76	-3.0	102	22.78
_	137.5	0.15	1.00	311.21	123	249	248	60	76	-3.0	96	22.78
8	140	0.15	1.00	312.81	122	247	247	60	76	-3.0	99	22.76
	142.5	0.15	1.00	314.47	122	248	248	60	76	-3.0	101	22.76
	145	0.15	1.00	316.16	123	249	249	61	76	-3.0	101	22.78
	147.5	0.15	1.00	317.85	123	250	250	61	76	-3.0	98	22.78
	150	0.15	1.00	319.49	123	251	251	62	76	-3.0	97	22.78
	152.5	0.15	1.00	321.12	123	251	251	62	76	-3.0	96	22.78
	155	0.15	1.00	322.73	123	248	249	64	76	-3.0	97	22.78
	157.5	0.15	1.00	324.36	124	248	249	64	76	-3.0	99	22.80
	160			326.01								
Post-Test Lea	ak Check = <0.0											
	Average	0.16	1.07	215.00	122	250	249	66	75	-	98	23.30

APPENDIX C

Sampling Results - Polycyclic Aromatic Hydrocarbons (PAH's) Incinerator

Test:	Blank		Test #1			Test #2			Test #3		А	VERAGE RESULTS	
Sample Volume (m³) [1] :			6.20			6.51			6.27			6.32	
Stack Flow Rate (m³/s) [1]:			1.84			1.90			1.83			1.86	
		Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Concentration	Concentration @ 11% O ₂	Emission Rate
Chlorobenzenes	(µg)	(µg)	(µg/m³)	(µg/s)	(µg)	(µg/m³)	(µg/s)	(µg)	(µg/m³)	(µg/s)	(µg/m³)	(µg/m³)	(µg/s)
1,2,3,4-Tetrachlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,2,3,5+1,2,4,5-Tetrachlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,2,3-Trichlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,2,4-Trichlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,2-Dichlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,3,5-Trichlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,3-Dichlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
1,4-Dichlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Hexachlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Pentachlorobenzene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Phenolics	(µg)	(µg)	(µg/m³)	(µg/s)	(µg)	(µg/m³)	(µg/s)	(µg)	(µg/m³)	(µg/s)	(µg/m³)	(µg/m³)	(µg/s)
2,3,4,5-Tetrachlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,3,4,6-Tetrachlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,3,4-Trichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,3,5,6-Tetrachlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,3,5-Trichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,3,6-Trichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,3-Dichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,4 + 2,5-Dichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,4,5-Trichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,4,6-Trichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2,6-Dichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2-Chlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
3,4,5-Trichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
3,4-Dichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
3,5-Dichlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
3-Chlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
4-Chlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Pentachlorophenol	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Other Chlorinated Organics	(µg)	(µg)	(µg/m³)	(µg/s)	(µg)	(µg/m³)	(µg/s)	(µg)	(µg/m³)	(µg/s)	(µg/m³)	(µg/m³)	(µg/s)
1-Methylnaphthalene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	0.300	0.0479	0.0876	< 0.0475	< 0.0543	< 0.0881
1-Methylphenanthrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2-Chloronaphthalene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2-Methylanthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
2-Methylnaphthalene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	0.360	0.0574	0.105	< 0.0506	< 0.0578	< 0.0940
3-Methylcholanthrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
7,12-Dimethylbenzo(a)anthracene	< 1.200	< 1.20	< 0.194	< 0.356	< 1.20	< 0.184	< 0.351	< 1.20	< 0.191	< 0.350	< 0.190	< 0.217	< 0.353
9,10-Dimethylanthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
9-Methylphenanthrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Acenaphthene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Acenaphthylene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881

Test:	Blank		Test #1			Test #2			Test #3		А	VERAGE RESULTS	
Sample Volume (m³) ^[1] :			6.20			6.51			6.27			6.32	
Stack Flow Rate (m³/s) [1]:			1.84			1.90			1.83			1.86	
		Lab		Emission	Lab		Emission	Lab		Emission		Concentration	Emission
		Data	Concentration	Rate	Data	Concentration	Rate	Data	Concentration	Rate	Concentration	@ 11% O ₂	Rate
Anthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(a)anthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(a)fluorene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(a)pyrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(b)Anthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(b)fluoranthene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(b)fluorene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(e)pyrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(g,h,i)perylene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Benzo(k)fluoranthene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Biphenyl	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	0.720	0.115	0.210	< 0.0698	< 0.0797	< 0.129
Chrysene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Coronene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Dibenzo(a,h)anthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Dibenzo(a,c)anthracene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Dibenzo(a,e)pyrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Fluoranthene	< 0.300	< 0.300	< 0.0484	< 0.0891	0.300	0.0461	0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Fluorene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Indeno(1,2,3-cd)pyrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
m-Terphenyl	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Naphthalene	< 0.300	1.02	0.165	0.303	5.58	0.858	1.63	10.4	1.66	3.04	0.894	1.02	1.66
o-Terphenyl	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Perylene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Phenanthrene	< 0.300	< 0.300	< 0.0484	< 0.0891	0.960	0.148	0.281	1.08	0.172	0.315	< 0.123	< 0.141	< 0.228
Picene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
p-Terphenyl	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Pyrene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Quinoline	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Tetralin	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
Triphenylene	< 0.300	< 0.300	< 0.0484	< 0.0891	< 0.300	< 0.0461	< 0.0877	< 0.300	< 0.0479	< 0.0876	< 0.0475	< 0.0543	< 0.0881
, ,	(ng)	(ng)	(ng/m³)	(ng/s)	(ng)	(ng/m³)	(ng/s)	(ng)	(ng/m³)	(ng/s)	(ng/m³)	(ng/m³)	(ng/s)
Monochlorobiphenyl	< 0.0190	0.510	0.0823	0.151	1.80	0.277	0.526	3.70	0.590	1.08	0.316	0.361	0.586
Dichlorobiphenyl	< 0.0310	1.20	0.194	0.356	22.0	3.38	6.43	24.0	3.83	7.00	2.47	2.82	4.60
Trichlorobiphenyl	< 0.0750	1.90	0.306	0.564	23.0	3.54	6.72	26.0	4.15	7.59	2.66	3.04	4.96
Tetrachlorobiphenyl	0.120	22.0	3.55	6.53	330	50.7	96.5	350	55.9	102	36.7	41.9	68.4
Pentachlorobiphenyl	0.240	180	29.0	53.5	2300	354	672	2300	367	671	250	286	466
Hexachlorobiphenyl	0.400	150	24.2	44.6	1500	231	439	1600	255	467	170	194	317
Heptachlorobiphenyl	< 0.0520	12.0	1.94	3.56	110	16.9	32.2	110	17.6	32.1	12.1	13.8	22.6
Octachlorobiphenyl	< 0.0620	0.350	0.0565	0.104	9.60	1.48	2.81	9.60	1.53	2.80	1.02	1.17	1.90
Nonachlorobiphenyl	< 0.0630	< 0.100	< 0.0161	< 0.0297	1.70	0.261	0.497	2.00	0.319	0.584	< 0.199	< 0.227	< 0.370
Decachlorobiphenyl	< 0.0560	< 0.140	< 0.0226	< 0.0416	0.250	0.0384	0.0731	0.240	0.0383	0.0700	< 0.0331	< 0.0378	< 0.0616

^[1] Sample volume and volumetric flow rate based on dry referenced conditions (101.3 kPa and 25 °C)

'<' indicates that laboratory results were below the detection limit. The detection limit was used to calculate the concentration and emission rate.

Concentration and Emission Rate has been reported to 3 significant figures.

Sampling Results - Dioxins and Furans

Incinerator

Test:			Test #1			Test #2			Test #3		Average	Average Conc.	Reg	419 Toxic Equivalency	y Factors
Sample Volume (m³) ^[1] : Stack Flow Rate (m³/s) ^[1] :	Blank		6.20 1.84			6.51 1.90			6.27 1.83		Average Concentration	@25 °C and 11% O₂	TEF	TEF Concentration	TEF Emission Rate
	Lab Data (pg)	Lab Data (pg)	Concentration (pg/m³)	Emission Rate (pg/s)	Lab Data (pg)	Concentration (pg/m³)	Emission Rate (pg/s)	Lab Data (pg)	Concentration (pg/m³)	Emission Rate (pg/s)	(pg/m³)	(pg/m³)		(pg TEQ/m³)	(pg/s)
2,3,7,8-Tetra CDD *	< 8.60	< 11.0	< 1.77	< 3.27	< 11.0	< 1.69	< 3.22	< 9.40	< 1.5	< 2.74	< 1.65	< 1.88	1	< 1.88	< 3.06
1,2,3,7,8-Penta CDD *	< 10.0	< 9.10	< 1.47	< 2.7	< 8.20	< 1.26	< 2.40	< 16.0	< 2.55	< 4.67	< 1.76	< 2.01	1	< 2.01	< 3.27
1,2,3,4,7,8-Hexa CDD *	< 8.20	< 7.70	< 1.24	< 2.29	< 8.60	< 1.32	< 2.51	< 15.0	< 2.39	< 4.38	< 1.65	< 1.88	0.1	< 0.188	< 0.306
1,2,3,6,7,8-Hexa CDD *	< 7.10	< 6.80	< 1.10	< 2.02	< 7.50	< 1.15	< 2.19	< 13.0	< 2.07	< 3.79	< 1.44	< 1.64	0.1	< 0.164	< 0.267
1,2,3,7,8,9-Hexa CDD *	< 7.60	< 7.20	< 1.16	< 2.14	< 8.00	< 1.23	< 2.34	< 13.0	< 2.07	< 3.79	< 1.49	< 1.70	0.1	< 0.170	< 0.277
1,2,3,4,6,7,8-Hepta CDD *	< 7.50	< 9.00	< 1.45	< 2.67	< 6.90	< 1.06	< 2.02	< 10.0	< 1.60	< 2.92	< 1.37	< 1.56	0.01	< 0.0156	< 0.0254
1,2,3,4,6,7,8,9-Octa CDD *	< 8.80	< 12.0	< 1.94	< 3.56	22.0	3.38	6.43	< 18.0	< 2.87	< 5.25	< 2.73	< 3.12	0.0003	< 0.000936	< 0.00152
2,3,7,8-Tetra CDF **	< 9.70	< 9.70	< 1.56	< 2.88	17.0	2.61	4.97	< 8.30	< 1.32	< 2.42	< 1.83	< 2.09	0.1	< 0.209	< 0.340
1,2,3,7,8-Penta CDF **	< 9.10	< 9.70	< 1.56	< 2.88	< 9.90	< 1.52	< 2.89	< 9.80	< 1.56	< 2.86	< 1.55	< 1.77	0.03	< 0.0531	< 0.0863
2,3,4,7,8-Penta CDF **	< 9.00	< 9.60	< 1.55	< 2.85	< 9.90	< 1.52	< 2.89	< 9.70	< 1.55	< 2.83	< 1.54	< 1.76	0.3	< 0.528	< 0.858
1,2,3,4,7,8-Hexa CDF **	< 7.10	< 6.80	< 1.10	< 2.02	< 11.0	< 1.69	< 3.22	< 12.0	< 1.91	< 3.50	< 1.57	< 1.79	0.1	< 0.179	< 0.291
1,2,3,6,7,8-Hexa CDF **	< 6.50	< 6.20	< 1.00	< 1.84	< 9.70	< 1.49	< 2.84	< 11.0	< 1.76	< 3.21	< 1.42	< 1.62	0.1	< 0.162	< 0.264
2,3,4,6,7,8-Hexa CDF **	< 7.40	< 7.10	< 1.15	< 2.11	< 11.0	< 1.69	< 3.22	< 13.0	< 2.07	< 3.79	< 1.64	< 1.87	0.1	< 0.187	< 0.304
1,2,3,7,8,9-Hexa CDF **	< 8.10	< 7.80	< 1.26	< 2.32	< 12.0	< 1.84	< 3.51	< 14.0	< 2.23	< 4.09	< 1.78	< 2.03	0.1	< 0.203	< 0.330
1,2,3,4,6,7,8-Hepta CDF **	< 6.50	< 9.20	< 1.48	< 2.73	< 8.80	< 1.35	< 2.57	< 7.60	< 1.21	< 2.22	< 1.35	< 1.54	0.01	< 0.0154	< 0.0251
1,2,3,4,7,8,9-Hepta CDF **	< 8.20	< 12.0	< 1.94	< 3.56	< 11.0	< 1.69	< 3.22	< 9.50	< 1.52	< 2.77	< 1.71	< 1.95	0.01	< 0.0195	< 0.0317
1,2,3,4,6,7,8,9-Octa CDF **	< 8.40	< 12.0	< 1.94	< 3.56	< 12.0	< 1.84	< 3.51	< 19.0	< 3.03	< 5.55	< 2.27	< 2.59	0.0003	< 0.000778	< 0.00126
	Lab Data	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	3.	3.		3.	
	(ng)	(ng)	(ng/m³)	(ng/s)	(ng)	(ng/m³)	(ng/s)	(ng)	(ng/m³)	(ng/s)	(ng/m³)	(ng/m³)		(pg TEQ/m³)	(pg/s)
33'44'-TetraCB-(77)	< 0.0660	6.40	1.03	1.90	75.0	11.5	21.9	74.0	11.8	21.6	8.12	9.28	0.0001	0.928	1.51
344'5-TetraCB-(81)	< 0.0620	< 0.160	< 0.0258	< 0.0475	3.20	0.492	0.936	3.40	0.543	0.992	< 0.353	< 0.403	0.0003	< 0.121	< 0.197
233'44'-PentaCB-(105)	< 0.0240	15.0	2.42	4.46	150	23.1	43.9	150	23.9	43.8	16.5	18.8	0.00003	0.565	0.919
2344'5-PentaCB-(114)	< 0.0240	0.940	0.152	0.279	9.60	1.48	2.81	9.20	1.47	2.69	1.03	1.18	0.00003	0.0353	0.0574
23'44'5-PentaCB-(118)	0.130	40.0	6.45	11.9	440	67.6	129	430	68.6	125	47.6	54.4	0.00003	1.63	2.65
23'44'5'-PentaCB-(123)	< 0.0260	0.470	0.0758	0.140	6.00	0.922	1.75	9.30	1.48	2.71	0.827	0.945	0.00003	0.0283	0.0461
33'44'5-PentaCB-(126)	< 0.0230	0.570	0.0919	0.169	3.30	0.507	0.965	3.60	0.574	1.05	0.391	0.447	0.1	44.7	72.6
HexaCB-(156)+(157)	< 0.0360	3.20	0.516	0.951	29.0	4.46	8.48	29.0	4.63	8.46	3.20	3.66	0.00003	0.110	0.178
23'44'55'-HexaCB-(167)	< 0.0350	1.30	0.210	0.386	12.0	1.84	3.51	12.0	1.91	3.50	1.32	1.51	0.00003	0.0452	0.0735
33'44'55'-HexaCB-(169)	< 0.0360	< 0.0410	< 0.00661	< 0.0122	< 0.0580	< 0.00891	< 0.0170	< 0.0600	< 0.00957	< 0.0175	< 0.00837	< 0.00956	0.03	< 0.287	< 0.466
233'44'55'-HeptaCB-(189)	< 0.0480	< 0.0760	< 0.0123	< 0.0226	0.390	0.0599	0.114	0.330	0.0527	0.0963	< 0.0416	< 0.0475	0.00003	< 0.00143	< 0.00232
													c Equivalency	< 54.4	< 88.4

Notes

[1] Sample volume and volumetric flow rate based on dry referenced conditions (101.3 kPa and 25 °C)

'<' indicates that laboratory results were below the detection limit. The detection limit was used to calculate the concentration and emission rate.

Concentration and Emission Rate has been reporte 3 significant figures.

*CDD = chlorodibenzo-p -dioxin

**CDF = chlorodibenzo-p -furan

***CB = chlorobenzene

Semi-Volatile Organic Compounds Sampling Stericycle

Facility: Stericycle City: Brampton, Ontario Source: Incinerator Reference Method: Environment Canada 1/F	RM/2		Operator: HE Entered by: HE Checked by: MOS				
DATA INPUTS	Symbol	Units	Test #1 SVOC	Test #2 SVOC	Test #3 SVOC		
Date			15-Jun-22	16-Jun-22	17-Jun-22		
Start Time			9:18 AM	8:58 AM	8:36 AM		
End Time			2:58 PM	4:16 PM	2:11 PM		
Round Stack, Diameter (Inside)	d _s	in	24	24	24		
Standard Temperature	T _s	°F	77	77	77		
Standard Pressure	P _s	" Hg	29.9	29.9	29.9		
Nozzle Diameter	D _n	in	0.320	0.320	0.320		
Average Stack Temperature	T _s	°F	115	126	123		
Average Meter Temperature	T _m	°F	84	84	80		
Barometric Pressure	P _{bar}	" Hg	29.96	29.85	29.06		
Stack Static Pressure	Pg	" H ₂ O	0.07	0.07	0.07		
Average Delta H	dH	" H ₂ O	1.46	1.64	1.59		
Average Velocity Head	dP _{rms}	" H ₂ O	0.16	0.18	0.18		
Pitot Coefficient	C _p	-	0.849	0.849	0.849		
		Pitot ID ->		Calgary 3' #2			
Gas Sample Volume	V _m	ft³	225.04	236.71	232.61		
DGM Calibration Factor	Y	-	0.9814	0.9814	0.9814		
		DGM ID ->		Console H			
Total Sampling Time	min	min	320	320	320		
Stack Gas Oxygen Concentration	O ₂	%	12.2	12.6	11.9		
Stack Gas Carbon Dioxide Concentration	CO ₂	%	5.7	5.4	6.1		
Impinger Gain	W _w	g	183.5	315.8	300.6		

Semi-Volatile Organic Compounds Sampling

Facility: Stericycle		Operator:	HE
City: Brampton, Ontario		Entered by:	HE
Source: Incinerator		Checked by:	MOS
Reference Method: Environment Canada	1/RM/2		
Emissions Calculations	Symbol	Units	Test #1
	-		61/06

Reference Method: Environment Canac		11	Took #4	To at #2	Took #2	AVEDACE
Emissions Calculations	Symbol	Units	Test #1	Test #2	Test #3	AVERAGE
			SVOC	SVOC	SVOC	
Nozzle Area	A_n	ft²	0.00056	0.00056	0.00056	
Stack Area	A_s	ft²	3.14	3.14	3.14	
Average Stack Temperature	T _s	°R	575	586	583	581
Average DGM Temperature	T _m	°R	544	544	540	
Sample Volume at Reference Conditions	V_{mStd}	ft³	219.08	229.91	221.43	
	V _{mmstd}	m³	6.20	6.51	6.27	
Vol. of Water Vapour	V_{wStd}	ft³	8.808	15.1584	14.4288	
Water Fraction	B _{ws}		3.9%	6.2%	6.1%	5.4%
Molecular Weight, dry	M _d	g/mole	29.52	29.48	29.57	29.52
Molecular Weight, wet	M _w	g/mole	29.07	28.77	28.86	28.90
Absolute Stack Pressure	P _s	" Hg	29.97	29.86	29.07	29.63
Stack Gas Velocity	U _s	ft/s	23.01	24.92	24.47	24.13
	U _{sm}	m/s	7.01	7.60	7.46	7.36
Actual Gas Flow Rate	Q _{act}	acf/min	4,337	4,697	4,613	4,549
Dry Gas Flow Rate (dry, ref)	Q _{ref}	dscf/min	3,903	4,032	3,876	3,937
	Q _{Rm}	m³/min	111	114	110	111
	Qmref (Actual O ₂)	m³/s	1.84	1.90	1.83	1.9
	Qmref (11% O ₂)	m³/sec	1.62	1.59	1.66	1.63
Isokinetic Rate	I	%	99	100	101	100

	City	: Stericycle : Brampton, O	ntario			Operator: Entered by:	HE						
Refere		: Incinerator : Environment	Canada 1/RM	1/2		Checked by: Date	MOS 15-Jun-22						
Point	Run: Time	: Test 1 Velocity	Orifice	Meter	Stack	Probe	Box	Imp	Meter	XAD	Vacuum	Percentage	Stack
	(min)	Pressure (" H ₂ O)	Pressure (" H ₂ O)	Volume (ft ³)	Temp (°F)	Temp (°F)	Temp (°F)	Temp (°F)	Temp (°F)	Trap (°F)	Pressure (" Hg)	lsokinetic (%)	Velocity (ft/s)
Traverse 1-		(1120)	(1120)	(10)	(1)	(1)	(')	(1)	(')	(1)	(rig)	(70)	(103)
	ak Check = <0.	02 @ 10" Hg											
1	0	0.10	0.95	0.09	112	250	250	66	83	43	-	98	18.57
	2.5	0.10	0.95	1.50	113	250	246	66	83	43	-2	97	18.58
	5	0.10	0.95	2.90	113	250	249	66	82	43	-2	97	18.58
	7.5	0.10	0.95	4.29	113	250	249	66	82	42	-2	99	18.58
	10 12.5	0.10 0.10	0.95 0.95	5.71 7.12	113 113	250 250	251 247	57 57	82 82	42 42	-2 -2	98 97	18.58 18.58
	15	0.10	0.95	8.51	113	250	252	57	82	43	-2	100	18.58
	17.5	0.10	0.95	9.95	113	250	249	57	82	43	-2	97	18.58
2	20	0.10	0.95	11.34	114	250	249	57	82	43	-2	99	18.60
	22.5	0.10	0.95	12.76	114	250	250	56	83	44	-2	99	18.60
	25	0.10	0.95	14.18	114	250	250	56	83	44	-2	99	18.60
	27.5 30	0.10 0.10	0.95 0.95	15.60 17.01	115 115	250 250	250 250	56 56	83 82	44 42	-2 -2	98 99	18.62 18.62
	32.5	0.10	0.95	18.43	115	250	250	56	82	42	-2	99	18.62
	35	0.10	0.95	19.85	115	250	250	56	82	42	-2	99	18.62
	37.5	0.10	0.95	21.27	115	250	250	56	82	43	-2	99	18.62
3	40	0.10	0.95	22.69	113	250	250	57	82	42	-2	97	18.58
	42.5	0.10	0.95	24.09	113	250	250	57	82	43	-2	99	18.58
	45 47.5	0.10 0.10	0.95 0.95	25.51 26.96	113 113	250 250	250 250	57 57	82 82	42 42	-2 -2	101 98	18.58 18.58
	50	0.10	0.95	28.37	113	250	250	57	82	42	-2	99	18.58
	52.5	0.10	0.95	29.79	113	250	250	57	82	42	-2	99	18.58
	55	0.10	0.95	31.22	113	250	250	57	82	42	-2	99	18.58
	57.5	0.10	0.95	32.65	113	250	250	57	82	42	-2	98	18.58
4	60	0.10	0.95	34.06	113	250	250	57	82	42	-2	99	18.58
	62.5 65	0.10 0.10	0.95 0.95	35.48 36.90	113 113	250 250	250 250	57 57	82 82	42 42	-2 -2	99 99	18.58 18.58
	67.5	0.10	0.95	38.33	113	250	250	57	84	42	-2	97	18.58
	70	0.10	0.95	39.73	113	250	250	57	85	42	-2	99	18.58
	72.5	0.10	0.95	41.16	113	250	250	57	85	42	-2	99	18.58
	75	0.10	0.95	42.59	113	250	250	57	85	42	-2	99	18.58
5	77.5 80	0.10 0.25	0.95 2.35	44.02 45.44	113 113	250 250	250 250	57 57	85 85	42 42	-2 -2	98 98	18.58 29.38
) >	82.5	0.25	2.35	45.44 47.68	113	250	250 250	57 54	85	42	-2 -2	100	29.38
	85	0.25	2.35	49.95	113	250	250	54	85	42	-2	98	29.38
	87.5	0.25	2.35	52.18	115	250	250	54	85	42	-2	98	29.44
	90	0.25	2.35	54.40	115	250	250	54	85	42	-2	99	29.44
	92.5	0.25	2.35	56.65	115	250	250	54	85	42	-2	99	29.44
	95 97.5	0.25 0.25	2.35 2.35	58.90 61.15	115 115	250 250	250 250	54 54	85 85	42 42	-2 -2	99 97	29.44 29.44
6	100	0.25	2.35	63.36	115	250	250 250	54 54	85	42	-2 -2	99	29.44
	102.5	0.25	2.35	65.61	115	250	250	54	85	43	-2	99	29.44
	105	0.25	2.35	67.86	115	250	250	54	85	43	-2	99	29.44
	107.5	0.25	2.35	70.11	115	250	251	55	85	43	-2	98	29.44
	110	0.25	2.35	72.33	116	250	254	55 60	90	48	-2	97	29.46
	112.5 115	0.25 0.25	2.35 2.35	74.56 76.83	115 115	250 250	248 250	60 60	90 90	53 54	-2 -2	99 98	29.44 29.44
	117.5	0.25	2.35	79.08	116	250	251	61	90	58	-2	98	29.44
7	120	0.25	2.35	81.33	116	250	249	61	90	60	-2	100	29.46
	122.5	0.25	2.35	83.62	116	250	250	61	90	60	-2 -2	98	29.46
	125	0.25	2.35	85.87	116	250	250	61	90	60	-2	97	29.46
	127.5	0.25	2.35	88.10	115	250	249	62	90	62	-2 -2	99	29.44
	130 132.5	0.25 0.25	2.35 2.35	90.37 92.62	116 116	250 250	252 248	62 62	90 90	62 62	-2 -2	98 99	29.46 29.46
	132.3	0.25	2.35	94.89	116	250	250	62	90	62	-2 -2	101	29.46
	137.5	0.30	2.35	97.20	116	250	250	62	90	62	-2	98	32.27
8	140	0.30	2.35	99.66	116	250	250	60	90	62	-3	97	32.27
	142.5	0.30	2.35	102.11	116	250	250	60	90	62	-3	98	32.27
	145	0.30	2.35	104.58	116	250	250	60	90	62	-3	99	32.27
	147.5	0.30	2.35	107.07	116 116	250	250	60 60	90	62 63	-3	99	32.27
	150 152.5	0.30 0.30	2.35 2.35	109.55 112.02	116 116	250 250	250 250	60	90 90	62 62	-3 -3	98 99	32.27 32.27
	155	0.30	2.35	114.50	116	250	250	60	90	62	-3	103	32.27
	157.5	0.10	0.95	117.10	115	250	250	63	86	44	-3	99	18.62
	160			118.53									

Facility: Stericycle
City: Brampton, Ontario
Source: Incinerator
Reference Method: Environment Canada 1/RM/2
Run: Test 1

Operator: HE Entered by: HE Checked by: MOS Date 15-Jun-22

	Run:	Test 1											
Point	Time	Velocity Pressure	Orifice Pressure	Meter Volume	Stack Temp	Probe Temp	Box Temp	Imp Temp	Meter Temp	XAD Trap	Vacuum Pressure	Percentage Isokinetic	Stack Velocity
	(min)	(" H ₂ O)	(" H ₂ O)	(ft ³)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(ft/s)
Traverse 2-	West												
1	0	0.10	0.95	118.53	113	250	249	63	86	44	-2.0	96	18.58
	2.5 5	0.10	0.95	119.92	113	250	250	63	86	44 43	-2.0	99	18.58 18.58
	5 7.5	0.10 0.10	0.95 0.95	121.35 122.78	113 113	250 250	250 250	63 63	86 86	43	-2.0 -2.0	99 98	18.58
	10	0.10	0.95	124.20	113	250	251	64	83	43	-2.0	99	18.58
	12.5	0.10	0.95	125.63	113	249	249	63	83	43	-2.0	99	18.58
	15	0.10	0.95	127.06	113	250	249	63	83	43	-2.0	99	18.58
	17.5	0.10	0.95	128.49	113	250	250	63	83	43	-2.0	100	18.58
2	20	0.10	0.95	129.93	114	251	248	64	82	46	-2.0	99	18.60
	22.5	0.10	0.95	131.35	114	250	250	64	82	46	-2.0	99	18.60
	25	0.10	0.95	132.78	114	250	250	62	82	46	-2.0	99	18.60
	27.5 30	0.10	0.95 0.95	134.20 135.62	114 116	250 250	250 250	62 62	82	46 46	-2.0	99 100	18.60 18.63
	32.5	0.10 0.10	0.95	137.05	115	250	250	62	82 82	46	-2.0 -2.0	100	18.62
	35	0.10	0.95	138.48	115	250	250	62	82	46	-2.0	99	18.62
	37.5	0.15	1.40	139.90	115	250	250	62	82	46	-2.0	96	22.80
3	40	0.15	1.40	141.59	115	250	250	62	82	46	-2.0	100	22.80
	42.5	0.15	1.40	143.34	115	250	250	62	82	46	-2.0	97	22.80
	45	0.15	1.40	145.04	115	250	250	62	82	46	-2.0	97	22.80
	47.5	0.15	1.40	146.75	116	250	249	61	82	50	-2.0	99	22.82
	50	0.15	1.40	148.48	116	250	249	61	82	50	-2.0	98	22.82
	52.5 55	0.15 0.15	1.40 1.40	150.20 151.93	116 116	250 250	250 250	61 61	82 82	52 52	-2.0 -2.0	99 100	22.82 22.82
	57.5	0.15	1.40	153.69	116	250	250	61	82	52	-2.0	97	22.82
4	60	0.15	1.40	155.40	116	250	250	61	82	52	-2.0	100	22.82
	62.5	0.15	1.40	157.15	117	250	250	61	82	52	-2.0	97	22.84
	65	0.15	1.40	158.85	117	250	250	61	82	52	-2.0	99	22.84
	67.5	0.15	1.40	160.58	117	250	250	61	82	52	-2.0	101	22.84
	70	0.15	1.40	162.35	117	250	250	61	82	52	-2.0	100	22.84
	72.5	0.15	1.40	164.10	117	250	250	61	82	52	-2.0	99	22.84
	75 77.5	0.15	1.40	165.84	117	250	250	61 61	82	52	-2.0	98	22.84
5	77.5 80	0.15 0.15	1.40 1.40	167.56 169.31	118 118	250 250	250 250	61	82 82	55 55	-4.0 -4.0	100 99	22.86 22.86
	82.5	0.15	1.40	171.05	116	250	250	63	82	57	-4.0	100	22.82
	85	0.15	1.40	172.80	116	250	250	63	82	57	-4.0	100	22.82
	87.5	0.15	1.40	174.56	116	250	250	63	82	57	-4.0	100	22.82
	90	0.15	1.40	176.31	116	250	250	63	82	57	-4.0	100	22.82
	92.5	0.15	1.40	178.06	116	250	250	63	82	57	-4.0	99	22.82
	95	0.15	1.40	179.80	116	250	250	63	82	57	-4.0	101	22.82
6	97.5	0.15	1.40	181.57	116	250 250	250	63 63	82	57 57	-4.0	98	22.82
6	100 102.5	0.15 0.15	1.40 1.40	183.29 185.04	116 116	250	250 250	63	82 82	57 59	-4.0 -4.0	100 98	22.82 22.82
	102.3	0.15	1.40	186.76	116	250	250	63	85	59	-4.0	99	22.82
	107.5	0.15	1.40	188.51	116	250	250	63	85	59	-4.0	99	22.82
	110	0.15	1.40	190.26	114	250	250	63	85	59	-4.0	99	22.78
	112.5	0.15	1.40	192.01	114	250	250	64	87	59	-4.0	99	22.78
	115	0.15	1.40	193.76	114	250	250	64	82	59	-4.0	101	22.78
_	117.5	0.15	1.40	195.54	114	250	250	64	87	59	-4.0	96	22.78
7	120 122.5	0.15 0.15	1.40 1.40	197.24 199.01	114 114	250 250	250 250	64 62	82 83	60 60	-4.0	101 100	22.78 22.78
	122.5	0.15	1.40	200.78	113	250	250	62	83	60	-4.0 -4.0	98	22.76
	127.5	0.15	1.40	202.51	113	250	250	62	83	60	-4.0	99	22.76
	130	0.15	1.40	204.25	113	250	250	62	83	60	-4.0	98	22.76
	132.5	0.15	1.40	205.98	113	250	250	62	83	60	-4.0	99	22.76
	135	0.15	1.40	207.72	113	250	250	62	83	60	-4.0	99	22.76
	137.5	0.15	1.40	209.46	113	250	250	62	83	60	-4.0	99	22.76
8	140	0.15	1.40	211.20	113	250	250	62	83	60	-4.0	98	22.76
	142.5	0.15	1.40	212.93	113	250	250	62	83	62	-4.0	100	22.76
	145 147.5	0.15 0.15	1.40 1.40	214.69 216.46	113 113	250 250	250 250	62 62	83 83	62 63	-4.0 -4.0	100 97	22.76 22.76
	147.5	0.15	1.40	216.46	113	250 250	250 250	62 62	83 83	62 62	-4.0 -4.0	97	22.76
	152.5	0.15	1.40	219.91	113	250	250	62	83	62	-4.0	99	22.76
	155	0.15	1.40	221.65	113	250	250	62	83	62	-4.0	99	22.76
	157.5	0.15	1.40	223.39	113	250	250	62	83	62	-4.0	99	22.76
	160			225.13									
Post-Test Le	ak Check = <0												
	Average	0.16	1.46	225.04	115	250	250	60	84	51	-	99	23.01

	City	: Brampton, Or	ntario			Entered by:	HE						
Refere		: Incinerator : Environment	Canada 1/RN	1/2		Checked by: Date	MOS 16-Jun-22						
		: Test 2	Canada IIII			2410	. 0 jun 22						
Point	Time	Velocity Pressure	Orifice Pressure	Meter Volume	Stack Temp	Probe Temp	Box Temp	Imp Temp	Meter Temp	XAD Trap	Vacuum Pressure	Percentage Isokinetic	Stack Velocity
	(min)	(" H ₂ O)	(" H ₂ O)	(ft ³)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(ft/s)
Fraverse 2-N Pre-Test Leak		<0.02 @ 10" H	Jα										
1 1e-1e5t Lear	0	0.02 @ 10 F	o.9	0.14	122	250	252	64	85	61	_	103	18.86
'	2.5	0.10	0.9	1.59	124	250	250	64	85	61	-2	99	18.89
	5	0.10	0.9	2.98	123	249	250	64	85	61	-2	99	18.88
	7.5	0.10	0.9	4.38	123	250	250	64	85	61	-2	100	18.88
	10	0.10	0.9	5.79	124	250	250	64	85	61	-2	99	18.89
	12.5	0.10	0.9	7.19	125	250	250	64	85	57	-2	101	18.91
	15	0.10	0.9	8.61	125	250	250	64	85	57	-2	101	18.91
	17.5	0.10	0.9	10.03	125	250	250	64	85	57	-2	99	18.91
2	20	0.10	0.9	11.43	125	250	250	64	85	57	-2	100	18.91
	22.5	0.10	0.9	12.84	125	250	250	64	85	57	-2	99	18.91
	25	0.10	0.9	14.23	125	250	250	64	85	57	-2	102	18.91
	27.5	0.10	0.9	15.66	125	250	250	64	83	57	-2	102	18.91
	30	0.10	0.9	17.09	126	250	250	64	83	57	-2	101	18.93
	32.5	0.10	0.9	18.51	126	250	250	63	83	57	-2	101	18.93
	35	0.10	0.9	19.92	127	250	250	63	83	57	-2	101	18.94
	37.5	0.10	0.9	21.33	127	250	250	63	83	57	-2	101	18.94
3	40	0.15	1.4	22.75	127	250	250	63	83	57	-2	99	23.20
	42.5	0.15	1.4	24.45	127	250	250	63	83	57	-2	104	23.20
	45	0.15	1.4	26.23	127	250	250	63	83	57	-2	100	23.20
	47.5	0.15	1.4	27.95	127	250	250	62	83	55	-2	101	23.20
	50	0.15	1.4	29.68	127	250	250	62	83	55	-2	102	23.20
	52.5	0.15	1.4	31.42	127	250	250	62	83	55	-2	101	23.20
	55	0.15	1.4	33.15	127	250	250	62	83	55	-4	100	23.20
	57.5	0.15	1.4	34.87	127	250	250	62	83	55	-4	101	23.20
4	60	0.15	1.4	36.60	127	250	250	62	83	55	-4	100	23.20
	62.5	0.15	1.4	38.31	128	250	250	62	83	55	-4	101	23.22
	65	0.15	1.4	40.04	128	250	250	62	83	55	-4	100	23.22
	67.5	0.15	1.4	41.75	128	250	250	62	83	55	-4	101	23.22
	70	0.15	1.4	43.48	128	250	250	62	83	55	-4	101	23.22
	72.5	0.15	1.4	45.20	128	250	250	62	83	55	-4	100	23.22
	75	0.15	1.4	46.91	128	250	250	62	83	55	-5	101	23.22
_	77.5	0.15	1.4	48.63	128	250	250	62	83	57	-5	101	23.22
5	80	0.15	1.40	50.35	126	250	250	64	85	60	-5	101	23.18
	82.5	0.15	1.40	52.08	126	250	250	64	85	60	-5	100	23.18
	85	0.15	1.40	53.80	126	250	250	64	85	60	-5	99	23.18
	87.5	0.15	1.40	55.51	126	250	250	64	85	60	-5	102	23.18
	90	0.15	1.40	57.26	126	250	250	64	85	60	-5	100	23.18
	92.5	0.15	1.40	58.98	126	250	250	64	85	60	-5	100	23.18
	95	0.15	1.40	60.70	126	250	250	64	85	60	-5	101	23.18
_	97.5	0.15	1.40	62.43	126	250	250	64	85	60	-5	101	23.18
6	100	0.20	1.80	64.16	126	250	250	64	85	60	-5	99	26.77
	102.5	0.20	1.80	66.12	126	250	250	64	86	58	-5	100	26.77
	105	0.20	1.80	68.11	127	250	249	64	86	58	-6	100	26.79
	107.5 110	0.20	1.80	70.09	127	250	250	64	86 86	58	-6	100	26.79
		0.20	1.80	72.07	127 127	250	250	64 64	86 86	58 58	-6 6	101 100	26.79
	112.5	0.20 0.20	1.80 1.80	74.07 76.05	127 127	250 250	250 250	64 64		58 57	-6 6		26.79 26.79
	115 117.5	0.20			127 127		250 250	64 64	86 86	57 57	-6 -6	100 100	
7	117.5	0.20	1.80 1.80	78.04 80.03	127 127	250 250	250 250	64 64	86 86	57 57	-6 -6	100 100	26.79 26.79
,	122.5							64	86				
	122.5	0.20 0.20	1.80 1.80	82.02 84.00	127 125	250 250	250 250	64 64	86 86	57 57	-6 -6	100 99	26.79 26.74
	127.5	0.20	1.80	85.98	125	250	250	64	86	57 57	-6 -6	100	26.74
	130	0.20	1.80	87.98	125	250	250	64	86	57 57	-6 -6	99	26.74
	132.5	0.20	1.80	87.98 89.95	125	250	250	64	87	57 57	-6 -6	101	26.74
	132.5	0.20	1.80	91.96	125	250	250	64	87 87	57 57	-6 -6	100	26.74
	137.5	0.20	1.80	93.96	125	250	250	64	87	57	-6	101	26.74
8	140	0.20	1.80	95.90	125	250	250	64	87	57	-6	100	26.74
U	142.5	0.20	1.80	97.97	125	250	250	64	87	57	-6	100	26.74
	142.5	0.20	1.80	99.96	125	250	250	64	87 87	57 57	-6 -6		26.74
	147.5	0.20		101.95		250		64	87 87	57 57	-6 -6	100 100	26.74
	147.5	0.20	1.80 1.80	101.95	125 125	250 250	250 250	64 64	87 87	57 57	-6 -6	100 101	26.74
	152.5	0.20	1.80	103.94	125	250	250	64	87 87	57 57	-6 -6	101	26.74
	152.5			105.95	125	250	250	64	87 87	57 57		99	26.74
	157.5	0.20	1.80 1.80	107.97		250 250	250 250	64 64	87 87	57 57	-6 -6		26.74
		0.20	1.80		125	250	230	04	0/	3/	-6	101	20.74
	160			111.96									

Operator: HE

Facility: Stericycle
City: Brampton, Ontario
Source: Incinerator
Reference Method: Environment Canada 1/RM/2
Run: Test 2

Operator: HE Entered by: HE Checked by: MOS Date 16-Jun-22

Point	Time	Velocity	Orifice	Meter	Stack	Probe	Box	Imp	Meter	XAD	Vacuum	Percentage	Stack
		Pressure	Pressure	Volume	Temp	Temp	Temp	Temp	Temp	Trap	Pressure	Isokinetic	Velocity
	(min)	(" H ₂ O)	(" H ₂ O)	(ft ³)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(ft/s)
Traverse 2-	West												
1	0	0.10	0.90	111.96	120	250	250	64	86	59	-	101	18.83
	2.5 5	0.10 0.10	0.90 0.90	113.39 114.82	120 120	250 250	250 250	65 65	86 86	59 59	-3 -3	101 104	18.83 18.83
	7.5	0.10	0.90	116.30	120	250	250	65	86	59	-3	99	18.83
	10	0.10	0.90	117.70	120	250	250	65	86	59	-3	99	18.83
	12.5	0.10	0.90	119.10	120	250	250	65	86	59	-3	103	18.83
	15	0.10	0.90	120.56	120	250	250	65	86	59	-3	101	18.83
	17.5	0.10	0.90	121.99	121	250	250	65	84	59	-3	101	18.84
2	20	0.10	0.90	123.41	121	250	250	65	84	59	-3	101	18.84
	22.5	0.10	0.90	124.83	121	250	250	65	84	59	-3	100	18.84
	25	0.10	0.90	126.24	121	250	250	65	84	59	-3	100	18.84
	27.5	0.10	0.90	127.65	121	250	250	65 65	84 79	59 50	-3 -3	103 99	18.84
	30 32.5	0.10 0.10	0.90 0.90	129.10 130.48	128 128	250 250	250 249	64	79 79	59 59	-3 -3	101	18.96 18.96
	35	0.10	0.90	131.88	128	250	250	64	79	59	-3	102	18.96
	37.5	0.10	0.90	133.30	128	250	249	64	79	59	-3	101	18.96
3	40	0.10	0.90	134.70	127	250	248	64	79	58	-4	101	18.94
	42.5	0.10	0.90	136.10	129	250	250	64	79	58	-4	102	18.97
	45	0.10	0.90	137.52	129	250	250	64	79	58	-4	102	18.97
	47.5	0.10	0.90	138.93	128	250	250	64	79	58	-4	101	18.96
	50	0.10	0.90	140.33	128	250	250	64	79	58	-4	101	18.96
	52.5	0.10	0.90	141.73	128	250	250	64	79	58	-4	102	18.96
	55 57.5	0.10	0.90	143.15	127	250	249	64	79 70	58	-4	100	18.94
4	57.5 60	0.10 0.15	0.90 1.35	144.54 145.94	127 127	250 250	250 250	64 64	79 79	58 58	-4 -4	101 99	18.94 23.20
4	62.5	0.15	1.35	147.63	127	250	250	64	79	58	-4	103	23.20
	65	0.15	1.35	149.38	127	250	250	64	79	58	-4	98	23.20
	67.5	0.15	1.35	151.05	127	250	250	64	79	58	-4	102	23.20
	70	0.15	1.35	152.78	127	250	250	64	79	58	-4	100	23.20
	72.5	0.15	1.35	154.48	127	250	250	64	79	58	-4	99	23.20
	75	0.15	1.35	156.16	127	250	250	64	79	58	-4	99	23.20
_	77.5	0.15	1.35	157.84	127	250	250	64	79	58	-4	100	23.20
5	80	0.30	2.70	159.54	127	249	251	62	82	56	-8	99	32.81
	82.5 85	0.30 0.30	2.70 2.70	161.92 164.35	127 127	250 250	250 250	62 62	82 82	56 56	-8 -8	101 100	32.81 32.81
	87.5	0.30	2.70	166.77	129	250	250	62	82	56	-8	100	32.86
	90	0.30	2.70	169.18	129	250	250	62	82	56	-8	99	32.86
	92.5	0.30	2.70	171.57	129	250	250	62	82	56	-8	101	32.86
	95	0.30	2.70	173.99	129	250	250	62	82	56	-8	100	32.86
	97.5	0.30	2.70	176.40	129	250	250	62	82	56	-8	101	32.86
6	100	0.30	2.70	178.82	129	250	250	63	82	56	-8	102	32.86
	102.5	0.30	2.70	181.27	129	250	250	63	82	57	-8	100	32.86
	105	0.30	2.70	183.67	129	250	250	63	82	57	-8	100	32.86
	107.5 110	0.30 0.30	2.70 2.70	186.07 188.47	129 129	250 250	250 250	63 62	82 84	57 57	-8 -8	100 99	32.86 32.86
	112.5	0.30	2.70	190.87	129	250	250	62	84 84	57 57	-8	99	32.86
	115	0.30	2.70	193.25	129	250	252	62	84	57	-8	99	32.86
	117.5	0.30	2.70	195.65	125	250	250	62	84	57	-8	99	32.75
7	120	0.30	2.70	198.05	125	250	251	62	84	57	-8	98	32.75
	122.5	0.30	2.70	200.43	125	250	250	62	84	57	-8	98	32.75
	125	0.30	2.70	202.80	125	250	250	62	84	57	-8	99	32.75
	127.5	0.30	2.70	205.21	123	250	250	62	84	57	-8	100	32.70
	130	0.30	2.70	207.63	123	250	250	61 61	84	57 57	-8	101	32.70
	132.5 135	0.30 0.30	2.70 2.70	210.08 212.53	123 124	250 250	250 250	61 61	84 84	57 57	-8 -8	101 100	32.70 32.72
	137.5	0.30	2.70	212.53	124	250	250	61	84 84	57 57	-8	100	32.72
8	140	0.30	2.70	217.40	124	250	250	61	84	57	-8	102	32.72
	142.5	0.30	2.70	219.87	124	250	250	61	84	57	-8	100	32.72
	145	0.30	2.70	222.29	124	250	250	61	84	57	-8	99	32.72
	147.5	0.30	2.70	224.70	124	250	250	61	84	57	-8	99	32.72
	150	0.30	2.70	227.11	124	250	250	61	84	57	-8	100	32.72
	152.5	0.30	2.70	229.54	124	250	250	61	84	57	-8	99	32.72
	155	0.30	2.70	231.95	124	250	250	61	85	57	-8	101	32.72
	157.5	0.30	2.70	234.40	124	250	250	61	85	57	-8	101	32.72
Post Tost Las	160	<0.01 @ 10" I	Ja	236.85									
Post-Test Lea	Average	<0.01 @ 10" F	1.64	236.71	126	250	250	63	84	58	-	100	24.92
	/ weruge	0.10	1.04	250.71	120	230	230	33	U-T	50		100	27.72

	City	: Brampton, O	ntario			Entered by:	HE						
Refere		: Incinerator : Environment	Canada 1/RN	1/2		Checked by: Date	MOS 17-Jun-22						
Point	Run: Time	Test 3 Velocity	Orifice	Meter	Stack	Probe	Box	lmp	Meter	XAD	Vacuum	Percentage	Stack
	(min)	Pressure (" H ₂ O)	Pressure (" H ₂ O)	Volume (ft ³)	Temp (°F)	Temp (°F)	Temp (°F)	Temp (°F)	Temp (°F)	Trap (°F)	Pressure (" Hg)	Isokinetic (%)	Velocity (ft/sec)
Traverse 1-N		(1.24)	(1.24)	(- ,		. ,	. ,				(1.6/	(11)	(1000)
	k Check = <0.0	_											
1	0	0.10	0.90	0.07	119	250	251	62	80	63	-2	99	19.04
	2.5	0.10	0.90	1.47	119	250	248	62	78	63	-2	100	19.04
	5	0.10	0.90	2.89	119	250	250	62	78 70	63	-2	101	19.04
	7.5 10	0.10 0.10	0.90 0.90	4.32 5.75	120 120	250 250	251 248	62 62	78 78	63 63	-2 -2	101 97	19.05 19.05
	12.5	0.10	0.90	7.12	120	250	250	62	78 78	63	-2 -2	101	19.05
	15	0.10	0.90	8.55	120	250	250	62	78	63	-2	99	19.05
	17.5	0.10	0.90	9.95	120	250	250	62	77	63	-2	101	19.05
2	20	0.10	0.90	11.37	119	250	250	62	77	62	-2	101	19.04
	22.5	0.10	0.90	12.80	119	250	249	61	77	61	-2	99	19.04
	25	0.10	0.90	14.20	119	250	251	61	77	61	-2	101	19.04
	27.5	0.10	0.90	15.63	119	250	250	61	77	61	-2	101	19.04
	30	0.10	0.90	17.06	119	250	250	60	77	58	-2	101	19.04
	32.5	0.10	0.90	18.49	120	250	250	60	77	58	-2	101	19.05
	35	0.10	0.90	19.91	120	250	250	60	77 77	58	-2	101	19.05
2	37.5	0.10	0.90	21.34	120	250	250	60	77 77	58	-2	102 99	19.05
3	40 42.5	0.10 0.10	0.90 0.90	22.78 24.18	120 121	250 250	252 249	60 60	77 77	58 58	-2 -2	99 101	19.05 19.07
	45	0.10	0.90	25.61	120	250	249	60	77	58	-2 -2	100	19.05
	47.5	0.10	0.90	27.02	120	250	249	59	77	58	-2	100	19.05
	50	0.10	0.90	28.43	120	250	249	59	77	58	-2	101	19.05
	52.5	0.10	0.90	29.85	120	250	251	59	78	58	-3	99	19.05
	55	0.10	0.90	31.25	120	250	250	59	78	58	-3	99	19.05
	57.5	0.10	0.90	32.65	120	250	250	59	78	58	-3	99	19.05
4	60	0.10	0.90	34.05	119	250	250	59	78	58	-3	101	19.04
	62.5	0.10	0.90	35.48	119	250	250	59	78	58	-3	99	19.04
	65	0.10	0.90	36.88	119	250	250	59	78	58	-3	100	19.04
	67.5	0.10	0.90	38.30	119	250	250	59	78	58	-3	100	19.04
	70 72.5	0.10 0.10	0.90 0.90	39.71 41.13	119 119	250 250	249 247	59 59	78 78	58 58	-3 -3	100 99	19.04 19.04
	72.5 75	0.10	0.90	42.53	119	250	247	59 59	78 78	58 58	-3 -3	99	19.04
	77.5	0.10	0.90	43.91	119	250	249	59	78	58	-3	100	19.04
5	80	0.10	0.90	45.33	119	251	252	61	79	59	-3	102	19.04
	82.5	0.10	0.90	46.77	119	249	247	61	79	59	-3	100	19.04
	85	0.10	0.90	48.19	119	250	250	61	79	59	-3	99	19.04
	87.5	0.10	0.90	49.60	119	250	250	60	79	59	-3	100	19.04
	90	0.10	0.90	51.02	121	250	250	60	79	59	-3	100	19.07
	92.5	0.10	0.90	52.44	121	250	250	60	79	59	-3	100	19.07
	95	0.10	0.90	53.86	121	250	250	60	79	59	-3	100	19.07
	97.5	0.10	0.90	55.28	123	250	250	60	79 70	59	-3	99	19.10
6	100 102.5	0.40 0.40	3.65 3.65	56.68 59.49	124	250 250	250 250	60 60	79 80	59 59	-8 -8	100 100	38.24 38.24
	102.5	0.40	3.65	62.30	124 125	250	250	60	80	60	-o -8	100	38.27
	107.5	0.40	3.65	65.10	127	250	250	60	80	60	-8	100	38.34
	110	0.40	3.65	67.91	127	250	250	60	80	60	-9	101	38.34
	112.5	0.40	3.65	70.73	124	250	250	60	80	60	-9	100	38.24
	115	0.40	3.65	73.53	124	250	250	60	80	60	-9	100	38.24
	117.5	0.40	3.65	76.35	124	250	250	60	80	60	-7	100	38.24
7	120	0.30	2.70	79.17	126	250	250	60	81	60	-7	100	33.17
	122.5	0.30	2.70	81.60	126	250	250	60	81	60	-7	101	33.17
	125	0.30	2.70	84.06	126	250	250	60	81	60	-7	100	33.17
	127.5	0.30	2.70	86.50	125	250	250	60	81	60	-7	101	33.14
	130	0.30	2.70	88.97	125	250	250	60	81	60 61	-7 7	100	33.14
	132.5 135	0.30 0.30	2.70 2.70	91.42 93.86	125 125	250 250	250 250	60 60	81 81	61 61	-7 -7	100 100	33.14 33.14
	137.5	0.30	2.70	96.30	125 125	250	250	60	81	61	-7 -7	100	33.14
8	140	0.30	2.70	98.73	125	250	250	60	81	61	-7 -7	101	33.14
-	142.5	0.30	2.70	101.19	125	250	250	60	82	60	-7	101	33.14
	145	0.30	2.70	103.65	125	250	250	60	82	60	-7	101	33.14
	147.5	0.30	2.70	106.11	127	250	250	60	82	60	-7	100	33.20
	150	0.30	2.70	108.56	127	250	250	60	82	60	-7	101	33.20
	152.5	0.30	2.70	111.02	123	250	250	60	82	60	-7	100	33.09
	155	0.30	2.70	113.48	123	250	250	61	82	60	-7	101	33.09
	157.5	0.30	2.70	115.95	120	250	250	61	82	60	-7	100	33.00
	160			118.41									I

Operator: HE

Facility: Stericycle
 City: Brampton, Ontario
 Source: Incinerator
Reference Method: Environment Canada 1/RM/2
 Run: Test 3

Operator: HE Entered by: HE Checked by: MOS Date 17-Jun-22

Point	Time	Velocity	Orifice	Meter	Stack	Probe	Box	Imp	Meter	XAD	Vacuum	Percentage	Stack
Folit	Time	Pressure	Pressure	Volume	Temp	Temp	Temp	Temp	Temp	Trap	Pressure	Isokinetic	Velocity
	,						-	-					
	(min)	(" H ₂ O)	(" H ₂ O)	(ft ³)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(" Hg)	(%)	(ft/sec)
Traverse 2-\	West												
1	0	0.20	1.80	118.46	126	250	250	62	80	60	-6	100	27.09
	2.5	0.20	1.80	120.45	126	250	250	62	80	60	-6	99	27.09
	5	0.20	1.80	122.42	126	250	250	62	80	60	-6	101	27.09
	7.5	0.20	1.80	124.43	126	250	250	62	80	60	-6	101	27.09
	10	0.20	1.80	126.45	125	250	251	61	80	60	-6	100	27.06
	12.5	0.20	1.80	128.45		250	250	61	80	60	-6	100	27.06
					125								
	15	0.20	1.80	130.44	125	250	251	61	80	60	-6	101	27.06
	17.5	0.20	1.80	132.45	125	250	250	61	80	60	-6	101	27.06
2	20	0.15	1.40	134.47	125	250	250	61	80	60	-6	102	23.44
	22.5	0.15	1.40	136.24	125	250	250	61	80	60	-6	101	23.44
	25	0.15	1.40	137.98	125	250	250	61	80	60	-6	100	23.44
	27.5	0.15	1.40	139.70	125	250	250	61	80	60	-6	100	23.44
	30	0.15	1.40	141.42	125	250	250	60	80	60	-6	102	23.44
	32.5	0.15	1.40	143.19	125	250	249	60	80	60	-6	101	23.44
	35	0.15	1.40	144.93	125	250	249	60	80	60	-6	101	23.44
	37.5	0.15	1.40	146.68	125	250	252	60	81	60	-6	101	23.44
3	40	0.10	0.90	148.42	122	249	249	60	81	60	-4	101	19.09
	42.5	0.10	0.90	149.85	123	251	250	60	81	60	-4	101	19.10
	45	0.10	0.90	151.28	123	251	250	60	81	60	-4	101	19.10
	47.5	0.10	0.90	152.71	123	251	250	61	81	60	-4	102	19.10
	50	0.10	0.90	154.15	123	250	250	61	81	60	-4	102	19.10
	52.5	0.10	0.90	155.59	123	250	250	61	81	60	-4	101	19.10
	55	0.10	0.90	157.02	123	250	250	61	81	60	-4	102	19.10
	57.5	0.10	0.90	158.46	123	250	250	61	81	60	-4	101	19.10
4	60	0.15	1.40	159.89	123	250	250	61	81	60	-4	99	23.40
	62.5	0.15	1.40	161.60	123	250	250	61	81	60	-4	102	23.40
	65	0.15	1.40	163.36	123	250	250	61	81	60	-4	99	23.40
	67.5	0.15	1.40	165.08	123	250	250	61	81	60	-4	104	23.40
	70	0.15	1.40	166.88	123	250	250	61	81	60	-4	98	23.40
	72.5	0.15	1.40	168.58	123	250	250	61	81	60	-4	99	23.40
	75	0.15	1.40	170.30		250	250	61	81	60		101	23.40
					123						-4		
_	77.5	0.15	1.40	172.05	123	250	250	61	81	60	-4	101	23.40
5	80	0.25	2.30	173.80	125	250	250	63	80	59	-6	102	30.26
	82.5	0.25	2.30	176.06	125	250	250	63	80	59	-6	101	30.26
	85	0.25	2.30	178.30	125	250	250	63	80	59	-6	102	30.26
	87.5	0.25	2.30	180.58	125	250	250	63	80	59	-6	101	30.26
	90	0.25	2.30	182.82	125	250	250	63	80	59	-6	100	30.26
	92.5	0.25	2.30	185.05	125	250	250	63	80	59	-6	102	30.26
	95	0.25	2.30	187.31	125	250	250	61	80	59	-6	102	30.26
	97.5					250	250	61		59			
		0.25	2.30	189.57	125				80		-6	102	30.26
6	100	0.25	2.30	191.83	125	250	250	61	80	59	-6	102	30.26
	102.5	0.25	2.30	194.09	125	250	250	61	80	59	-6	102	30.26
	105	0.25	2.30	196.35	125	250	250	61	80	59	-6	101	30.26
	107.5	0.25	2.30	198.60	125	250	250	61	80	59	-6	102	30.26
	110	0.25	2.30	200.86	125	250	250	61	80	59	-6	102	30.26
	112.5	0.25	2.30	203.13	125	250	250	62	82	59	-6	101	30.26
	115	0.25	2.30	205.39	124	250	250	62	82	59	-6	101	30.23
	117.5	0.25	2.30	207.65	124	250	250	62	82	59	-6	101	30.23
7	120	0.23	0.90	209.91	123	250	250	62	82	59	-6	103	19.10
'													
	122.5	0.10	0.90	211.37	123	250	251	62	82	60	-6	99	19.10
	125	0.10	0.90	212.78	123	250	248	62	82	60	-5	108	19.10
	127.5	0.10	0.90	214.31	123	250	249	62	82	60	-5	94	19.10
	130	0.10	0.90	215.64	123	250	250	62	82	60	-5	99	19.10
	132.5	0.10	0.90	217.05	124	250	251	62	82	60	-5	99	19.12
	135	0.10	0.90	218.46	124	250	249	62	82	60	-4	100	19.12
	137.5	0.10	0.90	219.88	124	250	250	62	82	60	-4	101	19.12
8	140	0.10	0.90	221.31	124	250	250	62	82	60	-4	101	19.12
"	142.5		0.90	221.31					82			101	19.12
		0.10			124	250	250	62		60	-4		
	145	0.10	0.90	224.18	124	250	250	62	82	60	-4	101	19.12
	147.5	0.10	0.90	225.62	122	250	250	62	82	60	-4	101	19.09
	150	0.10	0.90	227.05	123	250	249	62	82	60	-4	99	19.10
	152.5	0.10	0.90	228.46	123	250	249	62	82	60	-4	99	19.10
	155	0.10	0.90	229.87	123	250	249	62	82	60	-4	101	19.10
	157.5	0.10	0.90	231.30	123	250	249	62	82	60	-4	101	19.10
	160	0.10	0.50	231.30	123	230	240	52	02	50		101	15.10
Doct toot I		02 @0" ! !~		232./3									
rost-test Lea	ak Check = < 0		4.50	222.54	100	250	252	C1	00			101	24.47
		0.18	1.59	232.61	123	250	250	61	80	60	-	101	24.47

Hydrogen Halides & Halides Sampling Incinerator

	BLANK		Test #1			Test #2			Test #3			Average	
Sample ID :			M26- T1			M26- T2			M26- T3				
Sampling Date :			June 15, 2022			June 16, 2022	!		June 17, 2022				
Sampling Times :			9:20 - 10:20			9:00 - 10:00			8:40 - 9:40				
Sample Volume ^[1] :	Rm³		0.061			0.060			0.059			0.060	
Stack Flow Rate ^{[1], [2]}	Rm³/s		1.85			1.85			1.85			1.85	
				Emission			Emission			Emission			Emission
		Mass	Conc	Rate	Mass	Conc	Rate	Mass	Conc	Rate	Conc	Conc @ 11% O ₂	Rate
		(µg)	(mg/m ³)	(mg/s)	(µg)	(mg/m ³)	(mg/s)	(µg)	(mg/m ³)	(mg/s)	(mg/m ³)	(mg/m³)	(mg/s)
Ammonia (NH ₃)	<9.3	8.97	0.148	0.273	41.6	0.698	1.29	39.7	0.672	1.24	0.506	0.578	0.934
Hydrochloric Acid	74	270	4.45	8.21	240	4.03	7.44	360	6.10	11.3	4.86	5.55	8.97
Hydrofluoric Acid	<30	< 30.0	< 0.494	< 0.912	< 30.0	< 0.504	< 0.929	79.0	1.339	2.47	< 0.779	< 0.890	< 1.44

Notes: [1] Sample volume and volumetric flow rate based on dry referenced conditions (101.3kPa, 25°C)

[2] Average of the measured volumetric flow rates from isokinetic testing

Values following < indicate that the laboratory results were below the reportable detection limit. This detection limit was used to calculate the concentration and emission rate.

Hydrogen Halides & Halides Sampling (Method 26)

Facility:	Stericycle	Operator:	MOS			
City:	Brampton, Ontario	Entered by:	MOS			
Source:	Incinerator	Checked by:	00			
Run:	Test #1	Test Date:	June 15, 2022			
Method:	Method 26	PBar:	30.0			
		DGM Y:	1.004			
Time	Orifice	Meter	Meter	Vacuum	Condenser	Sampling
	Press.	Volume	Temp		Temp	Rate
(min)	("H ₂ O)	(L)	(°C)	(in Hg)	(°C)	(L/min)
9:20 - 10:20			Pre	e-test Leak Check:	√	
0	2.0	0.00	25	-2	7	-
5	2.0	5.31	25	-2	7	1.1
10	2.0	9.89	25	-2	7	0.9
15	2.0	14.92	25	-2	7	1.0
20	2.0	20.11	25	-2	7	1.0
25	2.0	25.05	25	-2	7	1.0
30	2.0	30.06	25	-2	7	1.0
35	2.0	35.11	25	-2	7	1.0
40	2.0	40.13	25	-2	7	1.0
45	2.0	45.13	25	-2	7	1.0
50	2.0	50.09	25	-2	7	1.0
55	2.0	55.04	25	-2	7	1.0
60	2.0	60.05	25	-2	7	1.0
			Pos	t-test Leak Check:	\checkmark	
Average	2.0		25	-2.0		1.0
Total Volume	Actual (m³)	0.060				
Total Volume	Reference (Rm³)	0.061				

Hydrogen Halides & Halides Sampling (Method 26)

Facility: City: Source: Run: Method:	Stericycle Brampton, Ontario Incinerator Test #2 Method 26	Operator: Entered by: Checked by: Test Date: PBar: DGM Y:	MOS MOS OO June 16, 2022 29.85 1.004			
Time	Orifice	Meter	Meter	Vacuum	Condensor	Sampling
	Press.	Volume	Temp		Temp	Rate
(min)	("H ₂ O)	(L)	(°C)	(in Hg)	(°C)	(L/min)
9:00 - 10:00		*	Pre-te	st Leak Check:	√	
0	2.0	0.00	30	-1	9	-
5	2.0	5.09	30	-1	9	1.0
10	2.0	10.11	30	-1	9	1.0
15	2.0	15.20	30	-1	9	1.0
20	2.0	19.99	30	-1	9	1.0
25	2.0	24.89	30	-1	9	1.0
30	2.0	30.08	30	-1	9	1.0
35	2.0	35.11	30	-1	9	1.0
40	2.0	40.12	30	-2	9	1.0
45	2.0	45.20	30	-2	9	1.0
50	2.0	50.13	30	-2	9	1.0
55	2.0	55.13	30	-2	9	1.0
60	2.0	60.13	30	-2	9	1.0
			Post-te	st Leak Check:	. ✓	
Average	2.0		30.0	-1.4		1.0
Total Volume	Actual (m³)	0.060				
Total Volume	Reference (Rm³)	0.060				

Hydrogen Halides & Halides Sampling (Method 26)

Facility:	Stericycle	Operator:	MOS			
City:	Brampton, Ontario	Entered by:	MOS			
Source:	Incinerator	Checked by:	00			
Run:	Test #3	Test Date:	June 17, 2022			
Method:	Method 26	PBar:	29.1			
		DGM Y:	1.004			
Time	Orifice	Meter	Meter	Vacuum	Condensor	Sampling
	Press.	Volume	Temp		Temp	Rate
(min)	("H ₂ O)	(L)	(°C)	(in Hg)	(°C)	(L/min)
8:40 - 9:40	·	-	Pre-te	st Leak Check:	√	
0	2.5	0.00	25	-3	9	-
5	2.5	5.13	25	-3	9	1.0
10	2.5	10.18	25	-3	9	1.0
15	2.5	15.19	25	-3	8	1.0
20	2.5	20.04	25	-3	8	1.0
25	2.5	24.98	25	-3	9	1.0
30	2.5	30.09	25	-3	9	1.0
35	2.5	35.00	25	-3	9	1.0
40	2.5	40.08	25	-3	10	1.0
45	2.5	44.91	25	-3	10	1.0
50	2.5	49.93	25	-3	10	1.0
55	2.5	55.18	25	-3	10	1.1
60	2.5	60.096	25	-3	10	1.0
			Post-te	st Leak Check:	✓	
Average	2.5		25	-3		1.0
Total Volume A	Actual (m³)	0.060				
Total Volume	Reference (Rm ³)	0.059				

APPENDIX E

Volatile Organic Compound Sampling

Incinerator

incinerator												
Units		Test #1			Test #2			Test #3			Average	
Sampling Date : -		Jun 15, 22			Jun 16, 22			Jun 17, 22				
Sampling Times : -		10:30 - 11:30			10:05 - 11:05			9:47 - 10:47				
Sample Volume ^[1] : Rm ³		0.020			0.019			0.019			0.020	
Stack Flow Rate ^{[1], [2]} Rm ³ /s		1.85			1.85			1.85			1.85	
	_										Conc.	
	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Lab Data	Concentration	Emission Rate	Concentration		Emission Rate
		2			2			2		2	11% O ₂ ^[3]	
	(µg)	(µg/m³)	(mg/s)	(µg)	(µg/m³)	(mg/s)	(µg)	(µg/m³)	(mg/s)	(µg/m³)	(µg/m³)	(mg/s)
Dichlorodifluoromethane (FREON 12)	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Vinyl Chloride	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Bromomethane	0.185	9.24	0.0171	0.126	6.51	0.0120	0.0980	5.08	0.00938	6.94	7.93	0.0128
Trichlorofluoromethane (FREON 11)	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Acetone (2-Propanone)	0.112	5.59	0.0103	< 0.0500	< 2.58	< 0.00477	0.0620	3.21	0.00593	< 3.80	< 4.34	< 0.00701
Methylene Chloride(Dichloromethane)	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
1,1-Dichloroethane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
trans-1,2-Dichloroethylene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
cis-1,2-Dichloroethylene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Chloroform	< 0.0500	< 2.50	< 0.00461	0.0510	2.63	0.00486	< 0.0500	< 2.59	< 0.00478	< 2.57	< 2.94	< 0.00475
1,2-Dichloroethane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Methyl Ethyl Ketone (2-Butanone)	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
1,1,1-Trichloroethane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Carbon Tetrachloride	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Benzene	0.0570	2.85	0.00525	0.102	5.27	0.00972	< 0.0500	< 2.59	< 0.00478	< 3.57	< 4.08	< 0.00659
1,1,2-Trichloroethane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
1,2-Dichloropropane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Trichloroethylene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Bromodichloromethane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Dibromochloromethane	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Toluene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	3.30	171	0.316	< 58.7	< 67.1	< 0.108
Ethylene Dibromide	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Tetrachloroethylene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Ethylbenzene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
m / p-Xylene	< 0.100	< 4.99	< 0.00922	< 0.100	< 5.17	< 0.00953	< 0.100	< 5.18	< 0.00957	< 5.12	< 5.84	< 0.00944
Styrene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
o-Xylene	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472
Bromoform	< 0.0500	< 2.50	< 0.00461	< 0.0500	< 2.58	< 0.00477	< 0.0500	< 2.59	< 0.00478	< 2.56	< 2.92	< 0.00472

Notes:

'<' indicates that the laboratory results were less than the Reortable Detection Limit (RDL). This RDL was used to calculate the concentration and emission rate.

^[1] Sample volume, volumetric flow rate, and concentration based on dry referenced conditions (101.3 kPa, 25 °C, and Actual Oxygen)

^[2] Average of the measured volumetric flow rates from isokinetic testing

^[3] Correct O₂ to 11% equation a*((20.9-11)/(20.9-b)) a=concentration @ original O₂ b=original O₂%

Volatile Organic Compound Sampling

Incinerator

Facility:	Stericycle	Operator:	MOS
City:	Brampton, Ontario	Entered by:	MOS
Source:	Incinerator	Checked by:	00
Run:	Test #1	Test Date:	June 15, 2022
Method:	VOST	PBar:	29.96
		DGM Y:	1.004

Time	Orifice	Meter	Meter	Vacuum	Probe	Condenser	Condenser	Sampling
	Press.	Volume	Temp		Temp	Temp	Temp	Rate
(min)	("H ₂ O)	(L)	(°F)	(in Hg)	(°F)	(°C)	(°F)	(L/min)
Pair ID =								
10:30 - 11:30				Pre-test Leak Check:		Good		
0	0.6	0.00	77	-2.0	N/A	6	43	-
5	0.6	1.66	77	-2.0	N/A	6	43	0.332
10	0.6	3.30	77	-2.0	N/A	6	43	0.328
15	0.6	5.00	77	-2.0	N/A	6	43	0.340
20	0.6	6.54	77	-2.0	N/A	6	43	0.308
25	0.6	8.19	77	-2.0	N/A	6	43	0.330
30	0.6	10.02	77	-2.0	N/A	6	43	0.366
35	0.6	11.55	77	-2.0	N/A	6	43	0.306
40	0.6	13.23	77	-2.0	N/A	6	43	0.336
45	0.6	14.85	77	-2.0	N/A	6	43	0.324
50	0.6	16.52	77	-2.0	N/A	6	43	0.334
55	0.6	18.19	77	-2.0	N/A	6	43	0.334
60	0.6	19.886	77	-2.0	N/A	6	43	0.339
			F	Post-test Leak Check:		Good		
Average	0.6	-	77	-2.0		-		0.331
Total Volume Actua	al (m³)	0.020						
Total Volume Ref	erence (Rm³)	0.020						

Volatile Organic Compound Sampling

Incinerator

Facility:	Stericycle	Operator:	MOS
City:	Brampton, Ontario	Entered by:	MOS
Source:	Incinerator	Checked by:	00
Run:	Test #2	Test Date:	June 16, 2022
Method:	VOST	PBar:	29.85
		DGM Y:	1.004

Time	Orifice	Meter	Meter	Vacuum	Condensor	Condensor	Sampling
	Press.	Volume	Temp		Temp	Temp	Rate
(min)	("H ₂ O)	(L)	(°F)	(in Hg)	(°C)	(°F)	(L/min)
Pair ID =							
10:05 - 11:05			Pr	e-test Leak Check	: Good		
0	0.6	0.00	86	-3.0	13	55	-
5	0.6	1.56	86	-3.0	13	55	0.312
10	0.6	3.24	86	-3.0	13	55	0.336
15	0.6	4.99	86	-3.0	13	55	0.350
20	0.6	6.50	86	-3.0	13	55	0.302
25	0.6	8.23	86	-3.0	13	55	0.346
30	0.6	10.05	86	-3.0	13	55	0.364
35	0.6	11.56	86	-3.0	13	55	0.302
40	0.6	13.25	86	-3.0	13	55	0.338
45	0.6	14.90	86	-3.0	13	55	0.330
50	0.6	16.50	86	-3.0	13	55	0.320
55	0.6	18.18	86	-3.0	13	55	0.336
60	0.6	19.62	86	-3.0	13	55	0.288
			Pos	t-test Leak Check	: Good		
Average	0.6	-	86	-3.0	-		0.327
Total Volume Actua	al (m³)	0.020					
Total Volume Ref	erence (Rm³)	0.019					

Volatile Organic Compound Sampling

Incinerator

Facility:	Stericycle	Operator:	00
City:	Brampton, Ontario	Entered by:	MOS
Source:	Incinerator	Checked by:	00
Run:	Test #3	Test Date:	June 17, 2022
Method:	VOST	PBar:	29.06
		DGM Y:	1.004

Time	Orifice	Meter	Meter	Vacuum	Condensor	Condensor	Sampling
	Press.	Volume	Temp		Temp	Temp	Rate
(min)	("H ₂ O)	(L)	(°F)	(in Hg)	(°C)	(°F)	(L/min)
Pair ID =							
9:47 - 10:47				Pre-test Leak Check:	Good		
0	0.6	0.00	77	-2.0	12	54	-
5	0.6	1.59	77	-2.0	12	54	0.318
10	0.6	3.22	77	-2.0	12	54	0.326
15	0.6	5.04	77	-2.0	12	54	0.364
20	0.6	6.55	77	-2.0	12	54	0.302
25	0.6	8.29	77	-2.0	13	55	0.348
30	0.6	10.00	77	-2.0	13	55	0.342
35	0.6	11.60	77	-2.0	13	55	0.320
40	0.6	13.18	77	-2.0	13	55	0.316
45	0.6	14.90	77	-2.0	13	55	0.344
50	0.6	16.60	77	-2.0	14	57	0.340
55	0.6	18.21	77	-2.0	14	57	0.322
60	0.6	19.75	77	-2.0	14	57	0.308
			Р	ost-test Leak Check:	Good		
Average	0.6	-	77	-2.0	-		0.329
Total Volume Actu	al (m³)	0.020					
Total Volume Ref	erence (Rm³)	0.019					

APPENDIX F

CARB 430 - Acrolein Incinerator

Sample ID : Sampling Date : Sampling Times : Sample Volume ^[1] : Stack Flow Rate ^{[1], [2]}	Rm³		Test #1 Carb 430- T June 15, 202 11:43 - 13:43 0.0402 1.85	2		Test #2 Carb 430- T2 June 16, 202 14:06 - 16:06 0.0401 1.85	2		Test #3 Carb 430- T3 June 17, 2022 11:00 - 13:00 0.0390 1.85	:		Average - - 0.0398 1.85	
				Emission			Emission			Emission		Conc @ 11%	Emission
		Mass	Conc	Rate	Mass	Conc	Rate	Mass	Conc	Rate	Conc	O ₂	Rate
Parameter		(µg)	(mg/m ³)	(mg/s)	(µg)	(mg/m ³)	(mg/s)	(µg)	(mg/m ³)	(mg/s)	(mg/m ³)	(mg/m ³)	(mg/s)
Formaldehyde (Methanal)	47	27.0	0.671	1.24	55.0	1.37	2.53	32.0	0.820	1.51	0.954	1.09	1.76
Acetaldehyde (Ethanal)	ND	< 2.00	< 0.0497	< 0.0917	3.00	0.0749	0.138	< 2.00	< 0.0512	< 0.0946	< 0.0586	< 0.0669	< 0.108
Acrolein	ND	< 2.00	< 0.0497	< 0.0917	< 2.00	< 0.0499	< 0.0921	< 2.00	< 0.0512	< 0.0946	< 0.0503	< 0.0574	< 0.0928

Notes:

- [1] Sample volume and volumetric flow rate based on dry referenced conditions (101.3kPa, 25°C)
- [2] Average of the measured volumetric flow rates from isokinetic testing

Values following < indicate that the laboratory results were below the reportable detection limit. This detection limit was used to calculate the concentration and emission rate.

CARB 430 - Acrolein

Stericycle Facility: **Operator:** MOS City: **Entered by:** MOS Brampton, Ontario Checked by: 00 Source: Incinerator Run: **Test Date:** 6/15/2022 Test #1

Method: **CARB 430 Pbar:** 29.96

				Y: 1.004		
	Orifice	Meter	Meter	Vacuum	Condensor	Sampling
Time	Pressure	Volume	Temp		Temp	Rate
(min)	("H ₂ O)	(L)	(°F)	(in Hg)	(°F)	(L/min)
11:43 - 13:43				Pre-test Leak Check:	good	
0	0.7	0.0	77	0	55	=
5	0.7	1.66	77	0	55	0.33
10	0.7	3.25	77	0	55	0.32
15	0.7	5.00	77	0	55	0.35
20	0.7	6.67	77	0	55	0.33
25	0.7	8.25	77	0	55	0.32
30	0.7	9.92	77	0	55	0.33
35	0.7	11.56	77	0	55	0.33
40	0.7	13.26	77	0	55	0.34
45	0.7	14.91	77	0	55	0.33
50	0.7	16.51	77	0	55	0.32
55	0.7	18.17	79	0	56	0.33
60	0.7	19.82	79	0	56	0.33
65	0.7	21.50	79	0	56	0.34
70	0.7	23.15	79	0	56	0.33
75	0.7	24.80	79	0	56	0.33
80	0.7	26.41	79	0	56	0.32
85	0.7	28.05	79	0	56	0.33
90	0.7	29.70	79	0	56	0.33
95	0.7	31.35	79	0	56	0.33
100	0.7	33.12	79	0	56	0.35
105	0.7	34.72	81	0	57	0.32
110	0.7	36.37	81	0	57	0.33
115	0.7	37.99	81	0	57	0.32
120	0.7	40.04	81	0	57	0.41
				Post-test Leak Check:	good	
Average	0.7		78	0.0	-	0.33
Total Volume Ac	tual (m³)	0.040				
Total Volume Re	eference (Rm³)	0.040				

CARB 430 - Acrolein

Facility:StericycleOperator:MOSCity:Brampton, OntarioEntered by:MOSSource:IncineratorChecked by:OORun:Test #2Test Date:6/16/2022

Method: CARB 430 **Pbar:** 29.85 **Y:** 1.004

				Y: 1.004		
	Orifice	Meter	Meter	Vacuum	Condensor	Sampling
Time	Pressure	Volume	Temp		Temp	Rate
(min)	("H ₂ O)	(L)	(°F)	(in Hg)	(°F)	(L/min)
14:06 - 16:06				Pre-test Leak Check:	good	
0	0.7	0.00	86	0	60	-
5	0.7	1.59	86	0	60	0.32
10	0.7	3.25	86	0	60	0.33
15	0.7	4.96	86	0	60	0.34
20	0.7	6.67	86	0	60	0.34
25	0.7	8.21	86	0	60	0.31
30	0.7	9.85	86	0	60	0.33
35	0.7	11.55	86	0	60	0.34
40	0.7	13.21	86	0	60	0.33
45	0.7	14.82	86	0	60	0.32
50	0.7	16.40	86	0	60	0.32
55	0.7	18.11	86	0	60	0.34
60	0.7	19.79	86	0	60	0.34
65	0.7	21.46	84	0	61	0.33
70	0.7	23.15	84	0	61	0.34
75	0.7	24.78	84	0	61	0.33
80	0.7	26.43	84	0	61	0.33
85	0.7	28.03	84	0	61	0.32
90	0.7	29.77	84	0	61	0.35
95	0.7	31.35	84	0	61	0.32
100	0.7	33.10	84	0	61	0.35
105	0.7	34.65	84	0	61	0.31
110	0.7	36.32	86	0	62	0.33
115	0.7	37.95	86	0	62	0.33
120	0.7	40.57	86	0	62	0.52
				Post-test Leak Check:	good	
Average	0.7		85	0.0		0.34
Total Volume Ac	tual (m³)	0.041				
Total Volume Re	eference (Rm³)	0.040				

CARB 430 - Acrolein

Facility:StericycleOperator:MOSCity:Brampton, OntarioEntered by:MOSSource:IncineratorChecked by:OORun:Test #3Test Date:6/17/2022

Method: CARB 430 Pbar: 29.06

				Y: 1.004		
	Orifice	Meter	Meter	Vacuum	Condensor	Sampling
Time	Pressure	Volume	Temp		Temp	Rate
(min)	("H ₂ O)	(L)	(°F)	(in Hg)	(°F)	(L/min)
11:00 - 13:00				Pre-test Leak Check:	good	
0	0.7	0.0	77	0	58	-
5	0.7	1.59	77	0	58	0.32
10	0.7	3.35	77	0	58	0.35
15	0.7	5.00	77	0	58	0.33
20	0.7	6.67	77	0	58	0.33
25	0.7	8.33	77	0	58	0.33
30	0.7	9.95	77	0	58	0.32
35	0.7	11.56	77	0	58	0.32
40	0.7	13.25	77	0	58	0.34
45	0.7	14.89	77	0	58	0.33
50	0.7	16.59	77	0	58	0.34
55	0.7	18.26	77	0	59	0.33
60	0.7	19.85	77	0	59	0.32
65	0.7	21.46	77	0	59	0.32
70	0.7	23.11	77	0	59	0.33
75	0.7	24.75	79	0	59	0.33
80	0.7	26.45	79	0	59	0.34
85	0.7	28.06	79	0	59	0.32
90	0.7	29.76	79	0	59	0.34
95	0.7	31.40	79	0	59	0.33
100	0.7	33.08	79	0	59	0.34
105	0.7	34.66	79	0	60	0.32
110	0.7	36.30	81	0	60	0.33
115	0.7	37.99	81	0	60	0.34
120	0.7	40.03	81	0	60	0.41
				Post-test Leak Check:	good	
Average	0.7		78	0.0		0.33
Total Volume Ad	ctual (m³)	0.040				
Total Volume Re	eference (Rm³)	0.039				

Summary of CEM Data Stericycle - Incinerator / Oxidizer

Overall Average Concentrations					
NO _x (ppm)	SO ₂ (ppm)	O ₂ (%)	CO (ppm)	CO ₂ (%)	
58.0	-2.40	12.2	4.53	5.65	

Test ID:	Test 1		Date:	16-Jun-22	
Time	NO _X (ppm)	SO ₂ (ppm)	O ₂ (%)	CO (ppm)	CO ₂ (%)
9:29 - 11:35	63.0	-1.93	12.0	4.8	5.49

Test ID:	Test 2		Date:	16-Jun-22	
Time	NO _x (ppm)	SO ₂ (ppm)	O ₂ (%)	CO (ppm)	CO ₂ (%)
14:10 - 16:09	57.4	-2.538	12.6	4.27	5.41

Test ID:	Test 3		Date:	17-Jun-22	
Time	NO _X (ppm)	SO ₂ (ppm)	O ₂ (%)	CO (ppm)	CO ₂ (%)
9:05 - 10:30	53.7	-2.721	11.9	4.56	6.06

Oxidizer

Test ID:	Test ID: Oxidizer Outlet			17-Jun-22
Time	T1 - 11:50 - 12:50	T2 - 12:51 - 13:50	T3 - 13:51 - 14:40	Average
THC (ppm)	7.50	7.84	8.39	7.91

Test ID:	Oxidizer Outlet
Time	O ₂ (%)
15:08 - 16:23	8.69

Notes:

Stericycle -	Incinerator	Stack
--------------	-------------	-------

Date					•	un-22				
Analyzer Low	0	92	C	02	C	:0	NC	O _X	SO	2
Zero Value (Cv) Direct (C Dir)	0.0			.0 04		1.0	0.0 0.2		0.0 0.9	
Calibration Error (ACE) System Initial (Csi)	0.53% 0.0	PASS 07	0.22%	<i>PASS</i> 00	0.60%	PASS 29	0.14% 0.4	PASS 10	0.46% 0.9	PASS 95
System Post (Csf) Average (Co)	0. <i>°</i>			00		.46 .38	0.3 0.3		1.0 0.9	
System Bias Initial (SBi) System Bias Post (SBf)	-0.1% 0.2%	PASS PASS	-0.2% -0.2%	PASS PASS	0.9% 1.7%	PASS PASS	0.1% 0.0%	PASS PASS	0.0%	PASS PASS
Drift Assessment (D) Mid	0.27%	PASS	0.00%	PASS	0.85%	PASS	-0.01%	PASS	0.02%	PASS
Mid Value (Cv) Direct (C Dir)	7.5 7.4			98 85		95	105. 104.		106. 106.	
Calibration Error (ACE)	-0.47%	PASS	-0.72%	PASS	-0.25%	PASS PASS	-0.30% 104.	PASS	-0.07%	PASS
System Initial (Csi) System Post (Csf)							104	.83	106.	.33
Average (Cm) System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-	0.3%	PASS	0.0%	PASS
System Bias Post (SBf) Drift Assessment (D)	N/A N/A	-	N/A N/A	-	N/A N/A	-	0.2% -0.06%	PASS PASS	0.2% 0.11%	PASS PASS
High High Value (CS/Cv)	15.			3.0		0.0	210		212	
Direct (C Dir) Calibration Error (ACE)	-1.00%	PASS	0.83%	.12 PASS	-0.60%	.88 PASS	0.57%	.20 PASS	-0.63%	.98 PASS
System Initial <i>(Csi)</i> System Post <i>(Csf)</i>	15. 14.	.96	18	7.9 .04	19	i.09 i.79				
Average (<i>Cm</i>) System Bias Initial (<i>SBi</i>)	15. 1.9%	.05 PASS	-1.2%	3.0 PASS	1.1%	9.9 PASS	N/A	-	- N/A	-
System Bias Post (SBf) Drift Assessment (D)	0.7% -1.20%	PASS PASS	-0.4% 0.78%	PASS PASS	-0.4% -1.50%	PASS PASS	N/A N/A	-	N/A N/A	-
Analyser Span (Range) Average	12.06	12.00	5.49	5.49	5.03	4.76	63.08	62.99	-0.94	-1.93
Time 9:29:36	Recorded 10.8	Corrected 10.7	Recorded 6.4	Corrected 6.4	Recorded 2.5	Corrected 2.1	Recorded 85.2	Corrected 85.2	Recorded -0.7	Corrected -1.7
9:30:36 9:31:36	12.9 10.0	12.9 9.9	5.1 6.7	5.1 6.7	3.1 3.6	2.8	62.5 72.3	62.4 72.2	-0.5 -0.5	-1.5 -1.5
9:32:36 9:33:36	12.8 10.4	12.7 10.3	5.1 6.6	5.1 6.6	2.9	2.6 3.0	67.2 91.5	67.2 91.5	-0.9 -0.8	-1.9 -1.7
9:35:36 9:35:36	10.4 14.2 10.8	14.1	4.6 5.7	4.6 5.7	3.3 2.9 3.2	2.6 2.9	72.2 50.4	72.1 50.3	-0.8 -0.8	-1.7 -1.8 -2.0
9:36:36	13.2	13.2	5.0	5.0	2.9	2.6	54.7	54.6	-1.0	-1.9
9:37:36 9:38:36	11.0	10.9	5.7 5.7	5.7 5.7	3.0 2.3	2.6	69.6 71.5	69.5 71.5	-0.8 -0.9	-1.8 -1.9
9:39:36 9:40:36	12.2 11.1	12.1 11.1	5.6 6.1	5.6 6.1	3.0 2.7	2.7 2.4	68.0 71.2	67.9 71.2	-0.8 -0.9	-1.8 -1.9
9:41:36 9:42:36	14.0 9.9	13.9 9.8	4.4 6.1	4.4 6.1	4.6 3.9	4.3 3.6	48.0 59.0	47.9 58.9	-0.7 -0.8	-1.7 -1.8
9:43:36 9:44:36	14.1 9.9	14.0 9.8	4.6 6.0	4.6 6.0	3.8 3.7	3.6 3.4	70.4 72.3	70.3 72.3	-1.2 -1.2	-2.1 -2.2
9:45:36 9:46:36	12.9 11.5	12.9 11.5	5.5 5.3	5.5 5.3	4.0 3.9	3.8 3.6	74.9 80.8	74.9 80.8	-1.2 -1.1	-2.2 -2.1
9:47:36 9:48:36	11.9 13.1	11.8 13.1	5.5 4.4	5.5 4.4	2.8 3.8	2.5 3.5	102.9 66.2	103.1 66.1	-1.1 -1.1	-2.1 -2.1
9:49:36 9:50:36	10.1	10.0	6.2	6.2	3.2 4.7	2.9 4.4	78.7 77.4	78.7 77.4	-1.0 -1.1	-2.0 -2.1
9:51:36	9.3	9.3	6.9	6.9	47.9	48.6	84.4	84.4	-1.0	-2.0
9:52:36 9:53:36	14.0 10.3	14.0	4.5 5.8	4.5 5.8	5.8 3.5	5.5 3.2	65.4 68.7	65.3 68.6	-0.9 -1.0	-1.9 -2.0
9:54:36 9:55:36	12.9 11.1	12.8 11.0	5.2 5.6	5.2 5.6	2.6 2.9	2.3 2.6	83.1 83.0	83.1 83.0	-0.9 -0.9	-1.9 -1.9
9:56:36 9:57:36	11.9 12.0	11.9 11.9	5.6 5.7	5.6 5.7	2.7 2.7	2.4 2.4	77.2 88.5	77.1 88.5	-1.0 -0.9	-1.9 -1.9
9:58:36 9:59:36	11.2 13.8	11.2 13.7	5.9 4.4	5.9 4.4	2.4 4.3	2.1 4.0	90.6 53.7	90.7 53.6	-0.7 -0.6	-1.6 -1.6
10:00:36 10:01:36	9.3 13.5	9.2 13.5	6.7 4.8	6.7 4.8	3.2 2.9	2.9 2.6	73.4 90.8	73.4 90.8	-0.9 -0.9	-1.8 -1.9
10:02:36 10:03:36	10.8 12.9	10.8 12.9	5.5 5.0	5.5 5.0	2.3 1.1	2.0 0.7	88.8 85.5	88.8 85.5	-0.9 -0.8	-1.9 -1.8
10:04:36 10:05:36	12.2 11.5	12.2 11.4	4.9 5.7	4.9 5.7	3.1 2.9	2.8 2.6	70.1 67.4	70.0 67.3	-0.9 -0.8	-1.8 -1.8
10:06:36 10:07:36	13.6 9.9	13.5	4.4	4.4	3.4 1.9	3.1 1.6	69.9 86.2	69.8 86.2	-0.7 -0.9	-1.7 -1.9
10:08:36 10:09:36	14.4 10.3	14.4	4.4	4.4	4.1	3.8	61.7 68.4	61.6 68.3	-0.8 -1.0	-1.8 -2.0
10:10:36 10:11:36	13.6 11.8	13.6 11.7	4.9	4.9 5.2	2.3	2.0	72.2 70.8	72.1 70.7	-1.0 -1.0 -0.8	-2.0 -1.8
10:12:36	11.8	11.8	5.7	5.7	2.6	2.3	67.8	67.7	-0.8	-1.7
10:13:36 10:14:36	12.8 10.4	12.8	4.9 6.4	4.9 6.4	3.5	3.2 2.0	61.4 86.4	61.3 86.4	-0.7 -0.8	-1.7 -1.8
10:15:36 10:16:36	13.9	13.8	4.6 6.1	4.6 6.1	2.7	3.1 2.4	64.6 76.7	64.6 76.6	-1.0 -0.9	-2.0 -1.9
10:17:36 10:18:36	14.5 12.3	14.5 12.2	4.3 4.7	4.3 4.7	3.9 4.3	3.6 4.0	56.5 51.1	56.4 51.0	-0.7 -0.8	-1.7 -1.8
10:19:36 10:20:36	11.2 14.0	11.1 14.0	5.6 4.3	5.6 4.3	3.0 3.7	2.7 3.4	72.7 60.2	72.7 60.0	-1.0 -1.0	-2.0 -2.0
10:21:36 10:22:37	10.9 13.3	10.8 13.2	5.5 4.8	5.5 4.8	3.7 2.9	3.4 2.6	50.2 49.1	50.0 48.9	-1.0 -1.0	-2.0 -2.0
10:23:37 10:24:37	12.5 10.0	12.4	4.8 6.5	4.8 6.5	5.2 2.5	5.0	45.5 62.5	45.4 62.4	-1.3 -1.0	-2.3 -2.0
10:25:37 10:26:37	14.4 10.9	14.3 10.9	4.8 5.7	4.8 5.7	4.7 4.6	4.5 4.4	57.0 45.1	56.9 44.9	-0.7 -0.7	-1.7 -1.7
10:20:37 10:27:37 10:28:37	12.6 12.5	12.5 12.5	5.4 4.9	5.4 4.9	3.4 5.2	3.1	49.4 49.8	49.2 49.7	-0.6 -0.6	-1.6 -1.6
10:28:37 10:29:37 10:30:37	10.9	10.9	6.1	6.1	3.2	2.9	65.7	65.6	-0.8	-1.8
10:31:37	12.7	12.7	5.1 7.1	5.1 7.1	7.4 3.9	7.1 3.6	51.5 81.7	51.4 81.7	-0.8 -1.0	-1.8 -2.0
10:32:37 10:33:37	14.4 9.7	14.3 9.6	4.4 6.4	6.4	8.9 4.3	8.7 4.0	49.0 56.8	48.8 56.7	-1.1 -1.0	-2.1 -2.0
10:34:37 10:35:37	12.8 12.1	12.7 12.0	5.5 5.5	5.5 5.5	3.2 3.0	2.9 2.6	65.6 59.7	65.6 59.6	-1.1 -1.1	-2.1 -2.1
10:36:37 10:37:37	9.5 13.4	9.4 13.3	6.8 5.3	6.8 5.3	2.7 3.2	2.4 2.9	71.6 59.5	71.5 59.4	-0.9 -0.8	-1.9 -1.8
10:38:37 10:39:37	12.9 10.2	12.9 10.1	4.9 6.4	4.9 6.4	5.1 3.4	4.8 3.1	53.3 70.4	53.2 70.4	-0.9 -1.1	-1.9 -2.1
10:40:37 10:41:37	13.9 11.7	13.8 11.7	4.8 5.4	4.8 5.4	3.7 4.2	3.4 4.0	58.3 61.0	58.2 60.9	-0.9 -1.0	-1.9 -2.0
10:42:37 10:42:37 10:43:37	10.6	10.5	6.5	6.5	2.8	2.5	86.8 70.7	86.8 70.7	-1.0 -0.9	-2.0 -1.9
10:44:37	11.1	11.1	5.8	5.8	3.7	3.4	63.2	63.2	-1.2	-2.2
10:45:37 10:46:37	11.9 13.7	11.9	5.9 4.8	5.9 4.8	2.7 3.6	2.4 3.3	84.2 63.7	84.3 63.6	-0.7 -1.1	-1.7 -2.1
10:47:37 10:48:37	9.7 13.1	9.7 13.0	6.3 5.1	6.3 5.1	3.1 3.9	2.8 3.6	55.0 54.1	54.8 53.9	-0.8 -0.6	-1.7 -1.6

Stericvo	le -	Incinerator Stack	

Date					16-1	un-22				
Analyzer		O_2		:O ₂		:0	l N	O _x	S	0,
Low		. 2		- 2		· -		- X		- 2
Zero Value (Cv)	0	.0	(0.0	1 0	0.0		0.0	0	.0
Direct (C Dir)	0.	08	0	.04	0.	.12	0	.29	0.	97
Calibration Error (ACE)	0.53%	PASS	0.22%	PASS	0.60%	PASS	0.14%	PASS	0.46%	PASS
System Initial (Csi)		07		.00		.29		.40		95
System Post (Csf)	0.			.00		.46		.38		00
Average (Co)		09 PASS		.00	0.9%	.38 PASS		.39	0.0%	98 PASS
System Bias Initial (SBi) System Bias Post (SBf)	-0.1% 0.2%	PASS PASS	-0.2% -0.2%	PASS PASS	1.7%	PASS PASS	0.1% 0.0%	PASS PASS	0.0%	PASS PASS
Drift Assessment (D)	0.27%	PASS	0.00%	PASS	0.85%	PASS	-0.01%	PASS	0.02%	PASS
Mid	0.2770	77.55	0.0070	17155	0.0370	17133	0.0170	17133	0.0270	77133
Mid Value (Cv)	7.	50	8	.98	10	0.00	10	5.00	106	5.16
Direct (C Dir)	7.	43	8	.85		.95	10-	4.37	106	5.01
Calibration Error (ACE)	-0.47%	PASS	-0.72%	PASS	-0.25%	PASS	-0.30%	PASS	-0.07%	PASS
System Initial (Csi)								4.95		5.09
System Post (Csf)								4.83		5.33
Average (Cm)	NI/A	-		-		-	-	4.89		6.2
System Bias Initial (SBi)	N/A N/A	-	N/A N/A	-	N/A N/A	-	0.3% 0.2%	PASS PASS	0.0% 0.2%	PASS PASS
System Bias Post (SBf) Drift Assessment (D)	N/A N/A		N/A N/A		N/A N/A		-0.06%	PASS PASS	0.2%	PASS PASS
High	14// (14// (14// (0.0070	17155	0.1170	17155
High Value (CS/Cv)	15	.00	1	8.0	20	0.0		0.0	21	2.3
Direct (C Dir)		.85		3.12		0.88		1.20		0.98
Calibration Error (ACE)	-1.00%	PASS	0.83%	PASS	-0.60%	PASS	0.57%	PASS	-0.63%	PASS
System Initial (Csi)		.14		7.9		0.09				
System Post (Csf)		.96		3.04	_).79				
Average (Cm)		.05		8.0		9.9		-		-
System Bias Initial (SBI)	1.9%	PASS	-1.2%	PASS	1.1%	PASS	N/A	-	N/A	-
System Bias Post (SBf) Drift Assessment (D)	0.7% -1.20%	PASS PASS	-0.4% 0.78%	PASS PASS	-0.4% -1.50%	PASS PASS	N/A N/A		N/A N/A	-
Analyser Span (Range)		5		30		50		000		1000
Average	12.06	12.00	5.49	5.49	5.03	4.76	63.08	62.99	-0.94	-1.93
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected
10:49:37	12.8	12.7	5.3	5.3	4.1	3.8	63.6	63.5	-0.7	-1.7
10:50:37	10.1	10.0	6.3	6.3	3.2	2.9	61.8	61.7	-1.0	-2.0
10:51:37	14.8	14.8	4.2	4.2	6.8	6.6	46.3	46.1	-1.0	-1.9
10:52:37	11.0	10.9	5.7	5.7	4.6	4.3	74.8	74.8	-0.8	-1.8
10:53:37	11.5	11.5	6.0	6.0	2.4	2.0	90.4	90.5	-0.9	-1.9
10:54:37	13.5	13.5	4.8	4.8	4.8	4.5	55.0	54.9	-1.0	-1.9
10:55:37	8.5	8.5	7.5	7.5	4.9	4.6	47.1	47.0	-1.1	-2.0
10:56:37	13.8	13.8	5.1	5.1	3.9	3.6	53.0	52.9	-1.0	-2.0
10:57:37	12.2	12.2	5.4	5.4	3.6	3.3	68.0	67.9	-1.0	-2.0
10:58:37	9.6	9.6	7.0	7.0	2.4	2.0	98.0	98.1	-1.4	-2.4
10:59:37	13.6	13.6	5.0	5.0	3.1	2.8	58.1	58.0	-1.1	-2.1
11:00:37	11.9	11.9	5.6	5.6	3.9	3.6	53.5	53.3	-1.0	-2.0
11:01:37	9.2	9.1	7.4	7.4	4.2	4.0	80.6	80.6	-1.0	-2.0
11:02:37	14.5	14.5	4.2	4.2	4.0	3.7	56.6	56.5	-0.9	-1.9
11:03:37	11.8	11.8	5.2	5.2	5.2	5.0	48.2	48.0	-1.1	-2.1
11:04:37 11:05:37	10.5	10.5	6.3	6.3	2.8	2.4	62.7	62.6	-1.2	-2.2
	13.8 10.7	13.8	4.7 5.9	4.7	2.8	2.5	62.5	62.4	-1.1	-2.1
11:06:37 11:07:37	10.7	10.6 12.3	5.9	5.9 5.5	3.3 3.7	3.0 3.4	56.2 48.1	56.0 47.9	-1.1 -1.0	-2.1 -2.0
11:08:37	14.3	14.2	4.3	4.3	6.8	6.6	41.4	41.2		
11:09:37	10.0				0.0				-0.9	-14
11:10:37	10.0	10.0	6.1	h.1	4.0				-0.9 -1.1	-1.9 -2.0
11.1U.3 <i>1</i>	12.6	10.0 12.5	6.1 5.7	6.1 5.7	4.0 3.8	3.7	52.1	52.0 56.0	-0.9 -1.1 -0.9	-1.9 -2.0 -1.9
11:10:37		10.0 12.5 13.5	5.7 4.7	5.7 4.7	4.0 3.8 6.4			52.0	-1.1	-2.0
	12.6	12.5	5.7	5.7	3.8	3.7 3.5	52.1 56.2	52.0 56.0	-1.1 -0.9	-2.0 -1.9
11:11:37	12.6 13.5	12.5 13.5	5.7 4.7	5.7 4.7	3.8 6.4	3.7 3.5 6.1	52.1 56.2 43.1	52.0 56.0 43.0	-1.1 -0.9 -0.8	-2.0 -1.9 -1.8
11:11:37 11:12:37 11:13:37 11:14:37	12.6 13.5 9.4	12.5 13.5 9.4 14.1 12.0	5.7 4.7 6.6 4.6 5.2	5.7 4.7 6.6	3.8 6.4 3.5 4.9 5.7	3.7 3.5 6.1 3.2	52.1 56.2 43.1 66.5 51.9 42.3	52.0 56.0 43.0 66.4 51.8 42.1	-1.1 -0.9 -0.8 -0.9	-2.0 -1.9 -1.8 -1.9
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37	12.6 13.5 9.4 14.2 12.0 10.8	12.5 13.5 9.4 14.1 12.0 10.8	5.7 4.7 6.6 4.6 5.2 6.1	5.7 4.7 6.6 4.6 5.2 6.1	3.8 6.4 3.5 4.9 5.7 3.4	3.7 3.5 6.1 3.2 4.6 5.4 3.1	52.1 56.2 43.1 66.5 51.9 42.3 53.5	52.0 56.0 43.0 66.4 51.8 42.1 53.4	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1	12.5 13.5 9.4 14.1 12.0 10.8 13.0	5.7 4.7 6.6 4.6 5.2 6.1 5.2	5.7 4.7 6.6 4.6 5.2 6.1 5.2	3.8 6.4 3.5 4.9 5.7 3.4 3.3	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5	12.5 13.5 9.4 14.1 12.0 10.8 13.0	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.1
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37 11:18:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.1 -2.2 -1.8
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37 11:18:37 11:19:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.1 -2.2 -1.8 -1.9
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37 11:18:37 11:19:37 11:20:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -0.9 -0.8	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37 11:18:37 11:19:37 11:20:37 11:21:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -0.8 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37 11:18:37 11:19:37 11:20:37 11:21:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -0.9 -1.10 -0.8 -1.0 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:17:37 11:18:37 11:19:37 11:20:37 11:21:37 11:22:37 11:23:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -0.9 -1.0 -1.0 -1.0 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0 -2.0
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:16:37 11:16:37 11:18:37 11:19:37 11:20:37 11:22:37 11:22:37 11:24:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -0.9 -1.10 -1.0 -1.0 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0 -2.0 -2.0
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:16:37 11:16:37 11:18:37 11:19:37 11:20:37 11:20:37 11:22:37 11:22:37 11:23:37 11:24:37 11:25:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -1.0 -0.8 -1.0 -1.0 -1.0 -1.0 -1.1	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -2.1 -2.2 -1.8 -2.0 -2.0 -2.0 -2.1 -1.8
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:15:37 11:16:37 11:18:37 11:19:37 11:20:37 11:21:37 11:22:37 11:22:37 11:24:37 11:25:37 11:26:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -1.0 -0.8 -1.0 -1.0 -1.0 -1.0 -1.1 -0.8 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:15:37 11:16:37 11:18:37 11:19:37 11:20:37 11:21:37 11:22:37 11:22:37 11:24:37 11:25:37 11:26:37 11:27:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.1 -0.8 -1.0 -1.0 -1.0 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -2.1 -2.2 -1.8 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:16:37 11:19:37 11:20:37 11:21:37 11:22:37 11:22:37 11:25:37 11:25:37 11:26:37 11:27:37 11:28:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3 12.2	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7 53.4	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5 53.3	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:15:37 11:16:37 11:17:37 11:19:37 11:20:37 11:21:37 11:22:37 11:22:37 11:25:37 11:26:37 11:27:37 11:28:37 11:29:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3 12.2 12.4 12.8	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1 12.4 12.8	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6 9.1	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4 9.0 9.5	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7 53.4 49.4	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5 53.3	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -0.8 -0.9 -0.8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.9 -2.1 -1.8 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
11:11:37 11:12:37 11:13:37 11:14:37 11:15:37 11:16:37 11:16:37 11:19:37 11:20:37 11:21:37 11:22:37 11:23:37 11:24:37 11:26:37 11:27:37 11:28:37 11:29:37 11:29:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3 12.2 12.4 12.8 13.4	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1 12.4 12.8 13.4	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.4 5.5	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.4 5.4	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6 9.1 9.7	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4 9.0 9.5 14.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7 53.4 49.4	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5 53.3 49.3	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -1.2 -0.8 -0.9 -1.0 -1.0 -1.0 -1.1 -0.8 -1.0 -1.1 -0.8 -1.0 -1.1 -1.0 -1.1 -1.0 -1.1 -1.0 -1.1 -1.0 -1.1	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.9 -2.0 -2.0 -2.1 -1.9 -2.0 -2.0 -2.1
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:15:37 11:16:37 11:18:37 11:19:37 11:20:37 11:22:37 11:22:37 11:25:37 11:25:37 11:26:37 11:28:37 11:29:37 11:30:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3 12.2 12.4 12.8 13.4 11.2	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1 12.4 12.8 13.4 11.2	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.4 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.6 6.0	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6 9.1 9.7 14.5 8.9	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4 9.0 9.5 14.4 8.7	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7 53.4 49.4	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5 53.3 49.3 48.5	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -1.2 -0.8 -0.9 -1.0 -1.0 -1.0 -1.0 -1.1 -0.8 -1.0 -1.0 -1.1 -1.0 -1.1 -1.0 -1.0 -1.1 -1.1	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -1.8 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.9 -2.0 -2.1 -1.9 -2.0 -2.1 -2.2
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:15:37 11:16:37 11:16:37 11:19:37 11:20:37 11:21:37 11:22:37 11:22:37 11:25:37 11:26:37 11:28:37 11:29:37 11:30:37 11:30:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3 12.2 12.4 12.8 13.4 11.2 8.9	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1 12.4 12.8 13.4 11.2 8.8	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.0 6.0 7.5	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.0 6.0 7.5	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6 9.1 9.7 14.5 8.9 31.1	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4 9.0 9.5 14.4 8.7 31.4	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7 53.4 49.4 48.7	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5 53.3 49.3 48.5 44.0 49.1	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -1.2 -0.8 -0.9 -1.0 -1.0 -1.0 -1.0 -1.1 -0.8 -1.0 -1.0 -1.1 -1.0 -1.1 -1.0 -1.1 -1.0 -1.1 -1.1	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -2.1 -2.2 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.1 -1.8 -2.0 -2.1 -1.8 -2.0 -2.1 -1.8 -2.0 -2.1 -1.8 -2.0 -2.1 -2.1
11:11:37 11:12:37 11:13:37 11:14:37 11:14:37 11:15:37 11:16:37 11:18:37 11:19:37 11:20:37 11:22:37 11:22:37 11:25:37 11:25:37 11:26:37 11:28:37 11:29:37 11:30:37	12.6 13.5 9.4 14.2 12.0 10.8 13.1 13.5 13.1 8.9 13.4 14.0 12.7 14.3 14.6 13.4 12.3 12.2 12.4 12.8 13.4 11.2	12.5 13.5 9.4 14.1 12.0 10.8 13.0 13.4 13.0 8.8 13.3 14.0 12.7 14.3 14.5 13.4 12.3 12.1 12.4 12.8 13.4 11.2	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.4 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7	5.7 4.7 6.6 4.6 5.2 6.1 5.2 4.9 4.7 6.7 5.0 4.4 5.4 4.6 4.3 4.8 5.7 5.7 5.6 5.4 5.6 6.0	3.8 6.4 3.5 4.9 5.7 3.4 3.3 4.9 7.5 3.7 4.7 6.6 8.6 11.5 13.6 21.3 10.5 9.6 9.1 9.7 14.5 8.9	3.7 3.5 6.1 3.2 4.6 5.4 3.1 3.0 4.6 7.3 3.4 4.4 6.4 8.4 11.3 13.5 21.4 10.4 9.4 9.0 9.5 14.4 8.7	52.1 56.2 43.1 66.5 51.9 42.3 53.5 49.7 43.9 39.9 51.8 50.8 40.1 46.3 46.0 44.8 40.3 44.6 48.7 53.4 49.4	52.0 56.0 43.0 66.4 51.8 42.1 53.4 49.6 43.7 39.7 51.7 50.7 39.9 46.1 45.8 44.6 40.1 44.4 48.5 53.3 49.3 48.5	-1.1 -0.9 -0.8 -0.9 -1.0 -0.8 -0.9 -1.2 -1.2 -1.2 -0.8 -0.9 -1.0 -1.0 -1.0 -1.0 -1.1 -0.8 -1.0 -1.0 -1.1 -1.0 -1.1 -1.0 -1.0 -1.1 -1.1	-2.0 -1.9 -1.8 -1.9 -2.0 -1.8 -1.9 -2.1 -2.2 -1.8 -1.9 -2.1 -2.2 -1.8 -2.0 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1 -1.8 -2.0 -2.0 -2.1

Stericyc	le - Incine	rator Stack
Stellt vt	ie - ilicilie	ialui Slack

Date						un-22				
Analyzer Low	C	02	С	02	(0	NO) _X	SO	2
Zero Value (Cv) Direct (C Dir)	0.0			0.0		.12	0. 0.2		0.0 0.9	
Calibration Error (ACE)	0.53%	PASS	0.22%	PASS	0.60%	PASS	0.14%	PASS	0.46%	PASS
System Initial <i>(Csi)</i> System Post <i>(Csf</i>)	0.	19	0.	.00	0	.46 .33	0.3 0.3	30	1.0 1.0	12
Average (Co) System Bias Initial (SBi)	0.2%	15 PASS	-0.2%	.03 PASS	1.7%	.40 PASS	0.0%	94 PASS	0.0%	11 PASS
System Bias Post (SBf) Drift Assessment (D)	0.7% 0.53%	PASS PASS	0.1% 0.33%	PASS PASS	1.1% -0.65%	PASS PASS	0.0% -0.04%	PASS PASS	0.0% 0.01%	PASS PASS
Mid Mid Value (Cv)	7.	50		.98	10	0.00	105	00	106.	16
Direct (C Dir)	7.4	43	8.	.85	9.	.95	104	.37	106.	.01
Calibration Error (ACE) System Initial (Csi)	-0.47%	PASS	-0.72%	PASS	-0.25%	PASS	-0.30% 104		-0.07% 106.	
System Post (Csf) Average (Cm)		-		-		-	104 104.		106. 106	
System Bias Initial <i>(SBi)</i> System Bias Post <i>(SBf)</i>	N/A N/A	-	N/A N/A	-	N/A N/A	-	0.2% 0.2%	PASS PASS	0.2% 0.2%	PASS PASS
Drift Assessment (D) High	N/A	-	N/A	-	N/A	-	-0.05%	PASS	0.04%	PASS
High Value (CS/Cv) Direct (C Dir)		.00 .85		8.0		0.0	210 211		212 210.	
Calibration Error (ACE) System Initial (Csi)	-1.00%	PASS	0.83%	<i>PASS</i> 3.04	-0.60%	PASS 0.79	0.57%	PASS	-0.63%	PASS
System Post (Csf)	14.	.79	18	8.1	19	9.85				
Average (Cm) System Bias Initial (SBi)	0.7%	875 PASS	-0.4%	8.1 PASS	-0.4%	9.8 PASS	N/A	-	N/A	-
System Bias Post <i>(SBf)</i> Drift Assessment <i>(D)</i>	-0.4% -1.13%	PASS PASS	-0.1% 0.33%	PASS PASS	-0.1% 0.30%	PASS PASS	N/A N/A	-	N/A N/A	-
Analyser Span (Range) Average	12.49	5 12.57	5.47	30 5.41	4.55	50 4.27	57.48	57.45	-1.51	00 -2.54
Time 14:10:20	Recorded 7.9	Corrected 7.9	Recorded 8.6	Corrected 8.5	Recorded 8.9	Corrected 8.8	Recorded 74.4	Corrected 74.5	Recorded -1.3	Corrected -2.3
14:11:20	14.7	14.8	5.0	4.9	4.3	4.1	76.2	76.3	-1.3	-2.3
14:12:20 14:13:20	13.7 9.5	13.8 9.5	7.4	4.8 7.3	10.1	10.0 4.1	47.8 56.2	47.7 56.2	-0.9 -0.4	-1.9 -1.5
14:14:20 14:15:20	14.7 12.9	14.8 12.9	4.7 5.3	4.6 5.3	3.5 5.8	3.2 5.5	72.8 60.3	72.8 60.3	-0.8 -0.8	-1.8 -1.8
14:16:20 14:17:20	8.3 15.3	8.3 15.5	8.3 4.5	8.2 4.4	3.9 4.6	3.6 4.4	65.5 59.0	65.5 59.0	-0.9 -0.7	-1.9 -1.7
14:17:20 14:18:20 14:19:20	13.8	13.9	4.8 5.1	4.7	6.8	6.6	45.7 38.4	45.6 38.2	-1.1 -1.1	-2.2 -2.1
14:20:20	13.5 8.4	13.6 8.4	7.7	7.7	3.5	3.2	58.0	58.0	-1.1	-2.1
14:21:20 14:22:20	13.5 12.1	13.6 12.1	5.6 6.0	5.5 5.9	2.8 4.0	2.5 3.7	73.2 52.7	73.3 52.6	-1.4 -1.4	-2.5 -2.4
14:23:20 14:24:20	10.6 16.0	10.6 16.2	7.0 3.7	7.0 3.7	3.2 3.8	2.8 3.5	65.4 48.1	65.4 48.1	-1.2 -1.1	-2.2 -2.1
14:25:20 14:26:20	11.6 10.0	11.7 10.1	5.7 7.2	5.7 7.2	4.5 3.0	4.2 2.7	51.8 91.4	51.7 91.6	-1.2 -1.1	-2.2 -2.1
14:27:20	13.8	13.9	5.4	5.3	3.5	3.2	75.6	75.7	-1.2	-2.2
14:28:20 14:29:20	11.3 12.7	11.3 12.8	6.2 5.9	6.2 5.9	4.0 3.2	3.7 2.9	68.9 83.0	68.9 83.1	-1.7 -1.3	-2.7 -2.4
14:30:20 14:31:20	14.8 9.5	14.9 9.5	4.4 7.1	4.4 7.0	5.4 4.1	5.1 3.9	68.9 101.3	68.9 101.5	-1.5 -1.4	-2.6 -2.4
14:32:20 14:33:20	13.2 14.3	13.3 14.4	5.6 4.9	5.5 4.9	3.5 4.4	3.2 4.2	77.6 54.9	77.7 54.9	-1.5 -1.2	-2.5 -2.2
14:34:20 14:35:20	10.0	10.1	6.8 4.8	6.7 4.8	3.6 3.3	3.3	79.4 73.0	79.5 73.0	-1.6 -1.3	-2.6 -2.3
14:36:20	11.1	11.1	6.4	6.3	2.8	2.5	74.8	74.9	-1.2	-2.2
14:37:20 14:38:20	12.0 13.6	12.1 13.7	6.4 5.2	6.4 5.2	2.8	2.5 2.4	80.1 73.9	80.2 74.0	-1.3 -1.3	-2.3 -2.4
14:39:20 14:40:20	11.7 13.9	11.7 14.0	6.2 4.9	6.1 4.9	2.2 3.1	1.8 2.8	103.0 75.8	103.3 75.9	-1.4 -1.4	-2.4 -2.4
14:41:20 14:42:20	13.6 9.2	13.7 9.3	4.8 7.5	4.7 7.4	6.3 60.4	6.0 61.7	50.9 67.3	50.8 67.3	-1.6 -1.5	-2.7 -2.6
14:44:20	14.2 12.6	14.3 12.7	5.0	4.9	16.2	16.3	58.5	58.5 54.6	-1.4 -1.7	-2.4 -2.7
14:45:20	11.3	11.4	5.4 6.6	5.4 6.5	4.6 3.4	4.4 3.1	54.6 68.8	68.8	-1.6	-2.6
14:46:20 14:47:20	15.8 12.2	16.0 12.3	3.7 5.3	3.7 5.3	6.8 4.9	6.6 4.7	37.9 44.1	37.8 44.0	-1.8 -1.6	-2.8 -2.6
14:48:20 14:49:20	11.5 14.3	11.5 14.4	6.0 4.7	5.9 4.7	3.0 4.5	2.6 4.2	66.9 66.9	66.9 66.9	-1.6 -1.5	-2.7 -2.5
14:50:20 14:51:20	11.1 12.4	11.1 12.4	6.1 6.2	6.1 6.1	4.7 3.6	4.4 3.3	53.9 64.5	53.8 64.5	-1.7 -1.4	-2.7 -2.4
14:52:20 14:53:20	13.8	13.9	5.0 7.0	4.9 6.9	4.2	3.9 3.5	57.5 78.9	57.5 79.0	-1.8 -1.7	-2.9 -2.8
14:54:20	14.9	15.0	4.5	4.4	4.9	4.6	57.7	57.7	-1.7	-2.7
14:55:20 14:56:20	12.5	12.6 10.8	5.3 6.8	5.2 6.7	6.5 2.3	6.3	46.5 84.8	46.4 84.9	-1.8 -1.7	-2.9 -2.8
14:57:20 14:58:20	13.8 13.6	13.9 13.7	5.3 4.8	5.3 4.8	3.1 6.8	2.8 6.6	71.1 48.7	71.1 48.6	-1.3 -1.3	-2.3 -2.3
14:59:20 15:00:20	10.6 15.2	10.6 15.3	6.6 4.3	6.5 4.2	4.2 8.8	3.9 8.6	69.0 50.2	69.0 50.2	-1.6 -1.6	-2.6 -2.7
15:01:20 15:02:20	9.6 11.5	9.7 11.6	7.0 6.6	7.0 6.5	5.6 1.9	5.3 1.5	75.9 97.6	75.9 97.8	-1.7 -1.5	-2.7 -2.6
15:03:20 15:04:20	12.2	12.3	6.4	6.3	2.9	2.6	90.0 76.8	90.2 76.9	-1.6 -1.7	-2.6
15:05:20	10.8	12.6 10.9	6.0	5.9 6.8	3.0	1.9	106.3	106.5	-1.6	-2.8 -2.7
15:06:20 15:07:20	13.2 10.5	13.3 10.5	5.4 6.8	5.3 6.7	2.7 1.9	2.4 1.6	80.6 109.8	80.7 110.1	-1.5 -1.6	-2.5 -2.6
15:08:20 15:09:20	12.4 12.4	12.5 12.5	6.1 6.2	6.0 6.2	2.3 2.6	1.9 2.3	121.5 103.4	121.8 103.6	-1.4 -1.4	-2.4 -2.5
15:10:20 15:11:20	13.2 11.0	13.3 11.0	5.5 6.5	5.4 6.4	3.3 2.9	3.0 2.6	56.6 94.6	56.5 94.8	-1.8 -1.6	-2.8 -2.7
15:11:20 15:13:20	14.7	14.8	4.4	4.3	3.0	2.7	70.8 77.3	70.8 77.4	-1.9 -1.8	-2.9 -2.8
15:14:20	12.5	12.6	5.7	5.6	4.0	3.7	90.4	90.5	-1.9	-2.9
15:15:20 15:16:20	14.4 12.1	14.5 12.1	4.7 5.5	4.7 5.5	3.2 3.5	2.8 3.2	58.1 52.4	58.1 52.3	-1.6 -1.8	-2.6 -2.8
15:17:20 15:18:20	12.8 15.2	12.9 15.4	5.4 3.9	5.4 3.9	2.9 5.0	2.5 4.7	62.9 43.5	62.9 43.3	-1.7 -1.8	-2.7 -2.8
15:19:20 15:20:20	11.1	11.1	5.9 5.6	5.9 5.6	3.9 2.8	3.6 2.5	49.9 52.6	49.9 52.6	-1.4 -1.3	-2.4 -2.4
15:21:20	14.3	14.4	4.6	4.5	4.4	4.2	54.9	54.8	-1.4	-2.4
15:22:20 15:23:20	13.5 11.6	13.6 11.7	4.6 5.7	4.6 5.7	9.0	8.9 3.0	39.3 43.1	39.2 43.0	-1.5 -1.4	-2.6 -2.5
15:24:20 15:25:20	12.1 12.8	12.2 12.9	5.5 5.0	5.4 5.0	2.1 2.7	1.8 2.4	46.8 45.1	46.7 45.0	-1.7 -1.7	-2.8 -2.7
15:26:20 15:27:20	12.4 12.2	12.4 12.2	5.2 5.6	5.1 5.5	2.8 2.6	2.4 2.3	52.2 58.0	52.1 57.9	-1.6 -1.7	-2.7 -2.7
15:28:20 15:29:20	12.8	12.9	5.0	5.0	3.0	2.6	39.3	39.2 47.9	-1.8	-2.8
15:29:20	12.1	12.1	5.4	5.4	2./	2.4	48.0	4/.9	-1.6	-2.6

Stericvo	le -	Incinerator Stack	

Date					16-Ju	ın-22				
Analyzer	(O_2	С	02	С	0	N	O _X	SO)2
Low							·			
Zero Value (Cv)	C	0.0	0	.0	0.	.0	0	.0	0.0	0
Direct (C Dir)	0.	.08	0.	04	0.	12	0.	29	0.9	97
Calibration Error (ACE)	0.53%	PASS	0.22%	PASS	0.60%	PASS	0.14%	PASS	0.46%	PASS
System Initial (Csi)	0.	.11	0.	00	0.4	46	0.	38	1.0	00
System Post (Csf)	0.	.19	0.	06	0.:	33	0.	30	1.0)2
Average (Co)	0.	.15	0.	03	0.4	40	0.	34	1.0)1
System Bias Initial (SBi)	0.2%	PASS	-0.2%	PASS	1.7%	PASS	0.0%	PASS	0.0%	PASS
System Bias Post (SBf)	0.7%	PASS	0.1%	PASS	1.1%	PASS	0.0%	PASS	0.0%	PASS
Drift Assessment (D)	0.53%	PASS	0.33%	PASS	-0.65%	PASS	-0.04%	PASS	0.01%	PASS
Mid										
Mid Value (Cv)	7	.50	8	98	10	.00	105	5.00	106.	16
Direct (C Dir)		.43		85	9.			1.37	106.	
Calibration Error (ACE)	-0.47%	PASS	-0.72%	PASS	-0.25%	PASS	-0.30%	PASS	-0.07%	PASS
System Initial (Csi)	0.4770	. 77.55	0.7270	17133	0.2370	. 77.55		1.83	106.	
System Post (Csf)								1.72	106.	
Average (Cm)				_		_		.775	106.	
System Bias Initial (SBi)	N/A		N/A		N/A		0.2%	PASS	0.2%	PASS
System Bias Post (SBf)	N/A			-		-	0.2%	PASS	0.2%	PASS
Drift Assessment (D)	N/A N/A	-	N/A N/A	-	N/A N/A	-	-0.05%	PASS	0.2%	PASS
	IN/A	-	IN/A	-	IV/A	-	-0.05%	PASS	0.04%	PASS
High	-						21		0.10	
High Value (CS/Cv)		5.00		3.0		0.0	21		212	
Direct (C Dir)		1.85		.12		.88		.20	210.	
Calibration Error (ACE)	-1.00%	PASS	0.83%	PASS	-0.60%	PASS	0.57%	PASS	-0.63%	PASS
System Initial (Csi)		1.96		.04	19					
System Post (Csf)		l.79		3.1	19					
Average (Cm)		.875		3.1		0.8		-	-	
System Bias Initial (SBi)	0.7%	PASS	-0.4%	PASS	-0.4%	PASS	N/A	-	N/A	-
System Bias Post (SBf)	-0.4%	PASS	-0.1%	PASS	-0.1%	PASS	N/A	-	N/A	-
Drift Assessment (D)	-1.13%	PASS	0.33%	PASS	0.30%	PASS	N/A	-	N/A	-
Analyser Span (Range)	2	5	3	0	6	0	10	00	100	00
Average	12.49	12.57	5.47	5.41	4.55	4.27	57.48	57.45	-1.51	-2.54
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	Recorded	Correct
15:30:20	13.4	13.5	5.3	5.2	5.4	5.2	67.8	67.8	-1.7	-2.7
15:31:20	15.3	15.4	3.6	3.6	22.8	23.0	30.1	29.9	-1.7	-2.8
15:32:20	12.4	12.5	5.1	5.1	6.0	5.8	33.3	33.1	-1.4	-2.5
15:33:21	12.1	12.2	5.2	5.2	4.0	3.7	39.2	39.1	-1.6	-2.6
15:34:20	12.3	12.4	5.1	5.0	4.0	3.8	36.2	36.1	-1.4	-2.4
15:35:20	12.3	12.4	5.0	4.9	3.9	3.6	37.5	37.4	-1.6	-2.4
15:36:21	12.4	12.5	4.9	4.9	3.3	3.0	44.9	44.8	-1.7	-2.8
15:37:21	11.8	11.9	5.3	5.2	3.0	2.7	47.8	47.7	-1.7	-2.9
15:38:21	11.9	11.9	5.6	5.6	2.8	2.5	52.7	52.7	-1.7	-2.8
15:39:21	12.5	12.6	4.9	4.9	2.7	2.4	45.2	45.1	-1.8	-2.8
15:40:21	12.3	12.4	5.0	5.0	2.9	2.6	34.4	34.2	-1.6	-2.6
15:41:21	12.0	12.1	5.2	5.1	3.3	3.0	33.1	33.0	-1.6	-2.6
15:42:21				6.0		2.9	62.9	62.9	-1.7	-2.7
15:43:21	11.5	11.5	6.0		3.2					
15:44:21	12.8	12.8	5.0	4.9	3.2	2.9	42.2	42.0	-1.9	-2.9
	12.8 12.2	12.8 12.3	5.0 5.3	4.9 5.2	3.2 3.2	2.9 2.9	42.2 38.2	42.0 38.1	-1.9 -1.7	-2.8
15:45:21	12.8 12.2 12.9	12.8 12.3 13.0	5.0 5.3 4.8	4.9 5.2 4.7	3.2	2.9	42.2	42.0	-1.9	
	12.8 12.2	12.8 12.3	5.0 5.3	4.9 5.2	3.2 3.2	2.9 2.9	42.2 38.2	42.0 38.1	-1.9 -1.7	-2.8
15:45:21	12.8 12.2 12.9	12.8 12.3 13.0	5.0 5.3 4.8	4.9 5.2 4.7	3.2 3.2 3.1	2.9 2.9 2.8	42.2 38.2 32.7	42.0 38.1 32.5	-1.9 -1.7 -1.9	-2.8 -2.9
15:45:21 15:46:21	12.8 12.2 12.9 13.0	12.8 12.3 13.0 13.1	5.0 5.3 4.8 4.7	4.9 5.2 4.7 4.7	3.2 3.2 3.1 3.0	2.9 2.9 2.8 2.7	42.2 38.2 32.7 38.2	42.0 38.1 32.5 38.1	-1.9 -1.7 -1.9 -1.8	-2.8 -2.9 -2.8
15:45:21 15:46:21 15:47:21 15:48:21	12.8 12.2 12.9 13.0 12.8	12.8 12.3 13.0 13.1 12.9	5.0 5.3 4.8 4.7 4.8 4.8	4.9 5.2 4.7 4.7 4.8 4.8	3.2 3.2 3.1 3.0 3.1 3.2	2.9 2.9 2.8 2.7 2.7 2.8	42.2 38.2 32.7 38.2 35.3 32.3	42.0 38.1 32.5 38.1 35.1 32.1	-1.9 -1.7 -1.9 -1.8 -1.8	-2.8 -2.9 -2.8 -2.9 -2.6
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7	12.8 12.3 13.0 13.1 12.9 12.9	5.0 5.3 4.8 4.7 4.8 4.8 4.9	4.9 5.2 4.7 4.7 4.8 4.8 4.9	3.2 3.2 3.1 3.0 3.1 3.2 2.9	2.9 2.9 2.8 2.7 2.7 2.8 2.5	42.2 38.2 32.7 38.2 35.3 32.3 42.8	42.0 38.1 32.5 38.1 35.1 32.1 42.7	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1	2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 12.5 13.1	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.2 4.5	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1	2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.7 -1.4 -1.8 -1.7	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:55:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 12.5 13.1 12.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 4.7	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.8 3.2 3.4	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6	-2.8 -2.9 -2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:56:21 15:57:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 4.7 5.1	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:55:21 15:56:21 15:57:21 15:58:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 4.7 5.1 4.7	3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.1 3.5 3.7 3.3 3.1	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.8 3.2 3.4 3.0 2.8	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:56:21 15:57:21 15:58:21 15:58:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.2 4.5 4.7 5.1	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.1 3.5 3.7 3.3 3.1 3.3	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:53:21 15:54:21 15:55:21 15:55:21 15:55:21 15:55:21 15:56:21 15:57:21 15:58:21 15:58:21 15:59:21 16:00:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 4.7 5.1 4.7	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 3.2	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.8 3.2 3.4 3.0 2.8	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.4 -2.6 -2.7 -2.6
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:56:21 15:57:21 15:58:21 15:58:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.2 4.5 4.7 5.1	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.1 3.5 3.7 3.3 3.1 3.3	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.7 -2.6 -2.7 -2.8 -2.7 -2.6 -2.4 -2.4
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:51:21 15:53:21 15:54:21 15:55:21 15:55:21 15:55:21 15:55:21 15:56:21 15:57:21 15:58:21 15:58:21 15:59:21 16:00:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.2 4.5 4.7 5.1 4.7	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 3.2	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:46:21 15:47:21 15:48:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:56:21 15:56:21 15:58:21 15:59:21 16:00:21 16:01:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.4 13.3	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.6 4.8	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.5 5.1 4.7 5.1 4.5 4.4 4.4	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 3.1 2.9 3.2	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.5 -1.7 -1.5 -1.7 -1.5 -1.7	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.4 -2.6 -2.7 -2.6 -2.7 -2.6 -2.4 -2.6 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:46:21 15:47:21 15:48:21 15:50:21 15:51:21 15:52:21 15:53:21 15:54:21 15:55:21 15:56:21 15:56:21 15:59:21 16:00:21 16:01:21 16:02:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.4 13.3 13.0	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.7 5.2 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.1 4.7 5.1 4.7 5.1 4.5 4.4 4.4	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 3.1 2.9 3.2	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8 4.3	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8 29.6	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6 29.4	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.5 -1.5 -1.5 -1.5 -1.5	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.4 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7
15:45:21 15:46:21 15:46:21 15:47:21 15:48:21 15:50:21 15:50:21 15:52:21 15:53:21 15:55:21 15:56:21 15:56:21 15:57:21 15:58:21 16:00:21 16:01:21 16:03:21 16:04:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.4 13.3 13.0 13.0	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3 13.1	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.7 4.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.1 4.7 5.1 4.7 5.1 4.5 4.4 4.6 4.7	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 3.1 2.9 3.2 5.1 4.6 2.5	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8 4.3 2.2	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8 29.6 39.9	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6 29.4 39.8	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.5 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.4 -1.6 -1.7 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.6 -2.4 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.5 -2.5 -2.5 -2.5
15:45:21 15:46:21 15:47:21 15:48:21 15:49:21 15:50:21 15:52:21 15:53:21 15:55:21 15:56:21 15:57:21 15:58:21 15:59:21 16:00:21 16:02:21 16:03:21 16:04:21 16:05:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.0 13.0 11.6	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3 13.1 13.1	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.7 5.2 4.7 5.7	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.1 4.7 5.1 4.5 4.4 4.6 4.7 5.7	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 2.9 3.2 5.1 4.6 2.5 2.9	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8 4.3 2.2 2.6	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8 29.6 39.9 54.9	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6 29.4 39.8 54.9	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.8 -1.7 -1.8 -1.7 -1.8 -1.7 -1.8 -1.7 -1.8 -1.8 -1.7 -1.8 -1.8	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.5 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.6 -2.4 -2.6 -2.7 -2.6 -2.5 -2.8 -2.7 -2.6 -2.5 -2.8
15:45:21 15:46:21 15:46:21 15:47:21 15:48:21 15:50:21 15:50:21 15:52:21 15:53:21 15:55:21 15:56:21 15:57:21 15:58:21 16:00:21 16:01:21 16:03:21 16:04:21 16:05:21 16:05:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.4 13.3 13.0 13.0 11.6 12.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3 13.1 13.1 11.7	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.6 4.4 4.5 4.7 5.7 5.0	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.5 5.1 4.7 5.1 4.5 4.4 4.6 4.7 5.7 5.0	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 2.9 3.2 5.1 4.6 2.5 2.9 3.5	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8 4.3 2.2 2.6 3.2	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8 29.6 39.9 54.9 40.9	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6 29.4 39.8 54.9 40.8	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6 -1.4 -1.8 -1.6	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.6 -2.7 -2.6 -2.7 -2.6 -2.8 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.5 -2.8 -2.5 -2.6 -2.5 -2.6 -2.5 -2.6 -2.5
15:45:21 15:46:21 15:46:21 15:47:21 15:48:21 15:50:21 15:50:21 15:52:21 15:53:21 15:55:21 15:56:21 15:57:21 15:58:21 15:59:21 16:00:21 16:03:21 16:04:21 16:05:21 16:06:21 16:06:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.4 13.3 13.0 13.0 11.6 12.9 12.5	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3 13.1 13.1 11.7 13.0 12.6	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.6 4.4 4.5 4.7 5.7 5.0 5.0	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.2 4.5 4.7 5.1 4.7 5.1 4.5 4.4 4.6 4.7 5.7 5.0 4.9	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 2.9 3.2 5.1 4.6 2.5 2.9 3.5 2.5	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8 4.3 2.2 2.6 3.2 2.6 3.2 2.2	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8 29.6 39.9 54.9 40.9 31.9	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6 29.4 39.8 54.9 40.8 31.7	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.5 -2.5 -2.6 -2.5 -2.5 -2.6 -2.5
15:45:21 15:46:21 15:46:21 15:47:21 15:48:21 15:50:21 15:50:21 15:52:21 15:53:21 15:55:21 15:56:21 15:57:21 15:58:21 15:59:21 16:00:21 16:01:21 16:03:21 16:04:21 16:05:21	12.8 12.2 12.9 13.0 12.8 12.8 12.7 12.5 11.6 11.9 11.9 12.5 13.1 12.9 12.4 12.9 12.3 13.3 13.4 13.3 13.0 13.0 11.6 12.9	12.8 12.3 13.0 13.1 12.9 12.9 12.8 12.5 11.7 11.9 12.0 12.6 13.2 13.0 12.5 13.0 12.4 13.4 13.5 13.3 13.1 13.1 11.7	5.0 5.3 4.8 4.7 4.8 4.8 4.9 5.1 5.7 5.6 5.6 5.2 4.6 4.8 5.2 4.7 5.2 4.6 4.4 4.5 4.7 5.7 5.0	4.9 5.2 4.7 4.7 4.8 4.8 4.9 5.0 5.6 5.5 5.5 5.5 5.1 4.7 5.1 4.5 4.4 4.6 4.7 5.7 5.0	3.2 3.2 3.1 3.0 3.1 3.2 2.9 2.6 2.8 3.0 3.0 3.1 3.5 3.7 3.3 3.1 2.9 3.2 5.1 4.6 2.5 2.9 3.5	2.9 2.9 2.8 2.7 2.7 2.8 2.5 2.2 2.4 2.7 2.7 2.8 3.2 3.4 3.0 2.8 2.8 2.6 2.9 4.8 4.3 2.2 2.6 3.2	42.2 38.2 32.7 38.2 35.3 32.3 42.8 49.0 39.6 34.7 38.0 33.9 30.1 31.8 46.0 38.5 40.2 34.9 35.2 27.8 29.6 39.9 54.9 40.9	42.0 38.1 32.5 38.1 35.1 32.1 42.7 49.0 39.4 34.6 37.9 33.7 29.9 31.7 45.9 38.3 40.1 34.8 35.1 27.6 29.4 39.8 54.9 40.8	-1.9 -1.7 -1.9 -1.8 -1.8 -1.6 -1.5 -1.6 -1.5 -1.7 -1.4 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.6 -1.7 -1.8 -1.7 -1.6 -1.7 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6 -1.4 -1.8 -1.6	-2.8 -2.9 -2.6 -2.5 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.7 -2.6 -2.5 -2.8 -2.5 -2.6 -2.6 -2.5

Stericycle -	Incinerator	Stack
--------------	-------------	-------

Date Analyzer	,).	_	02		un-22 : 0	A1	O _x	SC).
Low		D ₂								
Zero Value (Cv) Direct (C Dir)		0.0		00		i.0 .09	_	.28	0. -1.	
Calibration Error (ACE)	0.00%	PASS	0.00%	PASS	0.45%	PASS	-0.13%	PASS	-0.49%	PASS
System Initial (<i>Csi</i>) System Post (<i>Csf</i>)	0.	17 09	0.	03 03	0.	21 18	-0	.32 .49	-0. -0.	04
Average (Co) System Bias Initial (SBi)	0. 1.1%	13 PASS	0.2%	03 PASS	0.6%	20 PASS	0.0%	.41 PASS	-0. 0.4%	07 PASS
System Bias Post (SBf)	0.6%	PASS	0.2%	PASS	0.5%	PASS	-0.1%	PASS	0.5%	PASS
Drift Assessment (D) Mid	-0.53%	PASS	0.00%	PASS	-0.15%	PASS	-0.08%	PASS	0.03%	PASS
Mid Value (Cv) Direct (C Dir)		50 64		98 84		97		5.00 4.21	106 105	5.16
Calibration Error (ACE)	0.93%	PASS PASS	-0.78%	PASS	-0.15%	PASS	-0.38%	PASS	-0.43%	PASS
System Initial (Csi) System Post (Csf)								4.27 4.56	104 104	
Average (Cm)	NI/A	-	NI/A	-	NI/A	-	104	.415	104	4.8
System Bias Initial (SBi) System Bias Post (SBf)	N/A N/A	-	N/A N/A	-	N/A N/A	-	0.0% 0.2%	PASS PASS	-0.2% -0.2%	PASS PASS
Drift Assessment (D) High	N/A	-	N/A	-	N/A	-	0.14%	PASS	-0.08%	PASS
High Value (CS/Cv)		.00		3.0		0.0		0.0	21:	
Direct (C Dir) Calibration Error (ACE)	1.13%	PASS	-0.56%	.87 PASS	0.25%	.05 PASS	-0.62%	3.69 <i>PASS</i>	-0.06%	PASS
System Initial (Csi) System Post (Csf)	15 15	.02		.23		i.39 i.94				
Average (Cm)	15.	045	10	7.4	20	0.2		-		
System Bias Initial (SBi) System Bias Post (SBf)	-0.7% -1.0%	PASS PASS	-3.6% -2.1%	PASS PASS	1.7% -0.5%	PASS PASS	N/A N/A	-	N/A N/A	-
Drift Assessment (D) Analyser Span (Range)	-0.33%	PASS 25	1.45%	PASS 30	-2.25%	PASS 50	N/A	-	N/A	- 00
Average	11.94	11.88	5.88	6.06	4.75	4.56	53.22	53.72	-2.76	-2.72
Time 9:05:50	Recorded 11.9	Corrected 11.8	Recorded 6.1	Corrected 6.3	Recorded 3.7	Corrected 3.5	Recorded 61.0	Corrected 61.5	Recorded -1.0	Correct
9:06:50	9.2	9.1	8.0	8.2	3.2	3.0	60.8	61.3	-0.9	-0.8
9:07:50 9:08:50	14.5 11.7	14.4 11.7	4.8 5.9	4.9 6.0	2.0	1.8 1.9	58.2 50.7	58.7 51.2	-1.0 -1.1	-1.0 -1.1
9:09:50	10.9	10.8	6.8	7.1	1.6	1.4	56.4	56.9	-1.3	-1.2
9:10:50 9:11:50	14.3 8.0	14.3 7.9	4.6 8.0	4.7 8.3	2.3 39.8	2.2 39.7	52.4 56.9	52.9 57.4	-1.3 -1.4	-1.3 -1.3
9:12:50	14.6	14.6	5.2	5.3	40.1	39.9	52.1	52.6	-1.5	-1.4
9:13:50 9:14:50	12.7 9.6	12.6 9.5	5.5 7.4	5.6 7.7	4.6 1.5	4.5 1.3	48.3 59.2	48.8 59.7	-1.7 -1.9	-1.6 -1.9
9:15:50 9:16:50	14.5 10.4	14.5 10.3	4.7 6.5	4.8 6.7	1.5	1.3 1.7	60.2 64.9	60.7 65.4	-1.7 -2.1	-1.7 -2.0
9:17:50	11.4	11.4	6.9	7.1	1.9 1.6	1.4	80.0	80.6	-2.1	-2.0
9:18:50 9:19:50	14.2 9.5	14.2 9.4	5.0 7.2	5.2 7.4	1.8 1.8	1.6 1.6	57.0 57.4	57.5 57.9	-2.0 -2.4	-2.0 -2.3
9:20:50	14.2	14.1	5.2	5.3	3.5	3.3	47.4	47.9	-2.0	-2.0
9:21:50 9:22:50	12.8 9.9	12.7 9.8	5.3 7.0	5.5 7.2	4.7 1.9	4.5 1.7	43.2 56.2	43.7 56.7	-2.1 -2.2	-2.1 -2.2
9:23:50	15.5	15.5	4.1	4.2	12.8	12.7	38.4	38.9	-2.0	-2.0
9:24:50 9:25:50	11.9 10.5	11.8 10.5	5.5 6.7	5.7 6.9	10.4 2.5	10.2 2.3	34.3 45.6	34.7 46.1	-2.2 -2.5	-2.2 -2.4
9:26:50	15.6	15.5	4.0	4.2	22.3	22.2	32.2	32.6	-2.4	-2.4
9:27:50 9:28:50	11.5 10.2	11.4 10.1	5.7 7.0	5.9 7.3	13.2 2.5	13.0 2.4	31.0 48.0	31.5 48.5	-2.4 -2.3	-2.3 -2.3
9:29:50 9:30:50	15.2 10.9	15.2 10.8	4.2 6.1	4.3 6.3	18.5 9.1	18.3 8.9	32.6 32.0	33.1 32.4	-2.6 -2.3	-2.6 -2.3
9:31:50	10.2	10.1	7.4	7.6	2.7	2.5	47.1	47.5	-2.4	-2.4
9:32:50 9:33:50	15.9 11.8	15.8 11.7	4.0 5.5	4.1 5.7	22.3 10.3	22.1 10.1	27.5 25.4	27.9 25.9	-2.7 -2.8	-2.6 -2.8
9:34:50	11.2	11.1	6.3	6.5	2.1	1.9	31.5	32.0	-2.8	-2.8
9:35:50 9:36:50	11.7 11.1	11.6 11.1	5.9 6.2	6.1 6.4	1.5 1.3	1.3 1.1	32.7 32.5	33.2 32.9	-2.9 -2.8	-2.8 -2.7
9:37:50	14.5	14.4	5.2	5.3	11.4	11.2	32.1	32.5	-2.8	-2.8
9:38:50 9:39:50	13.3 11.8	13.3 11.7	4.8 5.7	4.9 5.9	12.5 3.4	12.3 3.2	22.2 24.8	22.6 25.2	-3.1 -2.9	-3.1 -2.8
9:40:50 9:41:50	10.2 12.7	10.1	6.5 6.0	6.7	2.2	2.0	35.1 54.6	35.6 55.1	-2.9	-2.8
9:42:50	12.7	12.7	5.4	5.5	4.0	3.8	41.8	42.3	-2.9 -3.0	-2.9 -2.9
9:43:50 9:44:50	9.6 15.1	9.6 15.0	7.2 4.5	7.4 4.6	1.6 6.0	1.4 5.8	53.5 39.7	54.0 40.2	-3.0 -2.9	-3.0 -2.9
9:45:50	12.4	12.3	5.3	5.5	6.6	6.4	33.4	33.9	-3.2	-3.2
9:46:50 9:47:50	10.4 12.6	10.3 12.6	6.7 6.2	6.9 6.4	1.6 2.2	1.4 2.0	43.9 53.9	44.3 54.4	-3.1 -2.9	-3.1 -2.9
9:48:50	14.7	14.7	4.3	4.4	6.8	6.6	30.4	30.8	-3.2	-3.1
9:49:50 9:50:50	10.8 11.2	10.7 11.1	6.3 6.4	6.5 6.6	2.6 0.7	2.4 0.5	38.5 49.9	39.0 50.4	-3.1 -3.0	-3.1 -2.9
9:51:50 9:52:50	15.3 10.6	15.3 10.5	4.3 6.4	4.4 6.6	7.1 3.3	6.9 3.1	39.8 40.9	40.3 41.4	-3.0 -3.0	-3.0 -3.0
9:53:50	10.0	10.0	7.6	7.8	1.7	1.5	61.4	61.9	-3.2	-3.1
9:54:50 9:55:50	15.7 10.4	15.6 10.4	4.1 6.4	4.2 6.6	8.7 4.0	8.5 3.8	34.1 33.9	34.6 34.3	-2.9 -2.9	-2.9 -2.8
9:56:50	10.0	9.9	7.1	7.3	1.4	1.2	44.9	45.4	-3.0	-2.9
9:57:50 9:58:50	15.3 10.7	15.2 10.6	4.3 6.0	4.4 6.2	7.4 5.4	7.2 5.2	39.3 34.3	39.7 34.8	-2.9 -3.1	-2.8 -3.1
9:59:50 10:00:50	9.1 16.1	9.1 16.0	8.0 3.9	8.3 4.0	3.4 17.0	3.2 16.8	50.2 30.3	50.7 30.8	-3.0 -3.3	-3.0 -3.2
10:01:50	11.2	11.1	5.7	5.9	7.2	7.0	29.3	29.7	-3.3	-3.3
10:02:50 10:03:50	10.1 9.3	10.1 9.3	6.8 7.4	7.0 7.7	1.4 1.2	1.2 1.0	45.9 74.2	46.4 74.7	-3.2 -3.2	-3.2 -3.2
10:04:50	12.2	12.2	5.9	6.0	1.1	0.9	75.9	76.4	-2.9	-2.9
10:05:50 10:06:50	12.5 12.3	12.4 12.3	5.4 5.4	5.6 5.6	0.9 0.6	0.7 0.4	71.4 68.7	71.9 69.3	-3.2 -3.4	-3.2 -3.3
10:07:50	10.8	10.8	6.4	6.6	0.8	0.6	75.6	76.2	-3.1	-3.1
10:08:50 10:09:50	12.1 12.4	12.0 12.3	6.1 5.6	6.3 5.8	1.0 1.1	0.8 1.0	82.8 72.5	83.3 73.0	-3.0 -3.0	-3.0 -3.0
10:10:50 10:11:50	11.3 10.6	11.2 10.5	6.1 6.8	6.3 7.0	1.1 1.0	0.9 0.8	71.3 84.3	71.8 84.9	-3.4 -3.2	-3.3 -3.1
10:12:50	12.3	12.2	5.6	5.7	1.0	0.8	80.7	81.3	-3.2	-3.2
10:13:50 10:14:50	11.3 11.2	11.3 11.2	6.0 6.6	6.2 6.8	0.9 1.1	0.7 0.9	80.9 89.1	81.4 89.7	-3.2 -3.4	-3.2 -3.3
10:15:50	12.8	12.7	5.1	5.2	0.9	0.7	69.4	70.0	-3.4	-3.4
10:16:50 10:17:50	11.8 9.3	11.8 9.2	5.4 7.2	5.6 7.4	1.0 1.0	0.8	66.0 75.2	66.5 75.8	-3.5 -3.6	-3.5 -3.5
10:18:50	12.5	12.5	5.3	5.5	1.0	0.8	75.4	75.9	-3.5	-3.5
10:19:50 10:20:50	12.1 12.3	12.0 12.3	5.4 5.3	5.6 5.5	1.0 1.0	0.8	73.6 71.9	74.2 72.4	-3.7 -3.5	-3.7 -3.4
		11.5	5.7	5.8	0.5	0.3	71.4	72.0	-3.4	-3.3
10:21:50 10:22:50	11.6 11.4	11.4	6.0	6.2	1.3	1.1	76.0	76.5	-3.2	-3.2

Stericycle - Incinerator Stack

5 :					47.1	22				
Date			1 -			un-22	1	-		
Analyzer	'	02	C	02	(:0	N	O _X	SC) ₂
Low										
Zero Value (Cv)		0.0		0.0		0.0		0.0	0.	
Direct (C Dir)		0		.00		.09		.28	-1.	
Calibration Error (ACE)	0.00%	PASS	0.00%	PASS	0.45%	PASS	-0.13%	PASS	-0.49%	PASS
System Initial (Csi)		0.17		.03	0	.21	-0	.32	-0.	10
System Post (Csf)		.09		.03		.18		.49	-0.	
Average (Co)	0	.13	-	.03		.20		.41	-0.	
System Bias Initial (SBi)	1.1%	PASS	0.2%	PASS	0.6%	PASS	0.0%	PASS	0.4%	PASS
System Bias Post (SBf)	0.6%	PASS	0.2%	PASS	0.5%	PASS	-0.1%	PASS	0.5%	PASS
Drift Assessment (D)	-0.53%	PASS	0.00%	PASS	-0.15%	PASS	-0.08%	PASS	0.03%	PASS
Mid			,				,			
Mid Value (Cv)	7	.50	8	.98	10	0.00	10:	5.00	106	.16
Direct (C Dir)	7	.64	8	.84	9	.97	10-	4.21	105	.24
Calibration Error (ACE)	0.93%	PASS	-0.78%	PASS	-0.15%	PASS	-0.38%	PASS	-0.43%	PASS
System Initial (Csi)							10-	4.27	104	.89
System Post (Csf)							104.56		104.73	
Average (Cm)		-		-		-	104.415		104.8	
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-	0.0%	PASS	-0.2%	PASS
System Bias Post (SBf)	N/A	-	N/A	-	N/A	-	0.2%	PASS	-0.2%	PASS
Drift Assessment (D)	N/A	-	N/A	-	N/A	-	0.14%	PASS	-0.08%	PASS
High		•				_	<u> </u>	_		
High Value (CS/Cv)	15	5.00	1	8.0	20.0 210.0		0.0	212	2.3	
Direct (C Dir)	15	5.17	17	7.87	20).05	208	8.69	212	.20
Calibration Error (ACE)	1.13%	PASS	-0.56%	PASS	0.25%	PASS	-0.62%	PASS	-0.06%	PASS
System Initial (Csi)	15	5.07	17		20).39		_		
System Post (Csf)	15	5.02	17	7.49	19	9.94				
Average (Cm)	15	.045	1	7.4	2	0.2		-	-	
System Bias Initial (SBi)	-0.7%	PASS	-3.6%	PASS	1.7%	PASS	N/A	-	N/A	-
System Bias Post (SBf)	-1.0%	PASS	-2.1%	PASS	-0.5%	PASS	N/A	-	N/A	-
Drift Assessment (D)	-0.33%	PASS	1.45%	PASS	-2.25%	PASS	N/A	-	N/A	-
Analyser Span (Range)	2	5	3	30	(50	10	000	10	00
Average	11.94	11.88	5.88	6.06	4.75	4.56	53.22	53.72	-2.76	-2.72
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected
10:25:50	12.6	12.5	5.1	5.3	0.3	0.1	66.8	67.3	-3.3	-3.3
10:26:50	11.3	11.2	5.7	5.9	0.4	0.2	63.0	63.5	-3.4	-3.4
10:27:50	11.0	10.9	6.0	6.2	0.8	0.6	58.2	58.7	-3.3	-3.3
10:28:50	11.4	11.3	5.8	6.0	0.8	0.6	58.0	58.5	-3.5	-3.5
10:29:50	10.2	10.2	6.5	6.7	0.9	0.7	59.4	59.9	-3.6	-3.6

Stericycle - Oxidizer EXIT

Date	17-Jui	n-22
Analyzer	TH	
Low		
Zero Value (Cv) Direct (C Dir)	0.0	
Calibration Error (ACE)	1.12%	PASS
System Initial <i>(Csi)</i>	0.0	
System Post (Csf)	0.0	
Average (Co) System Bias Initial (SBi)	-1.0%	PASS PASS
System Bias Post (SBf)	-0.8%	PASS
Drift Assessment (D)	0.12%	PASS
Mid Mid Value (Cv)	10.	0
Direct (C Dir)	9.5	
Calibration Error (ACE)	-1.76%	PASS
System Initial <i>(Csi)</i> System Post <i>(Csf</i>)		
Average (Cm)	-	
System Bias Initial <i>(SBi)</i>		
System Bias Post <i>(SBf)</i> Drift Assessment <i>(D)</i>		
High		
High Value <i>(CS/Cv)</i>	25.	.0
Direct (C Dir)	25	
Calibration Error (ACE) System Initial (Csi)	0.80% 25.	<i>PASS</i> 08
System Post (Csf)	25.	
Average (Cm)	25.	.1
System Bias Initial <i>(SBi)</i> System Bias Post <i>(SBf)</i>	-0.5% -0.4%	PASS PASS
Drift Assessment (D)	0.12%	PASS PASS
Analyser Span (Range)	10	
Average	7.57	7.50
Time 11:50:44 AM	Recorded 8.2	Corrected 8.1
11:51:44 AM	8.3	8.3
11:52:44 AM	8.2	8.1
11:53:44 AM 11:54:44 AM	8.0	7.9
11:55:44 AM	8.0 7.9	7.9 7.8
11:56:44 AM	8.0	7.9
11:57:44 AM 11:58:44 AM	7.7	7.6
11:59:44 AM	7.8 7.5	7.7 7.4
12:00:44 PM	7.6	7.6
12:01:44 PM 12:02:44 PM	7.5	7.4
12:03:44 PM	7.5	7.4
	7.5	7.4
12:04:44 PM	7.5 7.8	7.4 7.7
12:04:44 PM 12:05:44 PM	7.8 7.7	7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM	7.8 7.7 7.7	7.7 7.7 7.6
12:04:44 PM 12:05:44 PM	7.8 7.7	7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM	7.8 7.7 7.7 7.9 7.9 7.8	7.7 7.7 7.6 7.8 7.8 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9	7.7 7.7 7.6 7.8 7.8 7.7 7.8
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM	7.8 7.7 7.7 7.9 7.9 7.8	7.7 7.7 7.6 7.8 7.8 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.8 7.9	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.8 7.9 7.8	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.7 7.8 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:14:44 PM 12:15:44 PM 12:15:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.8 7.9	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7	7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:15:44 PM 12:15:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.7 7.7 7.7	7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.7 7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:14:44 PM 12:15:44 PM 12:15:44 PM 12:16:44 PM 12:17:44 PM 12:18:44 PM 12:19:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.7 7.8 7.7 7.8 7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.7 7.7 7.4 7.3 7.3 7.4	7.7 7.7 7.6 7.8 7.8 7.7 7.8
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:15:44 PM 12:16:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:18:44 PM 12:20:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.3 7.4
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.7 7.7 7.4 7.3 7.3 7.4	7.7 7.7 7.6 7.8 7.8 7.7 7.8
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:18:44 PM 12:19:44 PM 12:19:44 PM 12:23:44 PM 12:20:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5 7.5 7.6 7.7	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.5 7.6
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:18:44 PM 12:20:44 PM 12:20:44 PM 12:20:44 PM 12:23:44 PM 12:23:44 PM 12:23:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.6 7.6 7.6
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:18:44 PM 12:19:44 PM 12:19:44 PM 12:23:44 PM 12:20:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5 7.5 7.6 7.7	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.5 7.6
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:11:44 PM 12:13:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:21:44 PM 12:20:44 PM 12:20:44 PM 12:20:44 PM 12:21:44 PM 12:22:44 PM 12:23:44 PM 12:23:44 PM 12:24:44 PM 12:25:44 PM 12:25:44 PM 12:25:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.3 7.2	7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.6 7.6 7.6 7.6 7.7 7.1
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:14:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:18:44 PM 12:17:44 PM 12:18:44 PM 12:19:44 PM 12:20:44 PM 12:20:44 PM 12:20:44 PM 12:22:44 PM 12:23:44 PM 12:23:44 PM 12:24:44 PM 12:25:44 PM 12:25:44 PM 12:26:44 PM 12:27:44 PM 12:28:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.3 7.2 7.1	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.5 7.6 7.6 7.6 7.7 7.1 7.1
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:11:44 PM 12:13:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:21:44 PM 12:20:44 PM 12:20:44 PM 12:20:44 PM 12:21:44 PM 12:22:44 PM 12:23:44 PM 12:23:44 PM 12:24:44 PM 12:25:44 PM 12:25:44 PM 12:25:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.3 7.2 7.1 7.1	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.6 7.6 7.6 7.7 7.1 7.1 7.1 7.0
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:11:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:18:44 PM 12:19:44 PM 12:21:44 PM 12:29:44 PM 12:20:44 PM 12:20:44 PM 12:21:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.3 7.2 7.1	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.5 7.6 7.6 7.6 7.7 7.1 7.1
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:11:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:21:44 PM 12:29:44 PM 12:21:44 PM 12:21:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.7 7.6 7.3 7.2 7.1 7.1 7.2 7.6 7.7	7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.2 7.3 7.4 7.5 7.5 7.6 7.6 7.6 7.7 7.1 7.1 7.0 7.1 7.5 7.6 7.6 7.6 7.7 7.6
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:11:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:18:44 PM 12:19:44 PM 12:20:44 PM 12:20:44 PM 12:20:44 PM 12:22:44 PM 12:22:44 PM 12:23:44 PM 12:23:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.3 7.2 7.1 7.1 7.2 7.6 7.7 7.5	7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.7
12:04:44 PM 12:05:44 PM 12:06:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:21:44 PM 12:20:44 PM 12:22:44 PM 12:22:44 PM 12:23:44 PM 12:23:44 PM 12:23:44 PM 12:24:44 PM 12:25:44 PM 12:25:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.7 7.6 7.3 7.2 7.1 7.1 7.2 7.6 7.7	7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.2 7.3 7.4 7.5 7.5 7.6 7.6 7.6 7.7 7.1 7.1 7.0 7.1 7.5 7.6 7.6 7.6 7.7 7.6
12:04:44 PM 12:05:44 PM 12:07:44 PM 12:07:44 PM 12:08:44 PM 12:09:44 PM 12:10:44 PM 12:11:44 PM 12:12:44 PM 12:13:44 PM 12:15:44 PM 12:15:44 PM 12:17:44 PM 12:18:44 PM 12:18:44 PM 12:20:44 PM 12:20:44 PM 12:20:44 PM 12:22:44 PM 12:23:44 PM 12:23:44 PM 12:23:44 PM 12:23:44 PM 12:23:44 PM 12:25:44 PM 12:25:44 PM 12:25:44 PM 12:25:44 PM 12:26:44 PM 12:27:44 PM 12:28:44 PM 12:28:44 PM 12:28:44 PM 12:28:44 PM 12:29:44 PM 12:30:44 PM	7.8 7.7 7.7 7.9 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.4 7.3 7.3 7.3 7.4 7.5 7.5 7.6 7.7 7.7 7.6 7.7 7.1 7.1 7.1 7.1 7.2 7.6 7.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.7 7.7 7.6 7.8 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.4 7.2 7.2 7.2 7.3 7.4 7.5 7.6 7.6 7.6 7.7 7.1 7.1 7.0 7.1 7.1 7.0 7.1 7.4 7.2 7.2 7.3 7.4 7.5 7.6 7.6 7.7 7.7 7.4 7.7 7.4 7.5 7.6 7.7 7.4 7.7 7.4 7.5 7.6 7.6 7.7 7.1 7.1 7.0 7.1 7.1 7.0 7.1 7.1 7.2 7.4 7.4 7.4 7.4

Stericycle - Oxidizer EXIT

Date	17-lı	un-22
Analyzer		HC
Low		
Zero Value <i>(Cv)</i>	C	0.0
Direct (C Dir)		28
Calibration Error (ACE)	1.12%	PASS
System Initial <i>(Csi)</i>	0.	04
System Post (Csf)	0.	07
Average (Co)	0.	06
System Bias Initial <i>(SBi)</i>	-1.0%	PASS
System Bias Post (SBf)	-0.8%	PASS
Drift Assessment (D)	0.12% <i>PASS</i>	
Mid		
Mid Value <i>(Cv)</i>	10	0.0
Direct <i>(C Dir)</i>		56
Calibration Error (ACE)	-1.76%	PASS
System Initial <i>(Csi)</i>		
System Post (Csf)		
Average (Cm)		-
System Bias Initial <i>(SBi)</i>		
System Bias Post (SBf)		
Drift Assessment (D)		
High		
High Value (CS/Cv)		5.0
Direct (C Dir)		.20
Calibration Error (ACE)	0.80%	PASS
System Initial (Csi)		.08
System Post (Csf)	_	.11
Average (Cm)		5.1
System Bias Initial <i>(SBi)</i>	-0.5%	PASS
6 . 5 . 650	0.407	
System Bias Post (SBf)	-0.4%	PASS
Drift Assessment (D)	0.12%	PASS PASS
Drift Assessment (D) Analyser Span (Range)	0.12%	PASS PASS 00
Drift Assessment (D) Analyser Span (Range) Average	0.12% 1 7.57	PASS PASS 00 7.50
Drift Assessment (D) Analyser Span (Range) Average Time	0.12% 1 7.57 Recorded	PASS PASS 00 7.50 Corrected
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM	0.12% 1 7.57 Recorded 7.4	PASS PASS 00 7.50 Corrected 7.3
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM	0.12% 1 7.57 Recorded 7.4 7.4	PASS PASS 00 7.50 Corrected 7.3 7.3
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.4	PASS PASS 00 7.50 Corrected 7.3 7.3 7.3
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1	PASS PASS 00 7.50 Corrected 7.3 7.3 7.3 7.0
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM 12:43:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1 7.0	PASS PASS 00 7.50 Corrected 7.3 7.3 7.3 7.0 7.0
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM 12:43:44 PM 12:44:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1 7.0 7.0	PASS PASS 00 7.50 Corrected 7.3 7.3 7.3 7.0 7.0 6.9
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM 12:43:44 PM 12:45:44 PM 12:45:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1 7.0 7.0 7.0	PASS PASS 00 7.50 Corrected 7.3 7.3 7.3 7.0 7.0 6.9 7.0
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM 12:43:44 PM 12:45:44 PM 12:45:44 PM 12:45:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1 7.0 7.0 7.0 7.3	PASS PASS 000 7.50 Corrected 7.3 7.3 7.3 7.0 7.0 6.9 7.0 7.2
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM 12:44:44 PM 12:45:44 PM 12:45:44 PM 12:45:44 PM 12:46:44 PM 12:46:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1 7.0 7.0 7.0 7.3 7.0	PASS PASS 00 7.50 Corrected 7.3 7.3 7.3 7.0 7.0 6.9 7.0 7.2 6.9
Drift Assessment (D) Analyser Span (Range) Average Time 12:40:44 PM 12:41:44 PM 12:42:44 PM 12:43:44 PM 12:43:44 PM 12:45:44 PM 12:45:44 PM 12:45:44 PM	0.12% 7.57 Recorded 7.4 7.4 7.4 7.1 7.0 7.0 7.0 7.3	PASS PASS 000 7.50 Corrected 7.3 7.3 7.3 7.0 7.0 6.9 7.0 7.2

Stericycle - Oxidizer EXIT

Date	17-Jui	
Analyzer Low	ТН	C
Zero Value (Cv)	0.0	Λ
Direct (C Dir)	0.2	
Calibration Error (ACE)	1.12%	PASS
System Initial <i>(Csi)</i>	0.0	
System Post (Csf)	0.0	
Average (Co)	0.0	
System Bias Initial <i>(SBi)</i> System Bias Post <i>(SBf)</i>	-1.0% -0.8%	PASS PASS
Drift Assessment (D)	0.12%	PASS
Mid		
Mid Value (Cv)	10.	
Direct (C Dir)	9.5	
Calibration Error (ACE)	-1.76%	PASS
System Initial <i>(Csi)</i> System Post <i>(Csf)</i>		
Average (Cm)	-	
System Bias Initial (SBi)		
System Bias Post (SBf)		
Drift Assessment (D)		
High	25	2
High Value (CS/Cv) Direct (C Dir)	25. 25.	
Calibration Error (ACE)	0.80%	PASS PASS
System Initial (Csi)	25.0	
System Post (Csf)	25.	11
Average (Cm)	25.	
System Bias Initial (SBi)	-0.5%	PASS
System Bias Post <i>(SBf)</i> Drift Assessment <i>(D)</i>	-0.4% 0.12%	PASS PASS
Analyser Span (Range)	10	
Average	7.91	7.84
Time	Recorded	Corrected
12:51:44 PM	7.2	7.2
12:52:44 PM	7.5	7.4
12:52:44 PM 12:53:44 PM	7.5 7.4	7.4 7.3
12:52:44 PM	7.5	7.4
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM	7.5 7.4 7.1 7.1 7.2	7.4 7.3 7.0 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM	7.5 7.4 7.1 7.1 7.2 7.1	7.4 7.3 7.0 7.1 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3	7.4 7.3 7.0 7.1 7.1 7.1 7.2
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 12:59:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:02:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.0 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:02:44 PM 1:03:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.0 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:02:44 PM 1:03:44 PM 1:04:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:02:44 PM 1:03:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:59:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:02:44 PM 1:03:44 PM 1:04:44 PM 1:05:44 PM 1:05:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:04:44 PM 1:05:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.8	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:02:44 PM 1:03:44 PM 1:04:44 PM 1:05:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:08:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:59:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:04:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:04:44 PM 1:05:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM 1:109:44 PM 1:109:44 PM	7.5 7.4 7.1 7.1 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:56:44 PM 12:57:44 PM 12:59:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:04:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:07:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM 1:09:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.3	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.2
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:59:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM 1:109:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:09:44 PM 1:09:44 PM 1:109:44 PM 1:110:44 PM 1:110:44 PM 1:110:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7 7.3	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:09:44 PM 1:09:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:13:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM	7.5 7.4 7.1 7.1 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.2 7.2 7.2 7.2 7.3
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:104:44 PM 1:104:44 PM 1:104:44 PM 1:104:44 PM 1:104:44 PM 1:105:44 PM 1:104:44 PM 1:105:44 PM 1:105:44 PM 1:105:44 PM 1:116:44 PM 1:116:44 PM 1:116:44 PM 1:116:44 PM 1:116:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.2 7.3 7.3 7.3 7.8 7.9 7.7 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.2 7.3
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:09:44 PM 1:09:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:109:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:13:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM	7.5 7.4 7.1 7.1 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.2	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.2 7.2 7.2 7.2 7.3
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:05:44 PM 1:07:44 PM 1:07:44 PM 1:08:44 PM 1:09:44 PM 1:10:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:13:44 PM 1:13:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:17:44 PM 1:17:44 PM 1:18:44 PM 1:19:44 PM 1:19:44 PM 1:19:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.2 7.3 7.4	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.3 7.3
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:09:44 PM 1:09:44 PM 1:109:44 PM 1:10:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:13:44 PM 1:13:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:16:44 PM 1:17:44 PM 1:18:44 PM 1:19:44 PM 1:19:44 PM 1:20:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.7 7.3 7.2 7.3 7.4 7.2 7.4 7.5	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.2 7.3 7.3 7.3 7.3 7.4
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:09:44 PM 1:109:44 PM 1:109:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:13:44 PM 1:13:44 PM 1:11:44 PM 1:11:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:16:44 PM 1:16:44 PM 1:17:44 PM 1:18:44 PM 1:19:44 PM 1:20:44 PM 1:20:44 PM	7.5 7.4 7.1 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.2 7.3 7.4 7.2 7.4 7.5 7.5 7.5	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.2 7.3 7.3 7.3 7.4 7.4 7.4
12:52:44 PM 12:53:44 PM 12:54:44 PM 12:55:44 PM 12:55:44 PM 12:57:44 PM 12:57:44 PM 12:58:44 PM 12:59:44 PM 1:00:44 PM 1:01:44 PM 1:03:44 PM 1:03:44 PM 1:05:44 PM 1:06:44 PM 1:07:44 PM 1:09:44 PM 1:09:44 PM 1:109:44 PM 1:10:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:11:44 PM 1:13:44 PM 1:13:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:15:44 PM 1:16:44 PM 1:17:44 PM 1:18:44 PM 1:19:44 PM 1:19:44 PM 1:20:44 PM	7.5 7.4 7.1 7.1 7.2 7.1 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.9 7.5 7.3 7.8 7.9 8.1 8.1 8.1 8.3 8.1 7.9 7.7 7.3 7.7 7.3 7.2 7.3 7.4 7.2 7.4 7.5	7.4 7.3 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.1 7.0 7.1 7.8 7.5 7.2 7.7 7.8 8.0 8.0 8.0 8.2 8.0 7.9 7.6 7.2 7.2 7.3 7.3 7.3 7.4

Stericycle - Oxidizer EXIT

Date	17-Ju	ın-22
Analyzer	Th	łC
Low		
Zero Value <i>(Cv)</i>	0	.0
Direct (C Dir)	0.	28
Calibration Error (ACE)	1.12%	PASS
System Initial <i>(Csi)</i>		04
System Post (Csf)		07
Average (Co)	0.	06
System Bias Initial (SBi)	-1.0%	PASS
System Bias Post (SBf)	-0.8%	PASS
Drift Assessment (D)	0.12%	PASS
Mid		
Mid Value (Cv)	10	0.0
Direct (C Dir)	9.	56
Calibration Error (ACE)	-1.76%	PASS
System Initial <i>(Csi)</i>		
System Post (Csf)		
Average (Cm)		-
System Bias Initial (SBi)		
System Bias Post (SBf)		
Drift Assessment (D)		
High		
High Value (CS/Cv)	25	5.0
Direct (C Dir)		.20
Calibration Error (ACE)	0.80%	PASS
System Initial (Csi)		.08
System Post (Csf)	25	
Average (Cm)	25	5.1
Average (Cm) System Bias Initial (SBi)	-0.5%	PASS
Average (Cm)	25	5.1
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf)	-0.5% -0.4% 0.12%	PASS PASS
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D)	-0.5% -0.4% 0.12%	PASS PASS PASS PASS
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time	-0.5% -0.4% 0.12%	PASS PASS PASS PASS
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average	-0.5% -0.4% 0.12%	PASS PASS PASS PASS 00
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time	-0.5% -0.4% 0.12% 10 7.91 Recorded	PASS PASS PASS PASS 00 7.84 Corrected
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM	-0.5% -0.4% 0.12% 10 7.91 Recorded 7.6	PASS PASS PASS 00 7.84 Corrected 7.5
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM	7.91 Recorded 7.6 7.3 8.4	PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5	PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:31:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.5	PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:32:44 PM 1:33:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6	PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:33:44 PM	7.91 Recorded 7.6 7.3 8.4 8.5 8.6 8.6	PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:32:44 PM 1:33:44 PM 1:33:44 PM 1:33:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0	PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6 8.9
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:33:44 PM 1:34:44 PM 1:35:44 PM 1:35:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6 8.9 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.5 8.6 8.6 9.0 8.9 8.9	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6 8.9 8.8 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.8	7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:32:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.9 8.8 8.8	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:37:44 PM 1:37:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.8 8.8 8.8	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.7
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.8 8.8 8.9 8.9	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.8 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM	7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.5 8.6 8.6 9.0 8.9 8.9 8.8 8.8 8.9 8.9 8.9	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.7 8.8 8.9 8.7
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:33:44 PM 1:33:44 PM 1:34:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM 1:38:44 PM	-0.5% -0.4% 0.12% 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.5 8.6 8.6 9.0 8.9 8.9 8.8 8.8 8.9 8.9 8.8 8.8 8.9 8.9 8.8 8.8	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM 1:38:44 PM 1:38:44 PM 1:39:44 PM 1:40:44 PM 1:40:44 PM 1:41:44 PM 1:42:44 PM	-0.5% -0.4% 0.12% 10 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.9 8.9 8.8 8.8 8.8 8.9 8.9 8.8 8.8	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM 1:38:44 PM 1:38:44 PM 1:38:44 PM 1:34:44 PM 1:40:44 PM 1:41:44 PM 1:42:44 PM 1:43:44 PM 1:43:44 PM	-0.5% -0.4% 0.12% 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.9 8.8 8.8 8.9 8.8 8.9 8.8 8.7 8.7	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.7 8.8 8.9 8.7 8.7 8.8 8.9 8.7 8.7 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:37:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM 1:38:44 PM 1:38:44 PM 1:38:44 PM 1:38:44 PM 1:34:44 PM 1:34:44 PM 1:40:44 PM 1:40:44 PM 1:41:44 PM 1:42:44 PM 1:45:44 PM 1:45:44 PM	-0.5% -0.4% 0.12% 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.9 8.8 8.8 8.9 8.8 8.8	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM 1:38:44 PM 1:37:44 PM 1:38:44 PM 1:34:44 PM 1:34:44 PM 1:34:44 PM 1:34:44 PM 1:40:44 PM 1:40:44 PM 1:41:44 PM 1:42:44 PM 1:45:44 PM 1:45:44 PM 1:45:44 PM	-0.5% -0.4% 0.12% 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.9 8.8 8.8 8.9 8.8 8.9 8.8 8.7 8.7	PASS PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.7 8.7 8.8 8.9 8.7 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:37:44 PM 1:37:44 PM 1:38:44 PM 1:34:44 PM 1:34:44 PM 1:34:44 PM 1:40:44 PM 1:40:44 PM 1:41:44 PM 1:41:44 PM 1:45:44 PM 1:45:44 PM 1:45:44 PM 1:45:44 PM 1:45:44 PM 1:46:44 PM	-0.5% -0.4% 0.12% 10 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.6 8.6 9.0 8.9 8.9 8.9 8.8 8.8 8.8 8.9 8.9 8.9 8.8 8.8	PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.8 8.7 8.7 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.7 8.8 8.9 8.7 8.7 8.8 8.9 8.7 8.9 8.7 8.8
Average (Cm) System Bias Initial (SBi) System Bias Post (SBf) Drift Assessment (D) Analyser Span (Range) Average Time 1:27:44 PM 1:28:44 PM 1:29:44 PM 1:30:44 PM 1:31:44 PM 1:33:44 PM 1:35:44 PM 1:35:44 PM 1:36:44 PM 1:36:44 PM 1:37:44 PM 1:38:44 PM 1:38:44 PM 1:34:44 PM 1:34:44 PM 1:34:44 PM 1:43:44 PM 1:40:44 PM 1:40:44 PM 1:41:44 PM 1:42:44 PM 1:45:44 PM 1:45:44 PM 1:45:44 PM	-0.5% -0.4% 0.12% 7.91 Recorded 7.6 7.5 7.3 8.4 8.5 8.5 8.6 8.6 9.0 8.9 8.9 8.9 8.8 8.8 8.9 8.9	PASS PASS PASS PASS PASS 00 7.84 Corrected 7.5 7.4 7.3 8.4 8.5 8.6 8.9 8.8 8.7 8.7 8.8 8.9 8.7 8.8

Stericycle - Oxidizer EXIT

Steritytic - Oxidizer Exti		
Date Analyzer	17-Ju T H	
Low	111	
Zero Value <i>(Cv)</i>	0.	0
Direct (C Dir)	0.2	
Calibration Error (ACE) System Initial (Csi)	1.12%	PASS 14
System Post (Csf)	0.0	
Average (Co)	0.0	
System Bias Initial <i>(SBi)</i> System Bias Post <i>(SBf)</i>	-1.0% -0.8%	PASS PASS
Drift Assessment (D)	0.12%	PASS
Mid		
Mid Value (Cv) Direct (C Dir)	9.5	
Calibration Error (ACE)	-1.76%	PASS
System Initial <i>(Csi)</i>		
System Post (Csf) Average (Cm)	_	
System Bias Initial (SBi)		
System Bias Post (SBf)		
Drift Assessment (D) High		
High Value (CS/Cv)	25	.0
Direct (C Dir)	25.	
Calibration Error (ACE)	0.80%	PASS
System Initial <i>(Csi)</i> System Post <i>(Csf)</i>	25. 25.	
Average (Cm)	25.	
System Bias Initial (SBi)	-0.5%	PASS
System Bias Post (SBf) Drift Assessment (D)	-0.4% 0.12%	PASS PASS
Analyser Span (Range)	10	
Average	8.46	8.39
Time	Recorded	Corrected
1:51:44 PM 1:52:44 PM	8.8 8.6	8.7 8.5
1:53:44 PM	8.7	8.6
1:54:44 PM	8.8	8.7
1:55:44 PM 1:56:44 PM	8.7 8.9	8.7 8.8
1:57:44 PM	9.1	9.0
1:58:44 PM	9.2	9.1
1:59:44 PM 2:00:44 PM	9.2 9.3	9.2 9.2
2:01:44 PM	9.6	9.5
2:02:44 PM	9.5	9.4
2:03:44 PM 2:04:44 PM	9.3	9.2 9.1
2:05:44 PM	8.9	8.8
2:06:44 PM	8.9	8.8
2:07:45 PM	8.9	8.8
2:08:44 PM 2:09:44 PM	8.8 8.8	8.8 8.7
2:10:44 PM	8.8	8.8
2:11:44 PM	8.7	8.6
2:12:44 PM 2:13:44 PM	8.8 8.7	8.7 8.7
2:14:44 PM	8.6	8.5
2:15:45 PM	0.0	
	8.7	8.6
2:16:45 PM	8.7 8.6	8.5
	8.7	
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM	8.7 8.6 8.5 8.5 8.6	8.5 8.5 8.4 8.5
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM	8.7 8.6 8.5 8.5 8.6 8.6	8.5 8.5 8.4 8.5 8.5
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM	8.7 8.6 8.5 8.5 8.6	8.5 8.5 8.4 8.5
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1	8.5 8.5 8.4 8.5 8.5 8.4 8.2 8.0
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0	8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9	8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0	8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:26:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 8.0 7.8	8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.8
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:26:45 PM 2:27:45 PM 2:28:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 8.0 7.8	8.5 8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.9 7.7
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:26:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 8.0 7.8	8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.8
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:26:45 PM 2:27:45 PM 2:27:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:30:45 PM 2:30:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 7.8 7.8 7.8 8.1 7.9 8.0	8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.8 7.7 8.0 7.8
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:27:45 PM 2:27:45 PM 2:27:45 PM 2:28:45 PM 2:23:45 PM 2:28:45 PM 2:28:45 PM 2:30:45 PM 2:30:45 PM 2:31:45 PM 2:33:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 7.8 7.8 7.8 8.1 7.9 8.0	8.5 8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.8 7.7 8.0 7.8 7.9 8.0
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:27:45 PM 2:27:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:29:45 PM 2:30:45 PM 2:30:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 7.8 7.8 7.8 8.1 7.9 8.0	8.5 8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.9 7.8 7.7 8.0 7.8
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:27:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:30:45 PM 2:30:45 PM 2:31:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:34:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.7 8.0 7.9 8.0 7.8 7.8 7.8 8.1 7.9 8.0 7.9	8.5 8.5 8.4 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.8 7.7 8.0 7.8 7.9 8.0 7.8 7.9
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:22:45 PM 2:23:45 PM 2:24:45 PM 2:25:45 PM 2:25:45 PM 2:26:45 PM 2:27:45 PM 2:28:45 PM 2:28:45 PM 2:23:45 PM 2:30:45 PM 2:30:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:34:45 PM 2:35:45 PM 2:37:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.5 8.3 8.1 8.0 7.9 8.0 7.8 7.8 7.8 8.1 7.9 8.0 8.0 7.9	8.5 8.5 8.4 8.5 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.9 7.8 7.7 8.0 7.8 7.9 8.0 7.8 7.7
2:16:45 PM 2:17:45 PM 2:18:45 PM 2:19:45 PM 2:20:45 PM 2:21:45 PM 2:22:45 PM 2:22:45 PM 2:24:45 PM 2:25:45 PM 2:26:45 PM 2:26:45 PM 2:27:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:28:45 PM 2:30:45 PM 2:30:45 PM 2:31:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:33:45 PM 2:34:45 PM	8.7 8.6 8.5 8.5 8.6 8.6 8.7 8.0 7.9 8.0 7.8 7.8 7.8 8.1 7.9 8.0 7.9	8.5 8.5 8.4 8.5 8.4 8.2 8.0 8.0 7.9 7.9 7.8 7.7 8.0 7.8 7.9 8.0 7.8 7.7

Stericycle - Oxidizer EXIT

Date	17-	un-22
Analyzer	(O_2
Low		
Zero Value (Cv) Direct (C Dir)		0.0
Calibration Error (ACE)	0.00%	PASS
System Initial (Csi)		.09
System Post (<i>Csf</i>) Average (<i>Co</i>)		.13
System Bias Initial (SBi)	0.6%	PASS
System Bias Post (SBf)	0.9%	PASS
Drift Assessment (D) Mid	0.27%	PASS
Mid Value (Cv)	7	.50
Direct (C Dir)		.64
Calibration Error (ACE)	0.93%	PASS
System Initial <i>(Csi)</i> System Post <i>(Csf)</i>		
Average (Cm)		-
System Bias Initial (SBi)	N/A	-
System Bias Post (SBf) Drift Assessment (D)	N/A N/A	-
High		
High Value (CS/Cv)		5.00
Direct (C Dir) Calibration Error (ACE)	1.13%	5.17 PASS
System Initial (Csi)		5.02
System Post <i>(Csf)</i>	15	5.14
Average (Cm) System Bias Initial (SBi)	-1.0%	5.08 <i>PASS</i>
System Bias Initial (SBI) System Bias Post (SBf)	-1.0% -0.2%	PASS PASS
Drift Assessment (D)	0.80%	PASS
Analyser Span (Range)	0.70	9.60
Average Time	8.78 Recorded	8.69 Corrected
3:08:41 PM	4.7	4.6
3:09:41 PM	9.7	9.6
3:10:41 PM 3:11:41 PM	11.5 5.5	11.5 5.4
3:12:41 PM	11.1	11.0
3:13:41 PM	10.0	9.9
3:14:41 PM 3:15:41 PM	6.3	6.2 10.9
3:16:41 PM	9.7	9.6
3:17:41 PM	6.3	6.2
3:18:41 PM 3:19:41 PM	13.2 3.7	13.1 3.6
3:20:41 PM	9.2	9.1
3:21:41 PM	10.5	10.5
3:22:41 PM 3:23:41 PM	5.7 11.7	5.6 11.6
3:24:41 PM	9.2	9.1
3:25:41 PM	5.0	4.9
3:26:41 PM 3:27:41 PM	12.4 4.7	12.4 4.6
3:28:41 PM	9.7	9.6
3:29:41 PM	12.4	12.4
3:30:41 PM 3:31:41 PM	4.3 10.4	4.2 10.3
3:32:41 PM	11.3	11.2
3:33:41 PM	3.2	3.1
3:34:42 PM 3:35:42 PM	13.4 8.7	13.4 8.6
3:36:42 PM	5.9	5.8
3:37:41 PM	11.2	11.1
3:38:42 PM 3:39:42 PM	9.8 5.4	9.7 5.3
3:39:42 PM 3:40:42 PM	11.9	11.8
3:41:42 PM	9.2	9.1
3:42:42 PM	5.8	5.7
3:43:42 PM 3:44:42 PM	10.4 10.4	10.3 10.3
3:45:42 PM	4.6	4.5
3:46:42 PM	12.4	12.3
3:47:42 PM 3:48:42 PM	9.0 5.8	8.9 5.7
3:49:42 PM		11.0
3.43.42 F IVI	11.1	
3:50:42 PM	10.6	10.5
3:50:42 PM 3:51:42 PM	10.6 4.4	4.3
3:50:42 PM	10.6	
3:50:42 PM 3:51:42 PM 3:52:42 PM 3:53:42 PM 3:54:42 PM	10.6 4.4 12.0 10.3 5.7	4.3 11.9 10.2 5.6
3:50:42 PM 3:51:42 PM 3:52:42 PM 3:53:42 PM 3:54:42 PM 3:55:42 PM	10.6 4.4 12.0 10.3 5.7 9.1	4.3 11.9 10.2 5.6 9.0
3:50:42 PM 3:51:42 PM 3:52:42 PM 3:53:42 PM 3:54:42 PM	10.6 4.4 12.0 10.3 5.7	4.3 11.9 10.2 5.6

Stericycle - Oxidizer EXIT

Date	17-Jւ	ın-22
Analyzer	()2
Low		
Zero Value <i>(Cv)</i>	0	.0
Direct (C Dir)		0
Calibration Error (ACE)	0.00%	PASS
System Initial <i>(Csi)</i>	0.	09
System Post (Csf)		13
Average (Co)		11
System Bias Initial <i>(SBi)</i>	0.6%	PASS
System Bias Post <i>(SBf)</i>	0.9%	PASS
Drift Assessment (D)	0.27%	PASS
Mid		50
Mid Value (Cv)		50
Direct (C Dir)		64
Calibration Error (ACE)	0.93%	PASS
System Initial (Csi)		
System Post (Csf)		
Average (Cm)	NI/A	
System Bias Initial (SBi)	N/A N/A	-
System Bias Post (SBf) Drift Assessment (D)		-
High	N/A	-
High Value (CS/Cv)	15	.00
Direct (C Dir)		.17
Calibration Error (ACE)	1.13%	PASS
System Initial (Csi)		.02
System Post (Csf)		.14
Average (Cm)		.08
System Bias Initial (SBi)	-1.0%	PASS
System Bias Post <i>(SBf)</i>	-0.2%	PASS
System Bias Post (SBf) Drift Assessment (D)	-0.2% 0.80%	PASS PASS
Drift Assessment (D) Analyser Span (Range) Average	0.80% 8.78	
Drift Assessment (D) Analyser Span (Range) Average Time	0.80% 8.78 Recorded	PASS 8.69 Corrected
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM	0.80% 8.78 Recorded 9.2	8.69 Corrected 9.2
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM	0.80% 8.78 Recorded 9.2 12.4	8.69 Corrected 9.2 12.3
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5	8.69 Corrected 9.2 12.3 7.4
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2	8.69 Corrected 9.2 12.3 7.4 6.1
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6	8.69 Corrected 9.2 12.3 7.4 6.1 12.6
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:05:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:07:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:05:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:07:42 PM 4:07:42 PM 4:07:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:05:42 PM 4:07:42 PM 4:07:42 PM 4:07:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:03:42 PM 4:03:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4 6.9	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3 6.8
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:05:42 PM 4:05:42 PM 4:07:42 PM 4:09:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4 6.9 13.4	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3 6.8 13.4
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:02:42 PM 4:03:42 PM 4:05:42 PM 4:05:42 PM 4:07:42 PM 4:09:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4 6.9 13.4 4.9	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3 6.8 13.4 4.8
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:11:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4 6.9 13.4 4.9 7.9	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3 6.8 13.4 4.8 7.8
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:11:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4 6.9 13.4 4.9 7.9 13.6	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3 6.8 13.4 4.8 7.8 13.5
Drift Assessment (D) Analyser Span (Range) Average Time 3:58:42 PM 3:59:42 PM 4:00:42 PM 4:01:42 PM 4:03:42 PM 4:04:42 PM 4:05:42 PM 4:05:42 PM 4:06:42 PM 4:07:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:10:42 PM 4:11:42 PM	0.80% 8.78 Recorded 9.2 12.4 7.5 6.2 12.6 5.3 8.4 13.6 6.0 6.9 13.2 7.2 7.8 13.5 5.7 7.0 13.1 6.4 6.9 13.4 4.9 7.9	8.69 Corrected 9.2 12.3 7.4 6.1 12.6 5.2 8.3 13.5 5.9 6.8 13.1 7.1 7.7 13.4 5.6 6.9 13.0 6.3 6.8 13.4 4.8 7.8

RATA Test:	1						
Date	Ė		15-Ji	un-22			
Analyzer)2		0	N.	Ox	
Low		-		•		<u> </u>	
Zero Value (Cv)	0	00	0	0.00		00	
Direct (C Dir)		00		32		03	
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS	
System Initial (Csi)		04		53		03	
System Post (Csf)		09		0.27		09	
Average (Co)		07	0.40		0.06		
System Bias Initial (SBI)	0.3%	PASS	1.1%	PASS	0.0%	PASS	
System Bias Post (SBf)	0.6%	PASS	-0.3%	PASS	0.0%	PASS	
Drift Assessment (D)	0.33%	PASS	-1.30%	PASS	0.03%	PASS	
Mid	1						
Mid Value (Cv)	7.	50	10.00		105.00		
Direct (C Dir)	7.53		10	10.18		106.18	
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS	
System Initial (Csi)	7.	49	10	.27	105	5.47	
System Post (Csf)	7.	48	10	.28	105	5.47	
Average (Cm)		49	10	.28		5.47	
System Bias Initial (SBi)	-0.3%	PASS	0.4%	PASS	-0.3%	PASS	
System Bias Post (SBf)	-0.3%	PASS	0.5%	PASS	-0.3%	PASS	
Drift Assessment (D)	-0.07%	PASS	0.05%	PASS	0.00%	PASS	
High							
High Value (CS/Cv)	15	.00	20	.00	210	0.00	
Direct (C Dir)		.97		.07		2.43	
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS	
System Initial (Csi)							
System Post (Csf)							
Average (Cm)		-				-	
System Bias Initial (SBi)	N/A	-	N/A		N/A	-	
System Bias Post (SBf)	N/A	-	N/A	-	N/A		
Drift Assessment (D)	N/A	-	N/A	-	N/A	-	
Analyser Span (Range)		25	6	60	10	000	
Average	11.92	11.98	1.76	1.38	33.36	33.17	
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	
9:15:22	11.1	11.2	1.7	1.3	34.3	34.1	
9:16:22	12.4	12.5	1.7	1.3	33.3	33.1	
9:17:22	11.9	12.0	1.9	1.5	32.5	32.3	
9:18:22	11.6						
		11.6	2.6	2.2	37.3	37.1	
9:19:22	10.7	10.8	1.3	0.9	37.3 47.8	37.1 47.6	
9:19:22 9:20:22	10.7 13.0	10.8 13.1	1.3 1.7	0.9 1.3	37.3 47.8 32.5	37.1 47.6 32.3	
9:19:22 9:20:22 9:21:22	10.7 13.0 11.2	10.8 13.1 11.2	1.3 1.7 0.9	0.9 1.3 0.5	37.3 47.8 32.5 35.0	37.1 47.6 32.3 34.8	
9:19:22 9:20:22 9:21:22 9:22:22	10.7 13.0 11.2 11.5	10.8 13.1 11.2 11.6	1.3 1.7 0.9 1.5	0.9 1.3 0.5 1.1	37.3 47.8 32.5 35.0 41.3	37.1 47.6 32.3 34.8 41.1	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22	10.7 13.0 11.2 11.5 11.5	10.8 13.1 11.2 11.6 11.5	1.3 1.7 0.9 1.5 2.0	0.9 1.3 0.5 1.1 1.6	37.3 47.8 32.5 35.0 41.3 37.8	37.1 47.6 32.3 34.8 41.1 37.6	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22	10.7 13.0 11.2 11.5 11.5	10.8 13.1 11.2 11.6 11.5 12.6	1.3 1.7 0.9 1.5 2.0 2.0	0.9 1.3 0.5 1.1 1.6	37.3 47.8 32.5 35.0 41.3 37.8 30.5	37.1 47.6 32.3 34.8 41.1 37.6 30.4	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5	10.8 13.1 11.2 11.6 11.5 12.6	1.3 1.7 0.9 1.5 2.0 2.0	0.9 1.3 0.5 1.1 1.6 1.7	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:26:22 9:26:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7	10.8 13.1 11.2 11.6 11.5 12.6 12.6 11.8	1.3 1.7 0.9 1.5 2.0 2.0 1.5	0.9 1.3 0.5 1.1 1.6 1.7 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22 9:26:22 9:27:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7	10.8 13.1 11.2 11.6 11.5 12.6 12.6 11.8	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4	10.8 13.1 11.2 11.6 11.5 12.6 12.6 11.8 10.5	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 40.4 40.5	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3	
9:19:22 9:20:22 9:21:22 9:22:22 9:22:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22 9:29:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4 12.0	10.8 13.1 11.2 11.6 11.5 12.6 12.6 11.8 10.5 12.0	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8 1.7	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.1 1.4 1.3	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:25:22 9:26:22 9:26:22 9:28:22 9:29:22 9:29:22 9:30:22	10.7 13.0 11.2 11.5 12.6 12.5 11.7 10.4 12.0 12.9	10.8 13.1 11.2 11.6 11.5 12.6 12.6 11.8 10.5 12.0 12.9	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8 1.7 2.2	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4 1.3 1.8	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22 9:26:22 9:27:22 9:29:22 9:30:22 9:30:22 9:31:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.6 11.8	10.8 13.1 11.2 11.6 11.5 12.6 12.6 12.6 12.0 12.9 12.9 12.7	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8 1.7 2.2 1.5 2.1	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4 1.3 1.8 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:31:22 9:32:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.6 11.8	10.8 13.1 11.2 11.6 11.5 12.6 12.6 12.0 12.9 12.7 11.8 12.7	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.7 2.2 1.5 2.2 1.5	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4 1.3 1.8 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 33.3	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:25:22 9:26:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:32:22 9:33:22 9:33:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.6 11.8 11.9	10.8 13.1 11.2 11.6 11.5 12.6 11.8 10.5 12.0 12.9 12.7 11.8 12.0 12.0	1.3 1.7 0.9 1.5 2.0 2.0 2.1,5 1.5 1.8 1.7 2.2 1.5 2.1,7	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4 1.3 1.8 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 29.7 31.8 29.7 31.8 32.0	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6 31.6	
9:19:22 9:20:22 9:21:22 9:22:22 9:22:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22 9:30:22 9:30:22 9:31:22 9:32:22 9:32:22 9:33:22 9:34:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.9 11.8 11.9	10.8 13.1 11.2 11.6 11.5 12.6 12.6 12.0 12.9 12.9 12.7 11.8 12.0 12.0 12.0	1.3 1.7 0.9 1.5 2.0 1.5 1.5 1.5 1.7 2.2 2.1 2.2 1.7	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.3 1.8 1.7 1.8 1.1	37.3 47.8 32.5 35.0 41.3 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 29.8	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6 33.3 31.8 29.6	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:33:22 9:34:22 9:34:22 9:34:22 9:35:22	10.7 13.0 11.2 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.9 12.6 11.8 11.9 12.0 12.0 13.0	10.8 13.1 11.2 11.6 11.5 12.6 12.6 11.8 10.5 12.0 12.9 12.7 11.8 12.0 12.0 12.0 12.1 12.0	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8 1.7 2.2 1.5 2.1 2.2 1.7	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4 1.3 1.8 1.1 1.7 1.8 1.1 1.7	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 32.0 29.8	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 40.2 40.3 31.4 29.5 31.6 33.3 31.8 29.6 26.7	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:23:22 9:26:22 9:26:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:32:22 9:33:22 9:33:22 9:35:22 9:35:22 9:36:22	10.7 13.0 11.2 11.5 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.6 11.8 11.9 12.0 12.2 13.0	10.8 13.1 11.2 11.6 11.5 12.6 12.6 12.9 12.9 12.7 11.8 12.0 12.9 12.7 11.8 12.0 12.3 12.1 12.0	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8 1.7 2.2 2.1 2.1 2.2 1.5 2.1 2.7 1.6 1.7	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.3 1.8 1.7 1.8 1.1 1.7 1.8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 32.0 29.8 26.8	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6 33.3 31.8 29.6 26.7 27.5	
9:19:22 9:20:22 9:21:22 9:22:22 9:22:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:32:22 9:33:22 9:35:22 9:35:22 9:35:22 9:35:22	10.7 13.0 11.2 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.9 12.0 11.8 11.9 12.0 12.0 12.0 12.2 13.0	10.8 13.1 11.2 11.6 12.6 12.6 12.0 12.0 12.7 11.8 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.8 1.7 2.2 1.5 2.2 1.5 1.5 1.8 1.7 2.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.4 1.3 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.4 1.3 1.8 1.1 1.7 1.8 1.1 1.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 32.0 29.8 26.8 27.6 28.5	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6 33.3 31.8 29.6 26.7 27.5 28.3	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:26:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:33:22 9:34:22 9:34:22 9:35:22 9:35:22 9:36:22 9:37:22 9:36:22	10.7 13.0 11.2 11.5 11.5 12.6 12.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	10.8 13.1 11.2 11.6 11.5 12.6 12.6 12.0 12.7 11.8 12.0 12.7 11.8 12.0 12.0 12.3 13.1 12.5 12.3	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.5 1.8 1.7 2.2 1.5 2.1 2.1 2.1 7 1.7 1.7 1.7 1.7	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.4 1.3 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.1 1.7 1.7 1.7 1.7 1.7 1.7 1.7	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 32.0 29.8 20.8	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.6 33.3 31.8 29.6 26.7 27.5 28.3 30.4	
9:19:22 9:20:22 9:21:22 9:22:22 9:22:22 9:24:22 9:25:22 9:26:22 9:27:22 9:28:22 9:29:22 9:30:22 9:31:22 9:33:22 9:35:22 9:35:22 9:36:22 9:37:22 9:36:22 9:37:22	10.7 13.0 11.2 11.5 12.6 12.5 11.7 10.4 12.9 12.9 12.9 12.9 12.0 11.8 11.9 12.0 12.2 13.0 12.2 12.2 13.0	10.8 13.1 11.2 11.6 12.6 12.6 12.6 12.9 12.7 11.8 12.0 12.9 12.7 12.0 12.0 12.0 12.3 13.1 12.3 12.3	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.8 1.7 2.2 1.5 2.1 2.2 1.7 1.6 1.7 1.7 1.7 1.7 1.5 1.8	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.4 1.3 1.8 1.1 1.7 1.8 1.1 1.9 1.1 1.1 1.9 1.1 1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1	37.3 47.8 32.5 36.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 22.8 26.8 27.6 28.5 30.6 27.6 28.5	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6 33.3 31.8 29.6 26.7 27.5 28.3 30.4 27.6	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:25:22 9:26:22 9:26:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:33:22 9:34:22 9:35:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22	10.7 13.0 11.2 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	10.8 13.1 11.2 11.6 12.6 12.6 12.0 12.0 12.7 11.8 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.8 1.7 2.2 1.5 2.1 2.2 1.7 1.6 1.7 1.7 1.7 1.7 1.5 1.8	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.4 1.3 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.1 1.1 1.7 1.1 1.7 1.7 1.1 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 32.0 29.8 26.8 27.6 28.5 30.6 27.8 30.6	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 33.3 31.8 29.6 26.7 27.2 28.3 30.4 27.6 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	
9:19:22 9:20:22 9:21:22 9:22:22 9:23:22 9:24:22 9:26:22 9:26:22 9:27:22 9:28:22 9:30:22 9:30:22 9:33:22 9:34:22 9:35:22 9:36:22 9:37:22 9:36:22 9:37:22 9:36:22 9:37:22 9:36:22 9:37:22 9:38:22 9:38:22 9:38:22 9:38:22 9:38:22 9:38:22 9:38:22 9:38:22 9:38:22 9:38:22	10.7 13.0 11.2 11.5 11.5 12.6 12.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	10.8 13.1 11.2 11.6 11.5 12.6 12.6 12.0 12.0 12.7 11.8 12.0 12.0 12.0 12.3 12.3 12.3 12.3 12.3 12.3 11.4	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.8 1.7 2.1 2.1 2.1 2.1 1.7 1.6 1.7 1.7 1.7 1.5 1.8 1.7 1.7 1.5 2.1 1.7 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 32.0 29.8 26.8 27.6 28.5 30.6	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 31.6 33.3 31.8 29.6 26.7 27.5 28.3 30.4 29.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30	
9:19:22 9:20:22 9:20:22 9:21:22 9:22:22 9:24:22 9:26:22 9:26:22 9:26:22 9:27:22 9:28:22 9:30:22 9:31:22 9:33:22 9:34:22 9:35:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22 9:36:22	10.7 13.0 11.2 11.5 12.6 12.5 11.7 10.4 12.0 12.9 12.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	10.8 13.1 11.2 11.6 12.6 12.6 12.0 12.0 12.7 11.8 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	1.3 1.7 0.9 1.5 2.0 2.0 1.5 1.8 1.7 2.2 1.5 2.1 2.2 1.7 1.6 1.7 1.7 1.7 1.7 1.5 1.8	0.9 1.3 0.5 1.1 1.6 1.7 1.1 1.4 1.3 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.8 1.1 1.7 1.1 1.1 1.7 1.1 1.7 1.7 1.1 1.1	37.3 47.8 32.5 35.0 41.3 37.8 30.5 30.0 33.9 40.4 40.5 31.6 29.7 31.8 33.5 32.0 29.8 26.8 27.6 28.5 30.6 27.8 30.6	37.1 47.6 32.3 34.8 41.1 37.6 30.4 29.8 33.7 40.2 40.3 31.4 29.5 33.3 31.8 29.6 26.7 27.2 28.3 30.4 27.6 30.4 30.4 30.4 30.4 30.4 30.4 30.4 30.4	

Test:	2						
Date			15-J	un-22			
Analyzer)2	С	0	N	Ox	
Low							
Zero Value (Cv)	0.	00	0.	00	0.	00	
Direct (C Dir)		00		32		03	
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS	
System Initial (Csi)		09		27		09	
System Post (Csf)		08		29		08	
Average (Co)		09		28		09	
System Bias Initial (SBI)	0.6%	PASS	-0.3%	PASS	0.0%	PASS	
System Bias Post (SBf)	0.5%	PASS	-0.2%	PASS	0.0%	PASS	
Drift Assessment (D)	-0.07%	PASS	0.10%	PASS	0.00%	PASS	
Mid	-0.07 %	FASS	0.10%	FASS	0.00%	FASS	
Mid Value (Cv)	7	E0	10	10.00		105.00	
Direct (C Dir)	7.50 7.53						
			0.90%	10.18 0.90% PASS		106.18 0.56% PASS	
Calibration Error (ACE)	0.20%			.28	0.56%		
System Initial (Csi)		48 47				5.47	
System Post (Csf)				.21		5.32	
Average (Cm)		.5		0.2		5.47	
System Bias Initial (SBI)	-0.3%	PASS	0.5%	PASS	-0.3%	PASS	
System Bias Post (SBf)	-0.4%	PASS	0.2%	PASS	-0.4%	PASS	
Drift Assessment (D)	-0.07%	PASS	-0.35%	PASS	-0.07%	PASS	
High							
High Value (CS/Cv)		.00		.00		0.00	
Direct (C Dir)		.97		.07		2.43	
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS	
System Initial (Csi)							
System Post (Csf)							
Average (Cm)		-		-		-	
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-	
System Bias Post (SBf)	N/A	-	N/A	-	N/A		
Drift Assessment (D)	N/A	-	N/A	-	N/A	-	
Analyser Span (Range)	2	.5	6	0	10	000	
Average	11.40	11.48	2.03	1.76	41.90	41.66	
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	
9:49:31	11.1	11.2	1.9	1.6	36.3	36.1	
9:50:31	10.3	10.4	1.7	1.4	46.0	45.8	
9:51:31	12.2	12.3	1.9	1.7	37.4	37.2	
9:52:31	10.5	10.6	2.1	1.8	38.6	38.4	
9:53:31	12.2	12.3	1.2	0.9	38.7	38.5	
9:54:31	12.2	12.3	1.6	1.3	35.8	35.6	
9:55:31	11.3	11.4	1.7	1.5	35.2	35.0	
9:56:31	10.8	10.9	4.0	1.5	36.8	36.6	
			1.8				
9:57:31			1.8 1.6	1.3	41.7		
	11.7 10.2	11.8				41.5 44.2	
9:57:31 9:58:31	11.7 10.2	11.8	1.6 1.8	1.3	41.7	41.5 44.2	
9:57:31 9:58:31 9:59:31	11.7 10.2 11.1	11.8 10.2 11.2	1.6 1.8 1.8	1.3 1.6	41.7 44.4 41.7	41.5 44.2 41.5	
9:57:31 9:58:31 9:59:31 10:00:31	11.7 10.2 11.1 11.6	11.8 10.2	1.6 1.8 1.8 1.7	1.3 1.6 1.5	41.7 44.4 41.7 41.3	41.5 44.2	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31	11.7 10.2 11.1 11.6 11.6	11.8 10.2 11.2 11.7 11.7	1.6 1.8 1.8	1.3 1.6 1.5 1.4	41.7 44.4 41.7 41.3 38.4	41.5 44.2 41.5 41.1 38.2	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31	11.7 10.2 11.1 11.6 11.6 10.9	11.8 10.2 11.2 11.7 11.7	1.6 1.8 1.8 1.7 1.6 2.2	1.3 1.6 1.5 1.4 1.3	41.7 44.4 41.7 41.3 38.4 37.5	41.5 44.2 41.5 41.1 38.2 37.2	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:03:31	11.7 10.2 11.1 11.6 11.6 10.9	11.8 10.2 11.2 11.7 11.7 11.0	1.6 1.8 1.8 1.7 1.6 2.2 2.0	1.3 1.6 1.5 1.4 1.3 1.9	41.7 44.4 41.7 41.3 38.4 37.5 37.6	41.5 44.2 41.5 41.1 38.2 37.2 37.4	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:03:31 10:04:31	11.7 10.2 11.1 11.6 11.6 10.9 11.6	11.8 10.2 11.2 11.7 11.7 11.0 11.7	1.6 1.8 1.8 1.7 1.6 2.2 2.0	1.3 1.6 1.5 1.4 1.3 1.9 1.8	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:03:31 10:04:31 10:05:31	11.7 10.2 11.1 11.6 11.6 10.9	11.8 10.2 11.2 11.7 11.7 11.0	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7	1.3 1.6 1.5 1.4 1.3 1.9	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2	41.5 44.2 41.5 41.1 38.2 37.2 37.4	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:04:31 10:06:31 10:06:31	11.7 10.2 11.1 11.6 11.6 10.9 11.6 12.0 10.3 9.5	11.8 10.2 11.2 11.7 11.7 11.0 11.7 12.1 10.4 9.6	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:03:31 10:03:31 10:05:31 10:06:31 10:07:31	11.7 10.2 11.1 11.6 11.6 10.9 11.6 12.0 10.3 9.5	11.8 10.2 11.2 11.7 11.7 11.0 11.7 12.1 10.4 9.6 10.3	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 4.3 1.8	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3 52.7	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:03:31 10:06:31 10:06:31 10:07:31 10:08:31	11.7 10.2 11.1 11.6 11.6 10.9 11.6 12.0 10.3 9.5 10.3 11.6	11.8 10.2 11.2 11.7 11.7 11.0 11.7 12.1 10.4 9.6 10.3 11.7	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3 52.7 51.8	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:02:31 10:03:31 10:06:31 10:06:31 10:07:31 10:08:31 10:08:31 10:08:31	11.7 10.2 11.1 11.6 11.6 10.9 12.0 10.3 9.5 10.3 11.6 11.3	11.8 10.2 11.2 11.7 11.7 11.0 11.7 12.1 10.4 9.6 10.3 11.7 11.4	1.6 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5 2.0	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3 52.7 51.8 49.3	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:02:31 10:03:31 10:06:31 10:06:31 10:08:31 10:08:31 10:09:31 10:09:31 10:10:31	11.7 10.2 11.1 11.6 11.6 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8	11.8 10.2 11.2 11.7 11.7 11.7 11.0 11.7 12.1 10.4 9.6 10.3 11.7 11.4	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6 1.6	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5 2.0 1.4	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6 49.0	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3 52.7 51.8 49.3	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:03:31 10:06:31 10:06:31 10:08:31 10:09:31 10:09:31 10:10:31 10:11:31	11.7 10.2 11.1 11.6 11.6 10.9 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8	11.8 10.2 11.7 11.7 11.7 11.7 12.1 10.4 9.6 10.3 11.7 11.4 11.9 12.3	1.6 1.8 1.7 1.6 2.2 1.7 2.7 4.3 1.8 2.2 1.6 1.6 1.6	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5 2.0 1.4 1.3	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6 49.0	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3 52.7 51.8 49.3 48.7	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:02:31 10:03:31 10:06:31 10:06:31 10:06:31 10:08:31 10:08:31 10:09:31 10:10:31 10:10:31 10:10:31	11.7 10.2 11.1 11.6 11.6 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8 11.8 12.2 12.5	11.8 10.2 11.7 11.7 11.7 11.7 12.1 10.4 9.6 10.3 11.7 11.4 11.9 12.3 12.6	1.6 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6 1.6 1.6	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 4.0 1.5 2.4 4.0 1.5 1.4 1.3 1.3	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 47.6 53.0 47.6 49.0 49.0 49.0	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.3 52.7 51.8 49.3 48.7 48.8	
9:57:31 9:58:31 9:59:31 10:00:31 10:01:31 10:02:31 10:03:31 10:06:31 10:06:31 10:08:31 10:08:31 10:09:31 10:10:31 10:11:31 10:11:31	11.7 10.2 11.1 11.6 10.9 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8 12.2 12.5 12.6	11.8 10.2 11.7 11.7 11.7 11.7 12.1 10.4 9.6 10.3 11.7 11.4 11.9 12.3 12.6 12.7	1.6 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6 1.6 1.6 2.2 2.0 2.0 2.7 4.3 2.2 2.0 2.0 2.7 4.3 2.2 2.0 2.0 2.0 2.7 4.3 2.2 2.0 2.0 2.7 4.3 2.2 2.2 2.0 2.0 2.7 4.3 2.2 2.2 2.0 2.0 2.7 4.3 2.2 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5 2.0 1.4 1.3 1.3 1.3	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6 49.0 49.0 49.0	41.5 44.2 41.5 41.1 38.2 37.4 33.6 37.0 47.3 52.7 51.8 49.3 48.7 48.8 44.0	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:02:31 10:03:31 10:06:31 10:06:31 10:08:31 10:09:31 10:10:31 10:10:31 10:10:31 10:10:31 10:11:31 10:12:31 10:13:31	11.7 10.2 11.1 11.6 11.6 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8 12.2 12.5 12.6	11.8 10.2 11.7 11.7 11.7 11.7 12.1 10.4 9.6 10.3 11.7 11.4 11.9 12.3 12.6 12.7	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6 1.6 1.8 2.2 1.8 2.2 1.8	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5 2.0 1.4 1.3 1.3 1.5 1.5	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6 49.0 44.3 39.6 41.0	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.0 47.0 48.7 48.8 44.0 39.4 49.0	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:02:31 10:03:31 10:06:31 10:06:31 10:08:31 10:08:31 10:08:31 10:08:31 10:08:31 10:10:31 10:11:31 10:11:31 10:11:31 10:11:31 10:11:31 10:15:31	11.7 10.2 11.1 11.6 10.9 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8 12.2 12.5 12.6 13.6	11.8 10.2 11.2 11.7 11.7 11.0 11.7 12.1 10.4 9.6 10.3 11.7 11.9 12.3 12.6 12.7 11.7	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6 1.6 1.6 1.8 2.2 1.8 3.1	1.3 1.6 1.5 1.4 1.9 1.8 1.4 2.4 4.0 1.5 2.0 1.3 1.3 1.9 1.5 2.0 1.4 1.3 1.5 2.0 1.4 1.5 2.0 1.5 2.0 1.5 2.0 1.6 1.7 1.8 1.8 1.9 1.9 1.5 2.9	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6 49.0 49.0 44.3 39.6 41.0 43.9	41.5 44.2 41.5 41.1 38.2 37.4 33.6 47.3 52.7 51.8 49.3 48.7 48.8 44.0 39.4 40.3	
9:57:31 9:58:31 9:59:31 10:00:31 10:00:31 10:02:31 10:03:31 10:06:31 10:06:31 10:08:31 10:09:31 10:10:31 10:10:31 10:10:31 10:10:31 10:11:31 10:12:31 10:13:31	11.7 10.2 11.1 11.6 11.6 11.6 12.0 10.3 9.5 10.3 11.6 11.3 11.8 12.2 12.5 12.6	11.8 10.2 11.7 11.7 11.7 11.7 12.1 10.4 9.6 10.3 11.7 11.4 11.9 12.3 12.6 12.7	1.6 1.8 1.8 1.7 1.6 2.2 2.0 1.7 2.7 4.3 1.8 2.2 1.6 1.6 1.8 2.2 1.8 2.2 1.8	1.3 1.6 1.5 1.4 1.3 1.9 1.8 1.4 2.4 4.0 1.5 2.0 1.4 1.3 1.3 1.5 1.5	41.7 44.4 41.7 41.3 38.4 37.5 37.6 33.8 37.2 47.6 53.0 52.1 49.6 49.0 44.3 39.6 41.0	41.5 44.2 41.5 41.1 38.2 37.2 37.4 33.6 37.0 47.0 49.3 48.7 48.8 44.0 49.0	

RATA	_					
Date Test:	3		15 1	un-22		
Analyzer	_)2		un-22 O	N/	Ox
Low		02		.0	IN.	UX .
Zero Value (Cv)	0	00	0	.00	0	00
Direct (C Dir)		00	0.32		0.03	
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS
System Initial (Csi)		08	0.29		0.08	
System Post (Csf)		20	0.18			29
Average (Co)	0.	14	0.	24	0.	19
System Bias Initial (SBI)	0.5%	PASS	-0.2%	PASS	0.0%	PASS
System Bias Post (SBf)	1.3%	PASS	-0.7%	PASS	0.1%	PASS
Drift Assessment (D)	0.80%	PASS	-0.55%	PASS	0.10%	PASS
Mid						
Mid Value (Cv)	7.50		10.00		105.00	
Direct (C Dir)		53		.18		6.18
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS
System Initial (Csi)		47		.21		5.32
System Post (Csf)		47		.24		1.17
Average (Cm)		.5		0.2		5.32
System Bias Initial (SBI)	-0.4%	PASS	0.2%	PASS	-0.4%	PASS
System Bias Post (SBf)	-0.4%	PASS	0.3%	PASS	-1.0%	PASS
Drift Assessment (D) High	0.00%	PASS	0.15%	PASS	-0.55%	PASS
High Value (CS/Cv)	45	.00	20	1.00	247	0.00
Direct (C Dir)		.97		1.00		2.43
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS
System Initial (Csi)	-0.20%	FASS	0.33%	FASS	1.10%	FASS
System Post (Csf)						
Average (Cm)		-		-		-
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-
System Bias Post (SBf)	N/A	-	N/A	-	N/A	-
Drift Assessment (D)	N/A	-	N/A	-	N/A	-
Analyser Span (Range)						
	2	25	6	60	10	00
Average	11.70	11.83	2.19	1.96	53.59	53.34
	11.70 Recorded					
Average	11.70	11.83	2.19	1.96 Corrected 1.7	53.59	53.34
Average Time 10:23:47 10:24:47	11.70 Recorded 11.4 11.1	11.83 Corrected 11.5 11.2	2.19 Recorded 2.0 2.0	1.96 Corrected 1.7 1.8	53.59 Recorded 39.2 39.3	53.34 Corrected 38.9 39.1
Average Time 10:23:47 10:24:47 10:25:47	11.70 Recorded 11.4 11.1 9.7	11.83 Corrected 11.5 11.2 9.7	2.19 Recorded 2.0 2.0 3.0	1.96 Corrected 1.7 1.8 2.8	53.59 Recorded 39.2 39.3 46.5	53.34 Corrected 38.9 39.1 46.2
Average Time 10:23:47 10:24:47 10:25:47 10:26:47	11.70 Recorded 11.4 11.1 9.7 11.8	11.83 Corrected 11.5 11.2 9.7 12.0	2.19 Recorded 2.0 2.0 3.0 2.4	1.96 Corrected 1.7 1.8 2.8 2.1	53.59 Recorded 39.2 39.3 46.5 46.3	53.34 Corrected 38.9 39.1 46.2 46.0
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1	11.83 Corrected 11.5 11.2 9.7 12.0 10.2	2.19 Recorded 2.0 2.0 3.0 2.4 1.9	1.96 Corrected 1.7 1.8 2.8 2.1 1.7	53.59 Recorded 39.2 39.3 46.5 46.3 54.2	53.34 Corrected 38.9 39.1 46.2 46.0 54.0
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 1.9	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:29:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 1.9 2.1	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:29:47 10:30:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 1.9 2.1 2.1	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:29:47 10:30:47 10:31:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 1.8	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:28:47 10:28:47 10:30:47 10:30:47 10:32:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 11.2 12.5	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 1.9 2.1 2.1 1.8	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 1.8 1.6 1.5	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47 10:34:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4 11.4	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 1.8 1.6 1.5 1.7	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 1.8 1.6 1.5	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3	53.59 Recorded 39.2 39.3 46.5 46.3 46.3 38.8 45.2 43.0 38.8 45.2 52.5 56.3 50.3 46.1	53.34 Corrected 38.9 39.1 46.2 46.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47 10:33:47 10:33:47 10:35:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 12.1 11.3 11.2	11.83 Corrected 11.5 11.2 9.7 12.0 14.1 12.6 9.6 11.3 12.6 12.4 11.4 11.4	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 1.9 1.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 2.0	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6
Average Time 10:23:47 10:24:47 10:25:47 10:25:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:33:47 10:33:47 10:34:47 10:35:47 10:36:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.2 14.1	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4 11.4 11.4 11.4	2.19 Recorded 2.0 2.0 3.0 4.9 1.9 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.9 1.9 1.6 1.9 1.0 0.7	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4 61.9 46.8	53.34 Corrected 38.9 39.1 46.2 46.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47 10:35:47 10:35:47 10:36:47 10:37:47 10:39:47 10:39:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.2 14.1 11.1	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4 11.4 11.4 11.4	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 1.8 1.6 1.7 2.2 0.9 1.4	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4 61.9 46.8 45.2	53.34 Corrected 38.9 39.1 46.2 46.0 554.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47 10:33:47 10:35:47 10:36:47 10:36:47 10:36:47 10:36:47 10:36:47 10:38:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.1 11.1 10.5	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4 11.4 11.4 14.2 10.6	2.19 Recorded 2.0 2.0 3.0 3.0 1.9 1.9 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.4	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.9 1.6 0.7 1.1 1.7	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 50.3 50.3 61.9 46.8 45.2 48.9	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9 48.7
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:32:47 10:33:47 10:35:47 10:35:47 10:36:47 10:37:47 10:39:47 10:39:47	11.70 Recorded 11.4 11.1 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.2 11.1 11.1 10.5 12.0 11.4 11.1 10.5	11.83 Corrected 11.5 11.2 11.2 19.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 11.4 11.4 11.4 11.4 11.2 11.2 11.5 11.5 11.5 11.5 11.5 12.1	2.19 Recorded 2.0 2.0 2.0 3.0 2.4 1.9 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.9 2.0 1.9 1.9 1.9 1.5 1.7 2.1 2.1 1.5 1.7 2.1 2.1 2.1 2.1 2.1 2.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.6 1.1 1.9 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	53.59 Recorded 39.2 39.3 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 61.9 46.8 45.2 48.9 61.3 61.1 58.9	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:39:47 10:31:47 10:31:47 10:33:47 10:34:47 10:35:47 10:36:47 10:38:47 10:38:47 10:38:47 10:39:47 10:39:47 10:39:47 10:39:47 10:39:47 10:40:47 10:40:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.1 10.5 11.1 10.5 11.1 10.5 11.4 11.1 10.5 11.4 11.1 10.5 11.4 11.1 11.1	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 10.2 14.1 12.6 9.6 12.4 11.3 12.6 12.4 11.4 11.4 11.4 11.5 11.6 12.1 11.2 11.6 12.1 13.3	2.19 Recorded 2.0 2.0 3.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 2.1 1.9 1.9 1.9 1.9 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 2.0 0.7 1.1 1.7 1.8 1.6 2.0 2.0 1.1 1.7 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 56.3 50.3 50.3 61.9 46.8 45.2 48.9 61.3 61.1 58.9 56.4	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 56.1 50.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1 60.8 58.7 56.1
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:33:47 10:33:47 10:35:47 10:36:47 10:36:47 10:38:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 12.5 12.5 12.5 12.2 14.1 11.1 10.5 12.0 11.1	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 12.4 11.3 12.6 12.4 11.4 11.4 11.2 10.6 12.2 11.5 12.1 13.2	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 1.9 2.1 2.1 1.8 1.6 1.5 2.2 0.9 1.9 2.0 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 2.0 0.7 1.1 1.7 1.8 1.9 2.0 0.7 2.0 0.7 2.1 2.0 0.7 2.1 0.6 0.6	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 46.8 45.2 48.9 61.3 61.1 58.9 56.4 60.7	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 61.7 46.6 44.9 48.7 61.1 60.8 58.7 56.1 60.5
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:28:47 10:39:47 10:31:47 10:33:47 10:33:47 10:34:47 10:35:47 10:36:47 10:37:47 10:38:47 10:38:47 10:39:47 10:40:47 10:44:47	11.70 Recorded 11.4 11.1 11.1 9.7 11.8 10.1 12.5 9.5 11.2 12.5 11.3 11.2 11.3 11.1 11.1 11.1 11.1 11.1	11.83 Corrected 11.5 11.2 11.2 12.0 10.2 12.6 9.6 11.3 12.6 11.3 12.4 11.4 11.4 11.2 11.2 11.5 12.2 11.5 12.1 13.2 11.5 13.2 11.7	2.19 Recorded 2.0 2.0 3.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.4 1.9 2.0 1.9 2.0 0.9 1.6 0.8 1.6 0.8	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.6 1.0 0.7 1.1 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.8 1.6 1.7 1.8 1.6 1.8 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	53.59 Recorded 39.2 39.3 46.5 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4 61.9 46.8 45.2 48.9 61.3 61.1 58.9 56.4 60.7 57.8	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1 60.8 58.7 56.1 60.5 57.6
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:27:47 10:28:47 10:39:47 10:31:47 10:33:47 10:33:47 10:35:47 10:36:47 10:38:47 10:38:47 10:39:47 10:39:47 10:34:47 10:34:47 10:34:47 10:35:47 10:35:47 10:36:47 10:36:47 10:36:47 10:36:47 10:38:47 10:38:47 10:38:47 10:38:47 10:38:47 10:38:47 10:38:47 10:48:47 10:48:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 14.1 11.1 10.5 12.0 11.4 11.1	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4 11.4 11.4 11.4 11.2 10.6 12.2 11.5 11.5 12.1 11.7 11.7	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 2.1 3.6 1.5 1.7 2.2 0.9 1.4 1.9 2.0 1.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 2.0 0.7 1.1 1.7 1.8 1.6 1.0 0.7 1.1 1.7 1.8 1.6 1.8 1.8 1.9 1.1 1.8 1.8 1.8 1.8 1.8	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 61.9 46.8 45.2 48.9 61.1 58.9 60.7 57.8	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9 44.9 44.7 61.1 60.8 58.7 56.1 60.5 56.7 66.0 60.5
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:28:47 10:29:47 10:30:47 10:31:47 10:33:47 10:33:47 10:35:47 10:36:47 10:38:47 10:38:47 10:39:47 10:40:47 10:41:47 10:42:47 10:42:47 10:45:47 10:46:47	11.70 Recorded 11.4 11.1 11.1 11.8 10.1 13.9 12.5 12.5 12.2 11.3 11.2 12.0 11.4 11.1 11.1 11.1 11.1 11.6 11.2 12.0 11.2 12.0 13.1 11.6 11.2 12.0 12.0 13.1 11.6 11.2 12.0 12.0 13.1 11.6 11.2 12.0 12.3	11.83 Corrected 11.5 11.2 11.2 11.2 10.2 10.2 14.1 12.6 9.6 11.3 12.6 11.4 11.4 11.4 11.4 11.2 11.6 11.6 11.3 11.1 11.1 11.1 11.2 11.5 11.5 12.1 13.2 11.7 11.3 12.1	2.19 Recorded 2.0 2.0 2.0 3.0 2.4 1.9 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.9 2.0 1.9 2.0 1.9 2.0 1.9 2.0 1.9 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.6 1.3 1.9 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 61.9 46.8 45.2 48.9 61.1 58.9 56.4 60.7 57.8 61.1	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 60.8 58.7 56.1 60.8 57.6 60.8 56.6
Average Time 10:23:47 10:24:47 10:25:47 10:25:47 10:26:47 10:28:47 10:39:47 10:30:47 10:31:47 10:33:47 10:33:47 10:35:47 10:36:47 10:36:47 10:39:47 10:39:47 10:40:47 10:41:47 10:42:47 10:43:47 10:45:47 10:45:47 10:45:47 10:46:47 10:47:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 12.3 11.3 11.1 10.5 12.0 11.4 11.1 10.5 12.0 13.1 11.6 11.6 11.2 12.0 13.1 11.2 12.0 13.1 11.8 11.9 12.0 13.1 11.9 12.0 13.1 11.9 12.0 13.1 13.1 14.6 15.0 16.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 11.3 12.6 12.4 11.4 11.4 11.2 10.6 12.2 11.5 11.2 11.2 10.6 11.3 11.2 10.6 11.3 11.2 11.2 11.2 11.2 11.2 11.2 11.2	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.4 1.9 2.0 1.9 2.0 1.9 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.8 1.9 1.0 1.1 1.7 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 56.3 50.3 50.3 46.8 45.2 48.9 61.3 61.1 58.9 56.4 60.7 57.8 61.1 56.9 73.5	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 56.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1 60.8 58.7 56.1 60.8 57.6 60.8 56.6
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:29:47 10:39:47 10:31:47 10:33:47 10:33:47 10:34:47 10:35:47 10:38:47 10:38:47 10:39:47 10:39:47 10:49:47 10:41:47 10:41:47 10:41:47 10:45:47 10:46:47 10:46:47 10:46:47 10:46:47 10:46:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 12.5 9.5 12.2 12.5 12.2 11.3 11.2 14.1 11.1 10.5 11.4 11.1 10.5 11.6 11.2 12.0 12.0 12.3 9.8 13.0	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 10.2 14.1 12.6 9.6 12.4 11.4 11.4 11.4 11.2 10.6 12.6 12.4 11.4 11.4 11.2 10.6 12.1 11.5 12.1 13.2 11.7 11.3 12.1 12.4 9.9	2.19 Recorded 2.0 2.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.9 2.0 1.9 2.0 3.0 2.4 1.9 2.1 2.1 2.1 2.1 3.9 3.9 3.9 9.5 2.3	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.6 1.8 1.9 2.1 1.7 1.8 2.0 2.1 2.0 2.1 2.0 2.7 3.7 3.7 9.3 3.7 9.3	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 61.9 46.8 45.2 48.9 61.1 58.9 60.7 57.8 61.1 56.9 73.5	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 50.1 46.6 44.9 48.7 61.1 60.8 58.7 56.1 60.5 57.6 60.8 56.6 73.2 62.6
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:28:47 10:39:47 10:30:47 10:33:47 10:33:47 10:33:47 10:35:47 10:36:47 10:39:47 10:39:47 10:49:47 10:49:47	11.70 Recorded 11.4 11.1 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.2 12.0 11.1 11.1 10.5 12.0 11.4 11.1 11.6 12.0 13.1 11.6 12.0 9.8 13.0 9.8	11.83 Corrected 11.5 11.2 11.2 11.2 10.2 10.2 14.1 12.6 9.6 11.3 12.6 11.4 11.4 11.4 11.4 11.2 11.5 12.1 13.2 11.5 12.1 13.2 11.7 11.3 12.1 12.1 13.2 11.7 11.3 12.1 12.4	2.19 Recorded 2.0 2.0 3.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.4 1.9 2.0 1.9 2.1 1.9 2.1 1.1 1.7 2.2 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.6 1.8 1.6 1.3 2.1 2.1 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.8 1.6 1.9 1.9 1.7 1.8 1.6 1.1 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.6 1.7 1.8 1.6 1.6 1.6 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4 61.9 46.8 45.2 48.9 61.3 61.1 58.9 56.4 60.7 57.8 61.1 56.9 73.5 62.8	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1 60.8 58.7 56.1 60.8 57.6 60.8 56.6 73.2 62.6 56.6 73.2 62.6 55.6 56.6
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:29:47 10:30:47 10:31:47 10:33:47 10:33:47 10:34:47 10:35:47 10:38:47 10:38:47 10:38:47 10:39:47 10:40:47 10:41:47 10:42:47 10:43:47 10:43:47 10:43:47 10:45:47 10:46:47	11.70 Recorded 11.4 11.1 9.7 11.8 10.1 12.5 9.5 11.2 12.5 12.2 11.3 11.1 10.5 11.2 11.3 11.1 10.5 12.0 11.4 12.0 11.4 12.0 13.1 11.6 12.0 12.3 9.8 13.0 12.7 10.3	11.83 Corrected 11.5 11.2 9.7 12.0 10.2 14.1 12.6 9.6 12.4 11.3 11.4 11.4 11.4 11.2 10.6 12.2 11.5 12.1 13.2 11.7 11.3 12.1 12.4 13.2 11.7 11.3 12.1 12.4 11.9 10.6	2.19 Recorded 2.0 2.0 3.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 2.9 1.9 1.9 2.1 2.1 3.9 1.9 1.9 1.9 1.1 3.9 1.9 1.5 2.4 0.8 1.6 2.1 3.9 9.5 2.3 1.7	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 2.0 0.7 1.1 1.7 1.8 1.6 1.8 1.9 2.0 1.1 1.7 1.1 1.7 1.8 1.6 1.8 1.9 1.1 1.7 1.1 1.7 1.8 1.6 1.8 1.8 1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4 61.9 46.8 45.2 48.9 61.3 61.1 58.9 56.4 60.7 57.8 61.1 56.9 73.5 62.8 54.8 55.0	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 56.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1 60.8 58.7 56.1 60.5 67.6 60.8 56.6 73.2 62.6 54.5 55.7
Average Time 10:23:47 10:24:47 10:25:47 10:26:47 10:26:47 10:28:47 10:39:47 10:30:47 10:33:47 10:33:47 10:33:47 10:35:47 10:36:47 10:39:47 10:39:47 10:49:47 10:49:47	11.70 Recorded 11.4 11.1 11.1 9.7 11.8 10.1 13.9 12.5 9.5 11.2 12.5 12.2 11.3 11.2 14.1 11.1 10.5 12.0 11.4 11.6 11.2 12.0 13.1 11.6 12.0 13.1 11.6 12.0 13.0 12.3 9.8	11.83 Corrected 11.5 11.2 11.2 11.2 10.2 10.2 14.1 12.6 9.6 11.3 12.6 11.4 11.4 11.4 11.4 11.2 11.5 12.1 13.2 11.5 12.1 13.2 11.7 11.3 12.1 12.1 13.2 11.7 11.3 12.1 12.4	2.19 Recorded 2.0 2.0 3.0 3.0 2.4 1.9 2.1 2.1 2.1 1.8 1.6 1.5 1.7 2.2 0.9 1.4 1.9 2.0 1.9 2.1 1.9 2.1 1.1 1.7 2.2 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.96 Corrected 1.7 1.8 2.8 2.1 1.7 1.6 1.8 1.9 1.6 1.3 1.2 1.5 2.0 0.7 1.1 1.7 1.8 1.6 1.8 1.6 1.3 2.1 2.1 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.8 1.6 1.9 1.7 1.8 1.6 1.1 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.7 1.8 1.6 1.6 1.6 1.7 1.8 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	53.59 Recorded 39.2 39.3 46.5 46.3 54.2 43.0 38.8 45.2 52.5 56.3 50.3 53.4 61.9 46.8 45.2 48.9 61.3 61.1 58.9 56.4 60.7 57.8 61.1 56.9 73.5 62.8	53.34 Corrected 38.9 39.1 46.2 46.0 54.0 42.7 38.5 45.0 52.3 56.1 50.1 53.2 61.7 46.6 44.9 48.7 61.1 60.8 58.7 66.1 60.5 57.6 60.8 56.6 73.2 62.6 54.5

RATA							
Test:	4		15. lı	un-22			
Analyzer	-)2		0	N/	Ox	
Low		-				<u> </u>	
Zero Value (Cv)	0.	00	0.00		0.00		
Direct (C Dir)		00		32		03	
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS	
System Initial (Csi)	0.	20	0.18		0.	29	
System Post (Csf)		20	0.27			0.21	
Average (Co)		20		23		25	
System Bias Initial (SBi)	1.3%	PASS	-0.7%	PASS	0.1%	PASS	
System Bias Post (SBf)	1.3%	PASS	-0.3%	PASS	0.1%	PASS	
Drift Assessment (D) Mid	0.00%	PASS	0.45%	PASS	-0.04%	PASS	
Mid Value (Cv)	7	50	10	00	104	5.00	
Direct (C Dir)	7.53			10.00 10.18		105.00 106.18	
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS	
System Initial (Csi)		47		.24		1.17	
System Post (Csf)		49		.18		1.03	
Average (Cm)	7	.5	10).2	104	1.17	
System Bias Initial (SBi)	-0.4%	PASS	0.3%	PASS	-1.0%	PASS	
System Bias Post (SBf)	-0.3%	PASS	0.0%	PASS	-1.0%	PASS	
Drift Assessment (D)	0.13%	PASS	-0.30%	PASS	-0.07%	PASS	
High							
High Value (CS/Cv)		.00		.00		0.00	
Direct (C Dir)		.97		.07		2.43	
Calibration Error (ACE) System Initial (Csi)	-0.20%	PASS	0.35%	PASS	1.16%	PASS	
System Post (Csf)							
Average (Cm)		_		-		_	
System Bias Initial (SBi)	N/A		N/A	-	N/A		
System Bias Post (SBf)	N/A	_	N/A	-	N/A	_	
Drift Assessment (D)	N/A	-	N/A	-	N/A	-	
Analyser Span (Range)	2	:5	6	0	10	000	
Average	12.00	12.15	8.21	8.00	63.68	64.09	
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	
11:04:26	13.3	13.4	2.2	2.0	71.3	71.8	
11:05:26							
	10.1	10.2	5.9	5.7	67.1	67.5	
11:06:26	13.5	13.7	5.9 3.6	3.4	63.5	63.9	
11:06:26 11:07:26	13.5 13.1	13.7 13.3	5.9 3.6 1.7	3.4 1.5	63.5 57.3	63.9 57.6	
11:06:26 11:07:26 11:08:26	13.5 13.1 9.9	13.7 13.3 10.0	5.9 3.6 1.7 8.2	3.4 1.5 7.9	63.5 57.3 59.7	63.9 57.6 60.0	
11:06:26 11:07:26 11:08:26 11:09:26	13.5 13.1 9.9 12.5	13.7 13.3 10.0 12.7	5.9 3.6 1.7 8.2 5.9	3.4 1.5 7.9 5.7	63.5 57.3 59.7 57.7	63.9 57.6 60.0 58.1	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26	13.5 13.1 9.9 12.5 12.2	13.7 13.3 10.0 12.7 12.4	5.9 3.6 1.7 8.2 5.9 2.3	3.4 1.5 7.9 5.7 2.1	63.5 57.3 59.7 57.7 60.6	63.9 57.6 60.0 58.1 61.0	
11:06:26 11:07:26 11:08:26 11:09:26	13.5 13.1 9.9 12.5	13.7 13.3 10.0 12.7	5.9 3.6 1.7 8.2 5.9	3.4 1.5 7.9 5.7	63.5 57.3 59.7 57.7	63.9 57.6 60.0 58.1	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26	13.5 13.1 9.9 12.5 12.2 10.2	13.7 13.3 10.0 12.7 12.4 10.3	5.9 3.6 1.7 8.2 5.9 2.3 5.5	3.4 1.5 7.9 5.7 2.1 5.3	63.5 57.3 59.7 57.7 60.6 57.3	63.9 57.6 60.0 58.1 61.0 57.7	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:12:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3	13.7 13.3 10.0 12.7 12.4 10.3 13.2	5.9 3.6 1.7 8.2 5.9 2.3 5.5	3.4 1.5 7.9 5.7 2.1 5.3 1.1	63.5 57.3 59.7 57.7 60.6 57.3 52.5	63.9 57.6 60.0 58.1 61.0 57.7 52.8	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:12:26 11:13:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3	3.4 1.5 7.9 5.7 2.1 5.3 1.1	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:13:26 11:13:26 11:14:26 11:15:26 11:16:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:12:26 11:14:26 11:14:26 11:15:26 11:16:26 11:17:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 7.7 2.1	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:12:26 11:14:26 11:14:26 11:15:26 11:16:26 11:17:26 11:18:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9 10.7 13.0	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 2.1 1.7	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5	63.5 67.3 59.7 60.6 57.3 52.5 57.9 59.4 55.7 66.3 63.2 64.4	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:13:26 11:14:26 11:14:26 11:16:26 11:17:26 11:18:26 11:19:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9 10.7 13.0	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 2.1,7 1.7	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:12:26 11:14:26 11:14:26 11:15:26 11:16:26 11:17:26 11:18:26 11:19:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 9.9	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9 10.7 13.0 12.9 10.0	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 2.1 1.7 2.1 1.7 2.1 1.7	3.4 1.5 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.8 1.1 21.0	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 64.8 64.2 63.8	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:17:26 11:17:26 11:18:26 11:19:26 11:21:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 10.9 11.8	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9 10.7 13.0 12.9 10.0	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.7 1.7 1.7 1.7 1.7 2.1 1.4 21.2 53.7	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 60.8 63.4 73.5	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2 63.8 74.0	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:18:26 11:19:26 11:20:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 9.9 11.8	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.9 10.7 13.0 12.9 10.0 12.9	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 1.7 2.1 1.7 2.1 2.1 2.1 6.4	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.1 21.0 6.2	63.5 57.3 59.7 60.6 57.7 60.6 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 73.5 70.1	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2 63.8 74.0 70.5	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:12:26 11:14:26 11:14:26 11:16:26 11:17:26 11:18:26 11:19:26 11:20:26 11:20:26 11:20:26 11:23:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.7 11.8 12.7 11.8 12.7 11.8	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 12.9 10.7 13.0 12.9 10.0 12.9 10.0 12.0	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 1.7 1.7 2.1 1.4 21.2 53.7 6.4 2.6	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.1 2.1 2.1 2.2 2.3	63.5 57.3 59.7 60.6 67.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 73.5 70.1	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 64.8 61.2 63.8 74.0 70.5 71.0	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:18:26 11:19:26 11:20:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 9.9 11.8	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.9 10.7 13.0 12.9 10.0 12.9	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 1.7 2.1 1.7 2.1 2.1 2.1 6.4	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.1 21.0 6.2	63.5 57.3 59.7 60.6 57.7 60.6 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 73.5 70.1	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2 63.8 74.0 70.5	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:14:26 11:16:26 11:16:26 11:18:26 11:19:26 11:20:26 11:22:26 11:22:26 11:22:26 11:24:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 19.9 11.8 12.7 11.2 12.7	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 10.7 13.0 12.9 10.0 12.0 12.0 12.8 11.4	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 1.7 1.7 2.1 21.2 53.7 6.4 2.6 2.0 2.1	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.8 1.5 21.0 53.6 6.2 2.3 1.8	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 73.5 70.6 66.8 69.7	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 64.9 61.2 63.8 74.0 70.5 71.0 67.2	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:13:26 11:14:26 11:14:26 11:16:26 11:16:26 11:19:26 11:20:26 11:20:26 11:22:26 11:22:26 11:23:26 11:25:26	13.5 13.1 9.9 12.5 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.7 10.6 12.7 11.8 12.7 11.8 12.7 12.8 12.7	13.7 13.3 10.0 12.7 10.3 13.2 12.8 11.4 12.8 12.9 10.7 13.0 12.9 10.0 12.9 11.4 12.8 11.4 12.9 10.1 12.9	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.7 1.7 2.1 1.7 2.1 2.1 2.1 2.1 2.1 4 2.1 2.1 2.1 4 2.1 2.1 4 2.1 5 3.7 4 4 4 5 4 5 4 5 5 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.8 1.1 21.0 53.6 6.2 2.3	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 73.5 70.1 70.6 66.8	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.6 63.6 64.8 61.2 63.8 64.2 63.8 67.2 70.5 71.0 67.2 70.5 69.3	
11:06:26 11:07:28 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:19:26 11:22:26 11:22:26 11:22:26 11:22:26 11:24:26 11:24:26 11:24:26 11:24:26 11:26:26 11:26:26 11:26:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 12.7 12.7 11.8 12.7 13.0 14.0 15.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 12.9 10.7 13.0 12.9 10.0 12.0 12.8 11.4 12.9 10.0 12.0 12.8 11.4 12.9 10.0	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 1.7 1.7 2.1 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.5 1.1 21.0 53.6 6.2 2.3 1.8 1.9	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 60.8 63.2 64.4 60.8 63.4 73.5 70.1 70.6 66.8 69.7 68.9	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 64.9 61.2 63.8 74.0 70.5 71.0 67.2	
11:06:26 11:07:26 11:09:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:19:26 11:20:26 11:20:26 11:22:26 11:22:26 11:25:26 11:25:26 11:25:26 11:25:26 11:25:26	13.5 13.1 9.9 12.5 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 10.6 12.8 12.7 12.7 11.8 12.7 11.8 12.7 11.8 11.1 11.0 11.0	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.8 10.7 13.0 12.9 10.0 12.9 11.4 12.8 11.4 12.9 11.4 12.9 11.4 12.9 11.4 12.9 11.4 12.9 11.4 12.9 11.0 12.9 12.9 11.0 12.9 12.9 12.9 13.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.7 1.7 2.1 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.5 1.1 21.0 6.2 2.3 1.8 1.9	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 70.6 66.8 69.7 68.9 73.0	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2 63.8 74.0 70.5 71.0 67.2 70.2 69.3 73.5	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:18:26 11:19:26 11:20:26 11:22:26 11:22:26 11:22:26 11:22:26 11:22:26 11:22:26 11:22:26 11:25:26 11:25:26 11:26:25 11:26:25 11:27:25 11:28:25 11:28:25 11:29:26 11:20:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 11.8 12.7 11.8 12.7 11.8 12.7 11.8 12.6 13.0 14.6 15.7 16.6 17.7 17.7 17.6 17.7 17.6 17.6 17	13.7 13.3 10.0 12.7 12.4 10.3 13.2 11.4 12.8 11.4 12.9 10.7 13.0 12.9 10.0 12.9 12.9 11.4 12.8 11.4 12.9 11.7 13.0 12.8 11.4 11.4 12.9 11.7 13.0 13.0 14.0 15.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.7 1.7 1.7 1.7 2.1 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.3 3.5 6.4 2.6 2.0 2.1 16.5 60.4 17.3 3.5	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.1 21.0 6.2 2.3 1.8 1.9 1.1 21.0 6.2 2.3 1.8 1.9 1.1 3.6 6.2 2.3 3.3 3.3 3.1 3.6 4.6 4.6 4.6 4.6 4.6 5.6 5.6 5.6 5.6 6.6 6.6 6.6 6.6 6.6 6	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 70.1 70.6 66.8 69.7 68.9 73.0 69.9 61.5 65.4	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2 63.8 70.5 71.0 67.2 70.2 69.3 70.4 61.9 65.9	
11:06:26 11:07:26 11:09:26 11:109:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:20:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 12.7 11.8 12.7 11.8 12.7 11.8 12.7 11.8 12.7 11.3 12.6 13.0 14.6 15.6 16.6 17.7 17.7 18.6 18.6 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19	13.7 13.3 10.0 12.7 12.4 10.3 13.2 12.8 11.4 12.9 10.7 13.0 12.9 10.0 12.0 12.8 11.4 12.9 11.0 12.0 12.0 12.1 13.2 11.4 12.8 13.0 14.0 15.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.8 1.7 1.7 1.7 1.4 21.2 53.7 6.4 2.6 2.0 2.1 16.5 60.4 17.3 3.5 3.4 4.0	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.5 1.5 1.1 21.0 63.6 6.2 2.3 1.8 1.9 16.3 60.2 17.1 3.3 3.3	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 60.8 63.2 64.4 60.8 63.2 64.4 60.8 63.4 73.5 70.1 70.6 66.8 69.7 68.9 73.0 69.9 61.5 65.4 55.4	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 66.1 56.6 63.6 64.8 61.2 70.5 71.0 67.2 70.2 69.3 73.5 74.0 70.5 70.4 61.9 65.9 65.9 65.9 65.9 65.9 66.9 67.9 70.5	
11:06:26 11:07:26 11:08:26 11:09:26 11:10:26 11:11:26 11:11:26 11:13:26 11:14:26 11:15:26 11:16:26 11:17:26 11:18:26 11:19:26 11:20:26 11:22:26 11:22:26 11:22:26 11:22:26 11:22:26 11:22:26 11:22:26 11:25:26 11:25:26 11:26:25 11:26:25 11:27:25 11:28:25 11:28:25 11:29:26 11:20:26	13.5 13.1 9.9 12.5 12.2 10.2 13.0 12.6 11.3 12.6 12.7 10.6 12.8 12.7 11.8 12.7 11.8 12.7 11.8 12.7 11.8 12.6 13.0 14.6 15.7 16.6 17.7 17.7 17.6 17.7 17.6 17.6 17	13.7 13.3 10.0 12.7 12.4 10.3 13.2 11.4 12.8 11.4 12.9 10.7 13.0 12.9 10.0 12.9 12.9 11.4 12.8 11.4 12.9 11.7 13.0 12.8 11.4 11.4 12.9 11.7 13.0 13.0 14.0 15.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	5.9 3.6 1.7 8.2 5.9 2.3 5.5 1.3 2.1 1.7 1.7 1.7 1.7 2.1 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.3 3.5 6.4 2.6 2.0 2.1 16.5 60.4 17.3 3.5	3.4 1.5 7.9 5.7 2.1 5.3 1.1 1.9 1.5 1.5 1.5 1.1 21.0 6.2 2.3 1.8 1.9 1.1 21.0 6.2 2.3 1.8 1.9 1.1 3.6 6.2 2.3 3.3 3.3 3.1 3.6 4.6 4.6 4.6 4.6 4.6 5.6 5.6 5.6 5.6 6.6 6.6 6.6 6.6 6.6 6	63.5 57.3 59.7 57.7 60.6 57.3 52.5 57.9 59.4 55.7 56.3 63.2 64.4 60.8 63.4 70.1 70.6 66.8 69.7 68.9 73.0 69.9 61.5 65.4	63.9 57.6 60.0 58.1 61.0 57.7 52.8 58.3 59.8 56.1 56.6 63.6 64.8 61.2 63.8 70.5 71.0 67.2 70.2 69.3 70.4 61.9 65.9	

Date Test:			15 1	un-22		
	_)2		:O	N.	Ox
Analyzer Low		02		.0	N	UX
Zero Value (Cv)	0	00	^	00	0	00
Direct (C Dir)		00		32		03
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS
System Initial (Csi)		20		27		21
System Post (Csf)		19		21		27
Average (Co)		20		24		24
System Bias Initial (SBi)	1.3%	PASS	-0.3%	PASS	0.1%	PASS
System Bias Post (SBf)	1.3%	PASS	-0.6%	PASS	0.1%	PASS
Drift Assessment (D)	-0.07%	PASS	-0.30%	PASS	0.03%	PASS
Mid	0.0.70		0.0070		0.0070	
Mid Value (Cv)	7.	50	10.00		105.00	
Direct (C Dir)	7.53			.18	106.18	
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS
System Initial (Csi)	7.	49	10	.18	104	1.03
System Post (Csf)	7.	52	10	.13	105	5.18
Average (Cm)	7	.5	10	0.2	104	1.03
System Bias Initial (SBi)	-0.3%	PASS	0.0%	PASS	-1.0%	PASS
System Bias Post (SBf)	-0.1%	PASS	-0.2%	PASS	-0.5%	PASS
Drift Assessment (D)	0.20%	PASS	-0.25%	PASS	0.55%	PASS
High						
High Value (CS/Cv)		.00		.00		0.00
Direct (C Dir)	14	.97	20	.07	212	2.43
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS
System Initial (Csi)						
System Post (Csf)						
Average (Cm)		-		-		-
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-
System Bias Post (SBf)	N/A	-	N/A	-	N/A	
Drift Assessment (D)	N/A	-	N/A	-	N/A	-
Analyser Span (Range)		.5		0		100
Average	12.33	12.45	1.80	1.58	59.70	60.15
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected
11:37:19	12.9	13.0	1.9	1.7	84.8	85.6
11:38:19	13.1	13.2	1.8	1.6	75.8	76.4
11:39:19	11.4	11.5	2.1	1.9	58.8	59.2
11:40:19	12.5	12.6	2.3	2.1	56.1	56.5
11:41:19	12.3	12.4	2.0	1.7	66.7	67.2
11:42:19	11.7	11.8	2.0	1.8	59.8	60.3
11:43:19	12.5	12.7	1.9	1.7	54.5	54.9
11:44:19	13.4	13.5	1.8	1.6	47.5	47.8
11:45:19	12.0	12.1 12.9	1.3 1.9	1.1	60.9	61.4 61.8
11:46:19 11:47:19	12.8 11.5	12.9	2.4	2.2	61.4 65.2	65.7
11:47:19	11.5	12.6	2.4	2.2	58.3	58.7
11:49:19	13.0	13.1	2.0	2.3	55.1	55.5
	13.3		2.3	1.9	56.3	56.7
	10.0		4.1	1.0	61.7	62.2
11:50:19	10.9	13.5	1 0	17		02.2
11:51:19	10.9 13.4	11.0	1.9	1.7		59.1
11:51:19 11:52:19	13.4	11.0 13.5	1.8	1.6	58.6	59.1 54.2
11:51:19 11:52:19 11:53:19	13.4 12.1	11.0 13.5 12.3				54.2
11:51:19 11:52:19 11:53:19 11:54:18	13.4 12.1 10.7	11.0 13.5 12.3 10.8	1.8 1.7 0.8	1.6 1.4	58.6 53.9 74.4	54.2 75.1
11:51:19 11:52:19 11:53:19 11:54:18 11:55:19	13.4 12.1 10.7 12.5	11.0 13.5 12.3 10.8 12.6	1.8 1.7 0.8 1.7	1.6 1.4 0.6	58.6 53.9 74.4 71.7	54.2 75.1 72.3
11:51:19 11:52:19 11:53:19 11:54:18 11:55:19 11:56:18	13.4 12.1 10.7	11.0 13.5 12.3 10.8 12.6 13.0	1.8 1.7 0.8 1.7 1.6	1.6 1.4 0.6 1.4	58.6 53.9 74.4 71.7 54.3	54.2 75.1 72.3 54.7
11:51:19 11:52:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18	13.4 12.1 10.7 12.5 12.8	11.0 13.5 12.3 10.8 12.6 13.0	1.8 1.7 0.8 1.7 1.6 1.6	1.6 1.4 0.6 1.4 1.4 1.3	58.6 53.9 74.4 71.7 54.3 57.1	54.2 75.1 72.3
11:51:19 11:52:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18 11:58:19	13.4 12.1 10.7 12.5 12.8 12.0	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5	1.8 1.7 0.8 1.7 1.6	1.6 1.4 0.6 1.4 1.4 1.3	58.6 53.9 74.4 71.7 54.3 57.1 69.8	54.2 75.1 72.3 54.7 57.6 70.4
11:51:19 11:52:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18 11:58:19 11:59:18	13.4 12.1 10.7 12.5 12.8 12.0 11.4 12.8	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5	1.8 1.7 0.8 1.7 1.6 1.6 1.7	1.6 1.4 0.6 1.4 1.4 1.3	58.6 53.9 74.4 71.7 54.3 57.1	54.2 75.1 72.3 54.7 57.6
11:51:19 11:52:19 11:52:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18 11:58:19 11:59:18 12:00:18	13.4 12.1 10.7 12.5 12.8 12.0 11.4 12.8 11.8	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5 12.9 11.9	1.8 1.7 0.8 1.7 1.6 1.6 1.7 1.4	1.6 1.4 0.6 1.4 1.4 1.3 1.5 1.2	58.6 53.9 74.4 71.7 54.3 57.1 69.8 53.0 57.9	54.2 75.1 72.3 54.7 57.6 70.4 53.4 58.3
11:51:19 11:52:19 11:53:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18 11:59:18 12:00:18 12:00:18	13.4 12.1 10.7 12.5 12.8 12.0 11.4 12.8 11.8	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5 11.9	1.8 1.7 0.8 1.7 1.6 1.6 1.7 1.4 1.1	1.6 1.4 0.6 1.4 1.3 1.5 1.2 0.9	58.6 53.9 74.4 71.7 54.3 57.1 69.8 53.0 57.9 63.2	54.2 75.1 72.3 54.7 57.6 70.4 53.4 58.3 63.7
11:51:19 11:52:19 11:52:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18 11:59:18 12:00:18 12:00:18 12:00:18	13.4 12.1 10.7 12.5 12.8 12.0 11.4 12.8 11.8	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5 12.9 11.9 11.5	1.8 1.7 0.8 1.7 1.6 1.6 1.7 1.4	1.6 1.4 0.6 1.4 1.4 1.3 1.5 1.2	58.6 53.9 74.4 71.7 54.3 57.1 69.8 53.0 57.9 63.2 50.8	54.2 75.1 72.3 54.7 57.6 70.4 53.4 58.3
11:51:19 11:52:19 11:53:19 11:53:19 11:54:18 11:55:19 11:56:18 11:57:18 11:58:19 11:59:18 12:00:18 12:01:18 12:03:19	13.4 12.1 10.7 12.5 12.8 12.0 11.4 12.8 11.8 11.8	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5 11.9	1.8 1.7 0.8 1.7 1.6 1.6 1.7 1.4 1.1 1.7 2.5	1.6 1.4 0.6 1.4 1.3 1.5 1.2 0.9 1.5 2.3 0.7	58.6 53.9 74.4 71.7 54.3 57.1 69.8 53.0 57.9 63.2 50.8	54.2 75.1 72.3 54.7 57.6 70.4 53.4 58.3 63.7 51.1
11:51:19 11:52:19 11:53:19 11:53:19 11:54:18 11:56:18 11:57:18 11:59:18 11:59:18 12:00:18 12:01:18 12:02:18	13.4 12.1 10.7 12.5 12.8 12.0 11.4 12.8 11.8 11.8 13.3 12.5	11.0 13.5 12.3 10.8 12.6 13.0 12.1 11.5 12.9 11.9 11.5 13.5 12.6	1.8 1.7 0.8 1.7 1.6 1.6 1.7 1.4 1.1 1.7 2.5	1.6 1.4 0.6 1.4 1.3 1.5 1.5 2.3	58.6 53.9 74.4 71.7 54.3 57.1 69.8 53.0 57.9 63.2 50.8	54.2 75.1 72.3 54.7 57.6 70.4 53.4 58.3 63.7 51.1 50.7

RATA Test:	6					
Date	•		15. li	un-22		
Analyzer)2		:0	N/	Ox
Low		,,,			14	<u> </u>
Zero Value (Cv)	0	00	0	0.00		00
Direct (C Dir)		00		0.32		03
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS
System Initial (Csi)		19	0.21		0.01% PASS	
System Post (Csf)		15		0.20		21
Average (Co)		17		0.21		24
System Bias Initial (SBi)	1.3%	PASS	-0.6%	PASS	0.1%	PASS
System Bias Post (SBf)	1.0%	PASS	-0.6%	PASS	0.1%	PASS
Drift Assessment (D)	-0.27%	PASS	-0.05%	PASS	-0.03%	PASS
Mid						
Mid Value (Cv)	7.	50	10.00		105.00	
Direct (C Dir)	7.53		10.18		106.18	
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS
System Initial (Csi)	7.	52	10	.13	105	5.18
System Post (Csf)	7.	53	10	.14	106	6.10
Average (Cm)		.5		0.1		5.18
System Bias Initial (SBI)	-0.1%	PASS	-0.2%	PASS	-0.5%	PASS
System Bias Post (SBf)	0.0%	PASS	-0.2%	PASS	0.0%	PASS
Drift Assessment (D)	0.07%	PASS	0.05%	PASS	0.44%	PASS
High						
High Value (CS/Cv)	15	.00	20	.00	210	0.00
Direct (C Dir)	14	.97	20	.07	212	2.43
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS
System Initial (Csi)						
System Post (Csf)						
Average (Cm)		-		-		-
System Bias Initial (SBI)	N/A	-	N/A	-	N/A	-
System Bias Post (SBf)	N/A	-	N/A	-	N/A	-
Drift Assessment (D)	N/A	-	N/A	-	N/A	-
Analyser Span (Range)	2	25	6	0	10	100
Average	11.64	11.69	2.20	2.01	51.00	50.79
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected
12:10:59	10.3	10.4	1.7	1.5	52.6	52.4
12:11:59	11.5	11.6	1.1	0.9	53.6	53.4
12:12:59						
	10.3	10.3	2.3	2.1	48.4	48.2
12:13:59	14.5	14.6	2.3 2.2	2.0	48.4 49.9	49.7
12:13:59 12:14:59	14.5 13.4	14.6 13.5	2.3 2.2 2.1	2.0 1.9	48.4 49.9 46.4	49.7 46.2
12:13:59 12:14:59 12:15:59	14.5 13.4 10.4	14.6 13.5 10.4	2.3 2.2 2.1 2.2	2.0 1.9 2.0	48.4 49.9 46.4 55.0	49.7 46.2 54.8
12:13:59 12:14:59 12:15:59 12:16:59	14.5 13.4 10.4 12.0	14.6 13.5 10.4 12.1	2.3 2.2 2.1 2.2 1.9	2.0 1.9 2.0 1.7	48.4 49.9 46.4 55.0 55.7	49.7 46.2 54.8 55.5
12:13:59 12:14:59 12:15:59 12:16:59 12:18:00	14.5 13.4 10.4 12.0 11.2	14.6 13.5 10.4 12.1 11.2	2.3 2.2 2.1 2.2 1.9 1.7	2.0 1.9 2.0 1.7 1.5	48.4 49.9 46.4 55.0 55.7 50.8	49.7 46.2 54.8 55.5 50.6
12:13:59 12:14:59 12:15:59 12:16:59 12:18:00 12:18:59	14.5 13.4 10.4 12.0 11.2 10.8	14.6 13.5 10.4 12.1 11.2 10.9	2.3 2.2 2.1 2.2 1.9 1.7 1.9	2.0 1.9 2.0 1.7 1.5 1.8	48.4 49.9 46.4 55.0 55.7 50.8 52.7	49.7 46.2 54.8 55.5 50.6 52.5
12:13:59 12:14:59 12:15:59 12:16:59 12:18:00 12:18:59 12:19:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8	14.6 13.5 10.4 12.1 11.2 10.9 11.9	2.3 2.2 2.1 2.2 1.9 1.7 1.9	2.0 1.9 2.0 1.7 1.5 1.8	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3	49.7 46.2 54.8 55.5 50.6 52.5 48.1
12:13:59 12:14:59 12:15:59 12:16:59 12:18:00 12:18:59 12:19:59 12:21:00	14.5 13.4 10.4 12.0 11.2 10.8 11.8	14.6 13.5 10.4 12.1 11.2 10.9 11.9	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4	2.0 1.9 2.0 1.7 1.5 1.8 1.2	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0
12:13:59 12:14:59 12:15:59 12:16:59 12:16:59 12:18:00 12:18:59 12:19:59 12:21:00 12:21:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7
12:13:59 12:14:59 12:15:59 12:16:59 12:16:59 12:18:00 12:18:59 12:19:59 12:21:00 12:21:59 12:23:00	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6
12:13:59 12:14:59 12:15:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:21:00 12:24:00	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:59 12:19:59 12:21:00 12:21:59 12:23:00 12:24:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6
12:13:59 12:14:59 12:14:59 12:15:59 12:16:59 12:18:00 12:18:59 12:19:59 12:21:00 12:21:59 12:23:00 12:24:00 12:24:59 12:25:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3	2.3 2.2 2.1 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4
12:13:59 12:14:59 12:14:59 12:15:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:23:00 12:24:59 12:24:59 12:25:59 12:26:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9	14.6 13.5 10.4 12.1 11.2 11.9 11.1 10.1 11.1 10.1 13.8 8.7 10.1 11.3 15.0	2.3 2.2 2.1 2.2 1.9 1.7 1.4 1.2 3.8 2.1 2.2 2.8 1.3	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:23:00 12:24:59 12:25:59 12:25:59 12:27:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9	14.6 13.5 10.4 12.1 11.2 10.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 2.3.8 2.1 2.2 2.8 1.6 1.3	2.0 1.9 2.0 1.7 1.5 1.8 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:23:00 12:24:59 12:24:59 12:25:59 12:26:59 12:26:59 12:26:59 12:26:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9 12.6 11.6	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.6 1.3 2.2	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0 2.7	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0	49.7 46.2 54.8 55.5 50.6 52.5 44.0 45.7 37.6 46.6 41.4 34.3 41.1
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:59 12:19:59 12:21:00 12:21:59 12:23:00 12:24:59 12:25:59 12:25:59 12:27:59 12:27:59 12:27:59 12:28:59 12:29:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 12.6 11.6 12.6	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.6 1.3 2.2 2.9 3.0	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0 2.7 2.8	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0	49.7 46.2 54.8 55.5 50.6 50.6 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 55.8
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:23:00 12:24:59 12:25:59 12:26:59 12:27:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 12.6 11.6 12.6 10.5	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 12.7	2.3 2.2 2.1 2.2 2.1 1.7 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.6 1.3 2.2 2.9 3.0 2.1	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0 2.7 2.7 2.8	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0 51.2	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 41.4 34.3 41.1 45.8 50.9 57.1
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:23:00 12:24:59 12:24:59 12:25:59 12:26:59 12:26:59 12:26:59 12:29:59 12:29:59 12:29:59 12:29:59 12:29:59 12:30:59 12:31:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9 12.6 11.6 11.6 11.6	14.6 13.5 10.4 12.1 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 10.5 11.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.3 2.2 2.8 1.3 2.2 2.9 3.0 2.1	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.1 2.0 2.7 2.8 1.9	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0 51.2 57.3 54.4	49.7 46.2 54.8 55.5 50.5 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 45.8 50.9 50.9
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:59 12:18:59 12:21:00 12:21:59 12:23:00 12:24:59 12:25:59 12:26:59 12:27:59 12:28:59 12:29:59 12:29:59 12:30:59 12:31:59 12:31:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 12.6 11.6 12.6 10.5 11.6	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 12.7 10.5 11.6 12.5	2.3 2.2 2.1 2.2 2.1 1.9 1.7 1.9 1.4 1.2 2.8 1.6 1.3 2.2 2.8 2.0 2.1 2.1 2.1 2.2 2.9 2.1 2.1 2.1 2.1 2.2 2.9 2.1 2.1 2.1 2.1 2.1 2.2 2.9 2.1 2.1 2.1 2.1 2.1	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.7 1.4 1.1 2.0 2.7 2.7 2.8 1.9	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0 55.3 53.2 44.2 55.2 55.2 55.2 55.3 55.2 55.3	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 45.8 50.9 57.1 55.6
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:59 12:21:59 12:22:300 12:24:59 12:24:59 12:26:59 12:26:59 12:26:59 12:28:59 12:28:59 12:28:59 12:28:59 12:31:59 12:33:59 12:33:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9 12.6 11.6 12.6 11.6 12.4 10.7	14.6 13.5 10.4 12.1 11.9 11.9 11.1 10.1 13.8 8.7 10.1 15.0 12.6 11.7 12.6 11.7 12.5 11.6 12.5 10.5	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.6 1.3 2.2 2.9 3.0 2.1 2.1 2.1 2.0 2.2	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 2.0 2.7 1.4 1.1 2.0 2.7 2.8 1.9 1.9	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0 51.2 57.3 58.4 59.6	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 45.8 50.9 57.1 54.2 66.1
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:16:59 12:18:00 12:18:59 12:21:00 12:21:59 12:23:00 12:24:00 12:24:59 12:25:59 12:26:59 12:26:59 12:29:59 12:30:59 12:30:59 12:31:59 12:32:59 12:33:59 12:33:59 12:34:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 12.6 11.6 12.6 10.5 11.6 12.4 10.7	14.6 13.5 10.4 12.1 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 12.7 10.5 11.6 12.5 10.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.3 2.2 2.8 1.3 2.2 2.8 2.1 2.2 3.0 2.1 2.0 2.1 2.0 2.1 2.0 2.2 3.4	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0 2.7 2.8 1.9 1.9	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0 51.2 55.8 61.5 61.5	49.7 46.2 54.8 55.5 50.6 62.5 48.1 44.0 45.7 37.6 66.6 41.4 40.3 41.1 45.9 50.9 57.1 56.6 61.3
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:59 12:18:59 12:19:59 12:21:00 12:21:59 12:23:00 12:24:59 12:25:59 12:26:59 12:26:59 12:27:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:31:59 12:32:59 12:33:59 12:33:59 12:33:59 12:33:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9 12.6 11.6 12.6 10.5 11.6 12.4 10.7	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 10.5 11.6 12.5 10.7 12.0 13.6	2.3 2.2 2.1 2.2 2.1 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.6 1.3 2.2 2.9 3.0 2.1 2.1 2.1 2.1 2.2 3.4 2.5 3.0 2.2 3.4 2.5	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0 2.7 2.8 1.9 1.9 2.0 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 63.2 46.8 41.6 34.5 41.3 46.0 57.3 54.4 55.3 46.0 61.5 61.5 61.3 48.5	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 45.8 50.9 57.1 54.2 61.3 61.3
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:00 12:18:59 12:18:00 12:21:59 12:21:59 12:23:00 12:24:59 12:25:59 12:26:59 12:26:59 12:26:59 12:23:59 12:30:59 12:31:59 12:33:59 12:34:59 12:34:59 12:36:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9 12.6 11.6 12.6 11.6 12.4 10.5 11.6 12.0 11.7 12.0 13.7 14.9 15.0 16.0 17.0 1	14.6 13.5 10.4 12.1 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 12.7 10.5 11.6 12.5 11.6 12.5 11.6 12.0 13.6 11.7	2.3 2.2 2.1 2.2 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.3 2.2 2.8 2.1 2.1 2.2 2.8 2.3 3.0 2.1 2.1 2.1 2.1 2.2 2.8 3.0 2.1 2.1 2.1 2.1 2.2 3.4 2.5 3.4 2.5 3.4	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.1 2.0 2.7 2.8 1.9 1.9 1.9 2.0 3.7 2.8 2.8 2.8 3.7 2.0 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 53.2 46.8 41.6 34.5 41.3 46.0 51.2 57.3 54.4 55.8 61.3 48.5 61.3	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 50.9 57.1 50.9 57.1 45.2 56.3
12:13:59 12:14:59 12:14:59 12:16:59 12:16:59 12:18:59 12:18:59 12:19:59 12:21:00 12:21:59 12:23:00 12:24:59 12:25:59 12:26:59 12:26:59 12:27:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:28:59 12:31:59 12:32:59 12:33:59 12:33:59 12:33:59 12:33:59	14.5 13.4 10.4 12.0 11.2 10.8 11.8 11.1 10.1 13.7 8.7 10.1 11.2 14.9 12.6 11.6 12.6 10.5 11.6 12.4 10.7	14.6 13.5 10.4 12.1 11.2 10.9 11.9 11.1 10.1 13.8 8.7 10.1 11.3 15.0 12.6 11.7 10.5 11.6 12.5 10.7 12.0 13.6	2.3 2.2 2.1 2.2 2.1 1.9 1.7 1.9 1.4 1.2 3.8 2.1 2.2 2.8 1.6 1.3 2.2 2.9 3.0 2.1 2.1 2.1 2.1 2.2 3.4 2.5 3.0 2.2 3.4 2.5	2.0 1.9 2.0 1.7 1.5 1.8 1.2 1.0 3.7 1.9 2.0 2.7 1.4 1.1 2.0 2.7 2.8 1.9 1.9 2.0 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	48.4 49.9 46.4 55.0 55.7 50.8 52.7 48.3 44.2 45.9 37.8 63.2 46.8 41.6 34.5 41.3 46.0 57.3 54.4 55.8 61.5 61.3 48.5	49.7 46.2 54.8 55.5 50.6 52.5 48.1 44.0 45.7 37.6 53.0 46.6 41.4 34.3 41.1 45.8 50.9 57.1 54.2 61.3 61.3

RATA	_					
Test:	7		15 1	un-22		
Analyzer)2		in-22 0	N	Ox
Low		, <u>r</u>		.0	14	O.A.
Zero Value (Cv)	0	00	0	00	0	00
Direct (C Dir)		00		32		03
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS
System Initial (Csi)		15		20		21
System Post (Csf)		11		21		23
Average (Co)		13		21		22
System Bias Initial (SBi)	1.0%	PASS	-0.6%	PASS	0.1%	PASS
System Bias Post (SBf)	0.7%	PASS	-0.6%	PASS	0.1%	PASS
Drift Assessment (D)	-0.27%	PASS	0.05%	PASS	0.01%	PASS
Mid						
Mid Value (Cv)	7.50		10	.00	105.00	
Direct (C Dir)	7.53		10	.18	106	6.18
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS
System Initial (Csi)	7.	53	10	.14	106	6.10
System Post (Csf)		53		.17		5.79
Average (Cm)	7	.5		0.2		6.1
System Bias Initial (SBI)	0.0%	PASS	-0.2%	PASS	0.0%	PASS
System Bias Post (SBf)	0.0%	PASS	0.0%	PASS	0.3%	PASS
Drift Assessment (D)	0.00%	PASS	0.15%	PASS	0.33%	PASS
High						
High Value (CS/Cv)	15	.00	20	.00	210	0.00
Direct (C Dir)	14	.97	20	.07	212	2.43
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS
System Initial (Csi)						
System Post (Csf)						
Average (Cm)						
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-
System Bias Post (SBf)	N/A	-	N/A	-	N/A	-
Drift Assessment (D)						
Jilit Addedallielit (D)	N/A	-	N/A	-	N/A	-
Analyser Span (Range)		-		-	10	-
	11.92	11.95	2.13	1.93	62.32	- 00 61.59
Analyser Span (Range) Average Time	2		2.13 Recorded		10	
Analyser Span (Range) Average Time 12:44:37	11.92 Recorded 10.8	11.95 Corrected 10.8	2.13 Recorded 2.1	1.93 Corrected 1.9	62.32 Recorded 74.0	61.59 Corrected 73.1
Analyser Span (Range)	11.92 Recorded 10.8 12.3	11.95 Corrected 10.8 12.3	2.13 Recorded 2.1 2.0	1.93 Corrected 1.9 1.8	62.32 Recorded 74.0 73.6	61.59 Corrected 73.1 72.7
Analyser Span (Range)	11.92 Recorded 10.8 12.3 10.9	11.95 Corrected 10.8 12.3 11.0	2.13 Recorded 2.1 2.0 2.2	1.93 Corrected 1.9 1.8 2.0	62.32 Recorded 74.0 73.6 78.2	61.59 Corrected 73.1 72.7 77.3
Analyser Span (Range)	11.92 Recorded 10.8 12.3 10.9 13.3	11.95 Corrected 10.8 12.3 11.0	2.13 Recorded 2.1 2.0 2.2 2.1	1.93 Corrected 1.9 1.8 2.0 1.9	62.32 Recorded 74.0 73.6 78.2 55.9	61.59 Corrected 73.1 72.7 77.3 55.2
Analyser Span (Range)	11.92 Recorded 10.8 12.3 10.9 13.3 12.5	11.95 Corrected 10.8 12.3 11.0 13.3 12.5	2.13 Recorded 2.1 2.0 2.2 2.1 2.0	1.93 Corrected 1.9 1.8 2.0 1.9 1.8	62.32 Recorded 74.0 73.6 78.2 55.9 59.4	61.59 Corrected 73.1 72.7 77.3 55.2 58.6
Analyser Span (Range)	11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7	74.0 73.6 78.2 55.9 74.1	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7	62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8	2.13 Recorded 2.1 2.0 2.2 2.1 1.9 1.4 2.3	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1	62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2
Analyser Span (Range)	11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 12.7 10.4	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4	62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4 1.7	10 62.32 Recorded 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:48:37 12:49:37 12:50:37 12:52:37 12:52:37 12:54:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.1 2.4 1.7 2.5	62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 12.7 10.4 12.6 11.8 11.5	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7 1.7	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4 1.7 2.5 1.5	10 62.32 Recorded 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 11.8	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.8 11.5 11.8	2.13 Recorded 2.1 2.0 2.1 2.0 2.1 2.0 1.4 2.3 2.3 2.6 1.9 2.7 1.7	1.93 Corrected 1.9 1.8 2.0 1.9 1.7 1.2 2.1 2.1 2.4 1.7 2.5 1.5	62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:47:37 12:48:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 11.8	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 2.7 1.7 1.8	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.7 2.1 2.1 2.1 2.4 1.7 2.5 1.5	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.99 13.3 12.5 11.1 12.7 10.4 12.6 11.8 11.5 11.8 12.3 11.6	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8 12.4 11.6	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7 1.7 1.7 1.8 2.0	1.93 Corrected 1.9 1.8 2.0 1.9 1.7 1.7 1.2 2.1 2.4 1.7 2.5 1.5 1.5	62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:48:37 12:49:37 12:50:37 12:50:37 12:53:37 12:55:37 12:55:37 12:56:37 12:57:37 12:57:37 12:57:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 11.8 12.3 11.6 13.0 13.0	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 11.8 11.5 11.8 11.6 11.8 12.4 11.6 13.0	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 2.7 1.7 1.8 2.0 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4 1.7 2.5 1.5 1.6 1.8	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 53.1
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:46:37 12:49:37 12:49:37 12:59:37 12:59:37 12:55:37 12:56:37 12:56:37 12:56:37 12:56:37 12:58:37 12:59:37 12:59:37	2 11.92 Recorded 10.8 12.3 10.9 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 11.6 11.8 12.3 11.6 13.0 12.8	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8 12.4 11.6 13.0 12.8	Example 1.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4 1.7 2.5 1.5 1.6 1.8 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 53.1 56.2
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.1 12.7 10.4 12.6 11.8 11.5 11.8 12.3 11.6 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 11.8 11.8 11.8 12.4 11.6 13.0 12.8 12.8 12.4 13.0	E 2.13 Recorded 2.1 2.1 2.0 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 2.7 1.7 1.7 1.8 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.2 2.1 2.0 2.2 2.1 2.0 2.2 2.1 2.0 2.2 2.2 2.1 2.0 2.2 2.2 2.1 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4 1.7 2.5 1.5 1.6 1.8 1.9 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 59.5	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 53.1 56.2
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 11.8 12.3 11.6 12.8 12.8 12.0 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11	11.95 Corrected 10.8 12.3 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8 12.4 11.6 13.0 12.8 12.0 11.6 11.6 11.6	E 2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7 1.7 1.8 2.0 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.4 1.7 2.5 1.5 1.6 1.8 1.9 1.8 2.0 1.6	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 59.5 55.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 72.0 70.6 66.1 53.1 56.2 58.8
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:46:37 12:48:37 12:49:37 12:59:37 12:59:37 12:55:37 12:56:37 12:56:37 12:56:37 12:59:37 12:59:37 13:00:37 13:01:37 13:01:37 13:03:37	2 11.92 Recorded 10.8 12.3 10.99 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 12.3 11.6 13.0 12.8 12.0 11.6 13.0 12.8 12.0 11.6 12.1 12.1	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 11.8 11.8 11.8 11.8 11.8 12.4 11.6 13.0 12.8 12.0 11.6 11.6 12.1	Example 1.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.5 1.5 1.6 1.8 1.9 1.8 1.9 1.6 1.8 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 59.5 59.5	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 61.2 53.1 56.2 58.8 64.2
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:47:37 12:48:37 12:50:37 12:50:37 12:55:37 12:55:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 12:57:37 12:58:37 12:58:37 12:58:37 13:00:37 13:00:37 13:00:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 12.3 11.6 12.3 11.6 12.0 11.6 12.1	11.95 Corrected 10.8 12.3 11.0 12.5 11.4 11.2 12.8 10.4 12.6 11.8 12.4 11.5 11.8 12.4 11.6 13.0 12.8 12.0 11.6 12.1	E 2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 2.7 1.7 1.8 2.0 2.1 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.4 1.7 2.5 1.5 1.6 1.8 1.9 1.8 2.0 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.0	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 66.9 59.5 55.1	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 76.1.6 60.0 72.0 70.0 62.6 61.2 53.1 56.2 58.8 54.4 54.4
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 13.3 11.3 11.1 12.5 11.3 11.1 12.6 11.8 11.5 11.8 12.3 11.6 12.0 12.8 12.0 11.6 12.1 10.7 13.1 13.1	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.6 13.0 12.8 12.0 11.6 13.0 11.6 13.0 11.6 13.0 11.6 13.0 11.6 13.0 13.0 13.1 13.0 13.1 13.1 13.1 13.1	Example 1.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 2.1 2.4 1.7 2.5 1.5 1.6 1.8 1.9 1.8 2.0 1.6 1.6 2.0 2.1	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 63.3 65.9 55.9 65.9 65.9 66.9 76.9 77.0 78.6 66.9 77.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 78.6 67.0 67.	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 53.1 56.2 58.8 64.4 64.4 65.2 66.2 66.2 66.6 66.1 66.0 66.1 66.0 66.0 66.0 66.0
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:46:37 12:48:37 12:48:37 12:59:37 12:51:37 12:53:37 12:55:37 12:56:37 12:56:37 12:56:37 12:56:37 12:59:37 12:59:37 12:59:37 13:00:37 13:01:37 13:03:37 13:04:37 13:05:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.1 12.7 10.4 12.6 11.8 12.6 11.8 12.8 12.3 11.6 12.8 12.0 11.6 12.8 12.0 11.6 12.1 12.9 12.9 12.9	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.9 11.9 11.9 11.9 11.9 11.9 11.9	2.13 Recorded 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.5 1.5 1.6 1.8 2.0 1.6 1.8 2.0 2.1 1.8 2.0 2.1 1.7 2.5 1.6 1.8 1.9 1.8 2.0 1.6 1.6 1.8 1.9 1.8 2.0 1.6 1.6 1.6 1.6 1.8 1.9 1.8 2.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 66.9 59.5 55.1 64.8 62.3	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 58.8 54.4 64.1 64.1 64.1 64.1 65.7
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:47:37 12:48:37 12:50:37 12:50:37 12:55:37 12:55:37 12:56:37 12:56:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 13:00:37 13:00:37 13:00:37 13:00:37 13:00:37 13:00:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 12.3 11.6 12.8 12.8 12.1 12.7 12.8 12.1 12.9 12.0 12.0 12.0 12.0 12.0 12.0 12.1 12.1	11.95 Corrected 10.8 12.3 12.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8 12.4 11.6 13.0 12.8 12.0 11.6 12.1 10.7 13.2 12.9 12.9 12.9	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7 1.7 1.7 1.8 2.0 2.1 2.0 2.1 2.1 2.0 2.2 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.5 1.5 1.6 1.8 2.0 1.9 1.8 2.0 2.1 1.7 1.5 1.6 1.8 1.9 1.8 2.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 60.8 72.8 70.9 63.3 62.0 53.7 56.9 55.1 55.1 56.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 72.0 72.0 72.0 75.6 61.2 53.1 56.2 58.8 61.2 53.1 56.2 56.4 61.5 56.2 56.8
Analyser Span (Range)	2 11.92 Recorded 10.8 12.3 10.9 12.5 11.3 11.1 12.6 11.8 11.5 11.8 12.3 11.6 12.8 12.3 11.6 12.8 12.9 12.9 12.9 12.1 12.1 12.1 12.1 12.1	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.6 13.0 12.0 12.0 11.6 12.1 12.0 12.1 12.2 12.8 12.1 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 12.1 11.6 13.0 13.0 14.0 15.0 15.0 16.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	Example 1.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 2.1 1.7 1.2 2.1 1.7 2.5 1.5 1.6 1.8 2.0 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.6 1.6 1.6 1.7	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 59.5 55.1 51.7 64.8 62.3 55.9 55.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 72.0 72.0 62.6 61.2 53.1 56.2 58.8 54.4 51.0 64.1 61.5 57.1 52.0 51.7
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:46:37 12:48:37 12:50:37 12:50:37 12:55:37 12:55:37 12:55:37 12:56:37 12:56:37 12:59:37 13:00:37 13:00:37 13:00:37 13:00:37 13:00:37 13:00:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 11.5 11.8 12.3 11.6 13.0 12.8 11.6 13.0 12.8 11.6 13.0 12.8 12.0 11.6 12.0 11.6 12.1 10.7 13.1 12.9 12.2	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 12.4 11.8 12.4 11.6 13.0 12.8 12.0 11.6 12.0 11.6 12.0 11.6 12.1 10.7 13.2 12.9 12.2 11.2 10.9	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 2.7 1.7 1.7 1.8 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.5 1.5 1.6 1.8 1.9 1.8 2.0 2.1 1.6 1.6 1.7 1.5 1.6 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.9 1.6 1.6 1.7 1.9 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 55.1 55.1 57.8 62.3 57.8 58.2 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 53.1 56.2 53.1 56.2 53.1 56.2 56.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:46:37 12:47:37 12:49:37 12:50:37 12:50:37 12:51:37 12:55:37 12:55:37 12:55:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:08:37 13:08:37 13:08:37 13:08:37 13:08:37 13:08:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 12.3 11.6 12.3 11.6 12.0 11.6 12.1 10.7 13.1 12.9 12.9 12.2 11.2 10.9 10.6	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8 12.4 11.6 12.0 12.1 10.7 13.2 12.9 12.9 11.2 10.9 10.9 10.6	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7 1.7 1.8 2.0 2.0 2.2 1.8 1.7 1.7 1.8 2.0 2.1 2.0 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.4 1.7 2.5 1.5 1.6 1.8 2.0 1.8 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 59.5 55.1 51.7 64.8 62.3 57.8 62.3 57.8 62.3 57.8 62.3 57.8 63.3 62.3 63.4 64.8 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 58.8 54.4 61.0 64.1 61.5 57.1 55.2 58.8 54.4 51.0 64.1 61.5 57.1 53.9
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:47:37 12:48:37 12:49:37 12:50:37 12:50:37 12:51:37 12:55:37 12:55:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 12:56:37 13:06:37 13:00:37 13:00:37 13:00:37 13:00:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37 13:06:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.1 12.7 10.4 12.6 11.8 12.8 12.3 11.6 12.6 11.6 12.6 11.8 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 11.6 11.8 11.6 11.6 11.0 12.9 12.0 11.6 12.0 11.6 12.1 10.7 13.2 12.9 12.2 11.9 10.9 10.6 13.6	2.13 Recorded 2.1 2.10 2.2 2.1 2.0 1.9 1.9 2.7 1.7 1.8 2.0 2.1 2.1 2.0 2.1 1.9 2.7 1.7 1.8 2.0 2.1 2.1 2.0 2.1 2.1 2.0 2.1 2.1 2.0 3.1 3.1 3.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 2.1 1.7 1.2 2.1 1.7 2.5 1.5 1.6 1.8 2.0 1.9 1.8 1.9 1.7 2.1 1.7 2.1 1.7 2.5 1.5 1.5 1.6 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 86.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 59.5 55.1 51.7 64.8 62.3 65.9 59.5 55.9 62.0 63.3 63.7 59.5 64.8 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 53.1 56.2 58.8 54.4 51.0 64.1 61.5 57.1 52.0 51.7 53.9 58.4
Analyser Span (Range) Average Time 12:44:37 12:45:37 12:46:37 12:47:37 12:48:37 12:49:37 12:50:37 12:50:37 12:51:37 12:55:37 12:55:37 12:55:37 12:56:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 12:59:37 13:00:37 13:00:37 13:00:37 13:00:37 13:06:37 13:06:37 13:08:37 13:08:37 13:08:37 13:08:37 13:08:37 13:08:37 13:08:37	2 11.92 Recorded 10.8 12.3 10.9 13.3 12.5 11.3 11.1 12.7 10.4 12.6 11.8 12.3 11.6 12.3 11.6 12.0 11.6 12.1 10.7 13.1 12.9 12.9 12.2 11.2 10.9 10.6	11.95 Corrected 10.8 12.3 11.0 13.3 12.5 11.4 11.2 12.8 10.4 12.6 11.8 11.5 11.8 12.4 11.6 12.0 12.1 10.7 13.2 12.9 12.9 11.2 10.9 10.9 10.6	2.13 Recorded 2.1 2.0 2.2 2.1 2.0 1.9 1.4 2.3 2.6 1.9 2.7 1.7 1.8 2.0 2.0 2.2 1.8 1.7 1.7 1.8 2.0 2.1 2.0 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.1 2.1 2.0 2.2 2.3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	1.93 Corrected 1.9 1.8 2.0 1.9 1.8 1.7 1.2 2.1 1.7 2.4 1.7 2.5 1.5 1.6 1.8 2.0 1.8 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10 62.32 Recorded 74.0 73.6 78.2 55.9 59.4 74.1 85.2 70.0 78.6 62.3 60.8 72.8 70.9 63.3 62.0 53.7 56.9 59.5 55.1 51.7 64.8 62.3 57.8 62.3 57.8 62.3 57.8 62.3 57.8 63.3 62.3 63.7 64.8 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9	61.59 Corrected 73.1 72.7 77.3 55.2 58.6 73.3 84.2 69.2 77.7 61.6 60.0 72.0 70.0 62.6 61.2 58.8 54.4 61.0 64.1 61.5 67.1 52.0 55.1 56.2 58.8 54.4 51.0 64.1 61.5 57.1 53.9

Test:	Q						
Date			15-Ji	un-22			
Analyzer)2		0	N.	Ox	
Low		-				<u> </u>	
Zero Value (Cv)	0	00	0	00	0	00	
Direct (C Dir)		00		32		03	
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS	
System Initial (Csi)		11		21		23	
System Post (Csf)		09		20		21	
Average (Co)		10		21		22	
System Bias Initial (SBi)	0.7%	PASS	-0.6%	PASS	0.1%	PASS	
System Bias Post (SBf)	0.6%	PASS	-0.6%	PASS	0.1%	PASS	
Drift Assessment (D)	-0.13%	PASS	-0.05%	PASS	-0.01%	PASS	
Mid							
Mid Value (Cv)	7.50		10.00		105.00		
Direct (C Dir)	7.53		10	10.18		106.18	
Calibration Error (ACE)	0.20% PASS		0.90%	PASS	0.56%	PASS	
System Initial (Csi)	7.53		10	.17	106	5.79	
System Post (Csf)		48		.11	106.58		
Average (Cm)		.5		0.1		5.79	
System Bias Initial (SBi)	0.0%	PASS	0.0%	PASS	0.3%	PASS	
System Bias Post (SBf)	-0.3%	PASS	-0.4%	PASS	0.2%	PASS	
Drift Assessment (D)	-0.33%	PASS	-0.30%	PASS	-0.10%	PASS	
High							
High Value (CS/Cv)		.00		.00		0.00	
Direct (C Dir)		.97		.07		2.43	
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS	
System Initial (Csi)							
System Post (Csf)							
Average (Cm)	N1/A	-	N1/A	-	N1/A	-	
System Bias Initial (SBI)	N/A	-	N/A	-	N/A	-	
System Bias Post (SBf) Drift Assessment (D)	N/A	-	N/A	-	N/A		
Analyser Span (Range)	N/A	- 5	N/A	60	N/A	00	
Arrange Average	11.65	11.70	2.40	2.21	59.62	58.53	
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	
13:21:56	10.6	10.6	2.1	1.9	74.3	73.0	
13:22:56	10.1	10.1	2.2	2.0	73.5	72.2	
13:23:56	10.4	10.5	3.0	2.8	83.4	82.0	
13:24:56	11.9	11.9	2.3	2.1	64.5	63.3	
13:25:56	11.4	11.5		2.0			
13:26:56			2.2		bb.8	65.6	
13:20:00	10.5	10.6	2.2 1.6		66.8 75.6	65.6 74.2	
	10.5 11.3	10.6 11.4	1.6	1.4	75.6	74.2	
13:27:56	10.5 11.3 11.7	10.6 11.4 11.7		1.4			
	11.3	11.4	1.6 1.1	1.4 0.9	75.6 79.6	74.2 78.2	
13:27:56 13:28:56	11.3 11.7	11.4 11.7 12.0 12.1	1.6 1.1 1.4	1.4 0.9 1.2	75.6 79.6 70.6	74.2 78.2 69.3	
13:27:56 13:28:56 13:29:56	11.3 11.7 11.9	11.4 11.7 12.0	1.6 1.1 1.4 1.8	1.4 0.9 1.2 1.6	75.6 79.6 70.6 63.8	74.2 78.2 69.3 62.6	
13:27:56 13:28:56 13:29:56 13:30:56	11.3 11.7 11.9 12.0	11.4 11.7 12.0 12.1	1.6 1.1 1.4 1.8 1.8 3.6 2.3	1.4 0.9 1.2 1.6 1.6	75.6 79.6 70.6 63.8 63.7	74.2 78.2 69.3 62.6 62.5	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56	11.3 11.7 11.9 12.0 11.0	11.4 11.7 12.0 12.1 11.0 13.8 13.4	1.6 1.1 1.4 1.8 1.8 3.6	1.4 0.9 1.2 1.6 1.6 3.4 2.1	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4	74.2 78.2 69.3 62.6 62.5 75.4	
13:27:56 13:28:56 13:29:56 13:30:56 13:30:56 13:32:56 13:33:56 13:34:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4 57.0	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:35:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1	1.4 0.9 1.2 1.6 1.6 2.1 1.8 1.9	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4 57.0	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:36:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1 2.2	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 1.9	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:34:56 13:35:56 13:36:56 13:37:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1 2.2	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 2.0 2.9	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:36:56 13:36:56 13:37:56 13:38:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7	1.6 1.1 1.4 1.8 1.8 2.3 2.0 2.1 2.1 2.1 2.2	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 2.0 2.0 2.9	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.8	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 49.9	
13:27:56 13:28:56 13:29:56 13:39:56 13:30:56 13:32:56 13:32:56 13:34:56 13:36:56 13:37:56 13:37:56 13:38:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3	1.6 1.1 1.4 1.8 3.6 2.3 2.0 2.1 2.1 2.2 3.1 2.4	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 2.0 2.0 2.9 2.2	75.6 79.6 70.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 49.8 49.7	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 51.3 48.8	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:36:56 13:36:56 13:38:56 13:39:56 13:39:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3 10.7	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3 10.7	1.6 1.1 1.4 1.8 1.8 3.6 2.0 2.1 2.1 2.1 2.2 3.1 2.4 1.8 1.9	1.4 0.9 1.2 1.6 1.6 3.4 1.8 1.9 2.0 2.0 2.9 2.2 1.6	75.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 49.8 49.7 52.4	74.2 78.2 78.2 62.6 62.5 75.4 59.3 56.0 54.8 49.9 51.3 48.8 48.7 51.5	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:36:56 13:36:56 13:39:56 13:39:56 13:39:56 13:39:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3 10.7	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3 10.7 11.0	1.6 1.1 1.4 1.8 1.8 2.3 2.0 2.1 2.1 2.2 3.1 2.4 1.8 1.9	1.4 0.9 1.2 1.6 1.6 1.8 2.1 1.8 1.9 2.0 2.0 2.2 1.6 1.7 2.2	75.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 49.7 52.3 49.8 49.7 55.1	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 48.9 51.3 48.8 48.7 51.5	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:35:56 13:37:56 13:39:56 13:39:56 13:39:56 13:34:56 13:34:56 13:41:56 13:41:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3 10.7 12.1 12.3	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3 10.7 12.3	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1 2.2 3.1 1.8 1.9 2.4 2.5	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 2.0 2.9 2.2 1.6 1.7 2.2 2.3	75.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.8 49.7 52.4 47.6	74.2 78.2 69.3 62.6 62.5 57.2 59.3 56.0 54.8 49.9 51.3 48.8 48.7 51.5 54.1	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:35:56 13:36:56 13:36:56 13:36:56 13:38:56 13:38:56 13:38:56 13:38:56 13:38:56 13:38:56 13:38:56 13:38:56 13:38:56	11.3 11.7 11.9 12.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3 10.7 10.9 12.3 9.1	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3 10.7 11.0 12.3 9.2	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1 2.1 2.2 3.1 2.4 1.8 1.9 2.4 2.5 7.6	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 2.0 2.9 2.2 1.6 1.7 2.2 2.2	75.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.8 49.7 52.4 55.1	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 66.0 54.8 49.9 51.3 48.8 7 51.5 54.1 46.6 651.7	
13:27:56 13:28:56 13:29:56 13:39:56 13:31:56 13:32:56 13:33:56 13:34:56 13:36:56 13:36:56 13:39:56 13:39:56 13:39:56 13:39:56 13:39:56 13:41:56 13:41:56 13:42:56 13:44:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.3 10.7 12.3 10.7 10.9 12.3 9.1	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.3 10.7 12.3 10.7 11.0 12.3 13.4	1.6 1.1 1.4 1.8 3.6 2.3 2.0 2.1 2.1 2.1 2.1 2.2 3.1 1.8 1.9 2.5 7.6 3.5	1.4 0.9 1.2 1.6 3.4 2.1 1.8 1.9 1.9 2.0 2.9 2.1 1.6 1.7 2.2 2.3 7.4	75.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.8 49.7 52.4 47.6 52.7 47.9	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 49.9 49.9 51.3 48.8 48.7 51.5 54.1 46.6 51.7 47.0	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:34:56 13:35:56 13:36:56 13:37:56 13:38:56 13:39:56 13:41:56 13:41:56 13:41:56 13:45:56	11.3 11.7 11.9 12.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 10.7 12.3 10.7 10.9 12.3 9.1 13.3 12.3	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 10.7 11.0 12.3 9.2 13.4 12.3	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1 2.1 2.1 2.4 1.8 1.9 2.4 3.5 7.6 3.5 1.9	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 1.9 2.0 2.9 2.2 1.6 1.7 2.1 2.0 2.9 2.2 3.4 4.1.7	75.6 79.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.8 49.7 52.4 55.1 47.6 52.7 47.9	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 51.3 48.8 48.7 51.5 54.1 46.6 51.7 47.0	
13:27:56 13:28:56 13:29:56 13:30:56 13:30:56 13:31:56 13:32:56 13:33:56 13:35:56 13:35:56 13:36:56 13:36:56 13:34:56 13:41:56 13:42:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:46:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3 10.7 10.9 12.3 9.1 13.3 12.5 11.1	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3 10.7 11.0 12.3 10.7 11.0 12.3 10.7	1.6 1.1 1.4 1.8 3.6 2.3 2.0 2.1 2.1 2.2 3.1 2.4 1.8 1.9 2.4 2.5 7.6 3.5 1.9 2.0	1.4 0.9 1.2 1.6 3.4 2.1 1.8 1.9 2.0 2.9 2.9 2.2 1.6 1.7 2.2 2.3 7.4 3.4	75.6 79.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.7 52.4 47.6 52.7 47.9 55.2 52.4	74.2 78.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 51.3 48.7 51.5 54.1 46.6 51.7 47.0 54.1	
13:27:56 13:28:56 13:29:56 13:30:56 13:31:56 13:32:56 13:33:56 13:34:56 13:35:56 13:37:56 13:39:56 13:39:56 13:34:56 13:41:56 13:42:56 13:42:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56	11.3 11.7 11.9 12.0 13.7 13.3 12.1 13.0 13.1 10.7 12.3 10.7 12.3 10.9 12.3 9.1 13.3 12.5 11.1 9.7	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 10.7 12.2 12.3 10.7 11.0 12.3 9.2 13.4 12.6 11.0 9.2	1.6 1.1 1.4 1.8 1.8 3.6 2.3 2.0 2.1 2.1 2.1 2.1 2.2 3.1 2.4 1.8 1.9 2.5 7.6 3.5 1.9 2.0 3.2	1.4 0.9 1.2 1.6 1.6 3.4 2.1 1.8 1.9 1.9 2.0 2.9 2.2 1.6 1.7 7.2 2.3 7.4 1.7 1.8 1.7	75.6 79.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.8 49.7 52.4 47.6 55.7 47.9 55.2 52.4 49.1	74.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 51.3 48.8 7 51.5 54.1 46.6 51.7 47.0 54.1	
13:27:56 13:28:56 13:29:56 13:30:56 13:30:56 13:31:56 13:32:56 13:33:56 13:35:56 13:35:56 13:36:56 13:36:56 13:34:56 13:41:56 13:42:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:45:56 13:46:56	11.3 11.7 11.9 12.0 11.0 13.7 13.3 12.1 13.0 13.1 10.7 12.1 12.3 10.7 10.9 12.3 9.1 13.3 12.5 11.1	11.4 11.7 12.0 12.1 11.0 13.8 13.4 12.2 13.0 13.2 10.7 12.2 12.3 10.7 11.0 12.3 10.7 11.0 12.3 10.7	1.6 1.1 1.4 1.8 3.6 2.3 2.0 2.1 2.1 2.2 3.1 2.4 1.8 1.9 2.4 2.5 7.6 3.5 1.9 2.0	1.4 0.9 1.2 1.6 3.4 2.1 1.8 1.9 2.0 2.9 2.9 2.2 1.6 1.7 2.2 2.3 7.4 3.4	75.6 79.6 79.6 79.6 63.8 63.7 76.7 58.3 60.4 57.0 55.8 50.8 52.3 49.7 52.4 47.6 52.7 47.9 55.2 52.4	74.2 78.2 78.2 69.3 62.6 62.5 75.4 57.2 59.3 56.0 54.8 49.9 51.3 48.7 51.5 54.1 46.6 51.7 47.0 54.1	

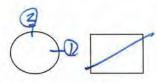
RATA	_					
Test:	9		45 1	22		
Date Analyzer)2		un-22 O	L AL	Ox
Low)2		.0	N.	UX
Zero Value (Cv)	0	00	0	00	0	00
Direct (C Dir)		00		0.32		03
Calibration Error (ACE)	0.00%	PASS	1.60%	PASS	0.01%	PASS
System Initial (Csi)		09		20		21
System Post (Csf)		12		18		.51
Average (Co)		11		19		.15
System Bias Initial (SBi)	0.6%	PASS	-0.6%	PASS	0.1%	PASS
System Bias Post (SBf)	0.8%	PASS	-0.7%	PASS	-0.3%	PASS
Drift Assessment (D)	0.20%	PASS	-0.10%	PASS	-0.34%	PASS
Mid	0.2076	1 700	-0.1078	7 700	-0.5478	1 700
Mid Value (Cv)	7.50		10.00		105.00	
Direct (C Dir)	7.53			.18	105.00	
Calibration Error (ACE)	0.20%	PASS	0.90%	PASS	0.56%	PASS
System Initial (Csi)		48		.11		5.58
System Post (Csf)		47		.18		3.49
Average (Cm)		.5		0.1		6.58
System Bias Initial (SBI)	-0.3%	PASS	-0.4%	PASS	0.2%	PASS
System Bias Post (SBf)	-0.4%	PASS	0.0%	PASS	-1.3%	PASS
Drift Assessment (D)	-0.07%	PASS	0.35%	PASS	-1.47%	PASS
High	0.01 /3		0.0070		,5	
High Value (CS/Cv)	15	.00	20	.00	210	0.00
Direct (C Dir)		.97		.07		2.43
Calibration Error (ACE)	-0.20%	PASS	0.35%	PASS	1.16%	PASS
System Initial (Csi)	0.2070		0.0070	77.00	11.1070	77.00
System Post (Csf)						
Average (Cm)		-		-		-
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-
System Bias Post (SBf)	N/A	-	N/A	-	N/A	-
Drift Assessment (D)	N/A	-	N/A	-	N/A	-
Analyser Span (Range)	2	25	6	0	10	000
Average	11.37	11.46		2.16		57.61
		11.46	2.34	2.10	58.41	10.10
Time	Recorded	Corrected	2.34 Recorded	Corrected	58.41 Recorded	Corrected
Time 14:12:23						
Time 14:12:23 14:13:23	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected
14:12:23	Recorded 11.2	Corrected 11.3	Recorded 1.9	Corrected 1.8	Recorded 60.8	Corrected 60.0
14:12:23 14:13:23 14:14:23 14:15:23	Recorded 11.2 11.4 9.8 12.9	11.3 11.5 9.9 13.0	1.9 1.8 2.7 1.8	1.8 1.7 2.5 1.6	60.8 52.9	60.0 52.2 57.9 56.4
14:12:23 14:13:23 14:14:23	11.2 11.4 9.8	11.3 11.5 9.9	1.9 1.8 2.7	1.8 1.7 2.5	Recorded 60.8 52.9 58.7 57.2 55.4	60.0 52.2 57.9
14:12:23 14:13:23 14:14:23 14:15:23	Recorded 11.2 11.4 9.8 12.9	11.3 11.5 9.9 13.0	1.9 1.8 2.7 1.8	1.8 1.7 2.5 1.6	Recorded 60.8 52.9 58.7 57.2	60.0 52.2 57.9 56.4
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8	11.3 11.5 9.9 13.0 11.7 11.2 11.9	1.9 1.8 2.7 1.8 1.3 1.4	1.8 1.7 2.5 1.6 1.1 1.6	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8	60.0 52.2 57.9 56.4 54.6 51.6 54.0
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7	11.3 11.5 9.9 13.0 11.7 11.2 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.4 2.2	1.8 1.7 2.5 1.6 1.1 1.6 1.2	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0	1.9 1.8 2.7 1.8 1.3 1.3 1.4 2.2 2.9	1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6	Recorded 1.9 1.8 2.7 1.8 1.3 1.4 2.2 2.9 2.0	1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 55.2
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:18:23 14:19:23 14:20:23 14:22:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 2.0 2.7 1.8 2.0	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 55.2 61.9
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:21:23 14:22:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.0	Recorded 1.9 1.8 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 55.2 61.9 63.7
14:12:23 14:13:23 14:14:23 14:16:23 14:16:23 14:17:23 14:19:23 14:20:23 14:21:23 14:22:23 14:22:23 14:23:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5 11.0 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 2.0 2.7 1.8 2.0 1.6 1.5	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 66.0 62.8 64.6 63.5	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 56.2 61.9 63.7 62.6
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:21:23 14:22:23 14:22:23 14:22:23 14:24:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5 11.0 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.5 1.7	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 66.0 62.8 64.6 63.5 58.9	Corrected 60.0 60.0 52.2 57.9 56.4 54.6 54.0 52.9 57.9 56.2 61.9 63.7 62.6 58.1
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:21:23 14:22:23 14:23:23 14:24:23 14:25:23 14:26:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 9.8	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5 11.0 11.9 9.8	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.9 2.0 2.1 1.8 1.7 1.8 1.8 2.9 2.0	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.5 1.7 2.6	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 56.7 56.0 62.8 64.6 63.5 58.9	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 56.2 61.9 63.7
14:12:23 14:13:23 14:14:23 14:14:23 14:16:23 14:16:23 14:17:23 14:18:23 14:20:23 14:20:23 14:22:23 14:22:23 14:23:23 14:24:23 14:25:23 14:26:23 14:26:23 14:26:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.8 12.7	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 12.8	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.9	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.5 1.7 2.6 2.5	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1	Corrected 60.0 52.2 57.9 56.4 54.6 54.6 54.0 52.9 57.9 55.2 61.9 63.7 62.6 58.1 63.7 56.3
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:21:23 14:22:23 14:22:23 14:24:23 14:25:23 14:25:23 14:26:23 14:26:23 14:26:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.8 11.8 11.8 11.8 11.9	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.2 11.9 11.8 10.0 12.6 11.5 11.9 11.9 9.8 12.8 12.0	Recorded 1.9 1.8 2.7 1.8 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.8 2.7 2.0	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.5 1.7 2.6 2.5 1.9	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 68.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 67.9 55.2 61.9 63.7 62.6 58.1 63.7 56.3 57.5
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:19:23 14:20:23 14:21:23 14:22:23 14:22:23 14:25:23 14:25:23 14:25:23 14:26:23 14:27:23 14:28:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.9 11.1 11.8 11.1 11.9 11.1 11.9 11.1	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.7 1.8 1.7 1.9 2.7 2.0 1.8 1.8 1.8 1.9 1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.5 1.6 1.5 1.7 1.7 1.6 1.7 1.7 1.6 1.7 1.7 1.8 1.7 1.8 1.9 1.7	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 63.5 58.9 64.6 63.5 58.3 55.4	Corrected 60.0 52.2 57.9 56.4 56.6 51.6 54.0 52.9 57.9 56.2 61.9 62.6 58.1 63.7 62.6 58.1 63.7 56.3 57.5
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:22:23 14:23:23 14:25:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.8 11.7 11.8 11.8 11.8 11.8	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 12.6 11.5 11.0 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.8 2.7 2.0 2.8 2.7 2.0 2.8 2.7 2.0 2.8 2.0 2.8 2.8 2.0 2.8 2.0 2.8 2.0 2.8 2.0 2.8 2.0 2.8 2.0 2.8 2.0 2.0 2.8 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 2.7 2.6 1.6 1.7 2.6 1.7 2.6 1.7 2.6 1.9 1.7 1.8	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 68.7 66.0 62.8 64.6 63.5 58.9 64.6 67.1 58.3 55.4 55.4	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 66.3 63.7 62.6 58.1 63.7 56.3 57.5 54.6 54.6 55.5
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:21:23 14:22:23 14:22:23 14:24:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23 14:25:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 11.7 11.8 11.8 11.8 11.8	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 11.9 11.9 11.9 11.5 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.8 2.7 2.0 1.8 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.5 1.5 1.7 1.6 1.5 1.7 2.6 2.5 1.7 1.8 2.0 2.7 1.8 2.0 2.7 1.8 2.0 2.7 1.8 2.0 2.7 1.8 2.0 2.7 1.8 2.0 2.7 1.8 2.0 2.7 2.6 2.6 2.5 2.5 2.7 2.6 2.5 2.5 2.7 2.6 2.6 2.7 2.6 2.7 2.6 2.7 2.7 2.0 2.7 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 55.4 55.3 55.4	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 55.2 61.9 62.6 58.1 63.7 66.3 57.5 54.6 54.5
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:20:23 14:20:23 14:22:23 14:22:23 14:25:23 14:25:23 14:26:23 14:26:23 14:27:23 14:28:23 14:29:23 14:29:23 14:30:23 14:30:23 14:30:23 14:30:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.8 11.1 11.9 9.8	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.7 2.0 1.8 2.7 2.0 2.2 6.3	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.5 1.7 2.6 2.5 1.7 2.6 2.5 1.9 1.8 2.0 6.1	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 55.4 56.3 60.2	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 62.6 63.7 62.6 58.1 63.7 56.3 57.5 54.6 54.6 54.5
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:21:23 14:22:23 14:22:23 14:26:23 14:26:23 14:26:23 14:29:23 14:29:23 14:29:23 14:29:23 14:29:23 14:29:23 14:31:23 14:31:23 14:31:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.8 11.7 11.9 11.1 11.9 11.1 11.7 11.7 11.7	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 9.8 12.8 12.0 11.2 11.8 11.8 11.8 11.8 11.8 11.8 11.8	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.8 2.7 2.0 1.8 2.7 2.0 3.3	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.5 1.7 2.6 2.5 1.9 1.7 2.6 3.1 3.1	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 62.8 64.6 62.8 64.6 63.5 58.9 64.6 55.4 55.4 65.4 65.1 66.0 67.1 58.3 55.4 65.4 55.3 55.4	Corrected 60.0 62.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 66.3 63.7 62.6 58.1 63.7 56.3 57.5 54.6 54.5 52.4 59.4 59.4
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:20:23 14:22:23 14:22:23 14:24:23 14:25:23 14:30:23 14:30:23 14:30:23 14:30:23 14:30:23 14:30:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.1 11.7 9.9 11.8 11.8 11.8 11.7 11.9 11.7 11.7 11.7 11.7 11.7 11.7	Corrected 11.3 11.5 9.9 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.7 2.0 2.1 8 2.0 3.3 3.3 3.3	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.5 1.6 1.5 1.7 2.6 2.6 2.5 1.7 1.8 2.0 2.7 1.8 2.0 2.7 2.8 2.0 2.7 2.0 3.1 3.1	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 60.2 57.3 56.3 56.3	Corrected 60.0 62.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 63.7 62.6 58.1 63.7 56.3 57.5 54.6 54.5 59.4 59.4 59.4 56.5
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:29:23 14:20:23 14:22:23 14:22:23 14:22:23 14:26:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.8 11.7 11.9 11.7 11.7 11.7 11.7 11.7 11.7	Corrected 11.3 11.5 9.9 13.0 11.7 11.7 11.2 11.8 10.0 12.6 11.5 11.0 11.9 11.9 11.9 11.9 12.8 12.8 12.8 12.8 12.8 11.2 11.8 11.8	Recorded 1.9 1.8 2.7 1.8 1.3 1.3 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.8 2.0 2.2 1.8 2.0 3.3 2.5 2.4	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 2.7 2.0 1.6 1.7 2.6 2.5 1.7 2.6 2.5 1.9 1.7 1.8 2.0 6.1 3.1 2.3	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 55.4 55.3 55.7 60.2	Corrected 60.0 52.2 67.9 56.4 54.6 51.6 52.9 67.9 66.3 63.7 62.6 58.1 63.7 56.3 57.5 54.6 54.5 52.4 56.5 57.9 63.7
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:20:23 14:22:23 14:22:23 14:26:23 14:26:23 14:26:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:30:23 14:31:23 14:31:23 14:32:23 14:32:23 14:32:23 14:32:23 14:32:23 14:32:23 14:33:23 14:34:23 14:35:23 14:36:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1.1 11.8 11.7 9.9 12.5 11.4 11.8 11.8 9.8 12.7 11.9 11.1 11.7 11.7 9.5 12.7 11.2 12.2	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.9 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.0 2.2 2.1 1.7 1.9 2.8 2.7 2.0 2.8 2.7 2.0 3.3 2.5 2.4 1.4	Corrected 1.8 1.7 2.5 1.6 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.5 1.7 2.6 2.5 1.7 1.8 2.0 2.5 2.5 1.7 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 65.4 55.3 65.4 55.3 66.2 67.1 68.3 66.6 67.1 68.3 66.6 67.1 68.3	Corrected 60.0 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 55.2 61.9 63.7 62.6 53.7 62.6 54.6 54.6 55.7 66.3 57.5 54.6 57.9
14:12:23 14:13:23 14:14:23 14:16:23 14:16:23 14:16:23 14:17:23 14:18:23 14:20:23 14:20:23 14:22:23 14:23:23 14:25:23 14:25:23 14:26:23 14:28:23 14:29:23 14:30:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.8 11.7 9.9 12.5 11.4 11.8 11.9 11.9 11.8 11.9 12.7 11.9 11.1 11.7 9.5 12.7 11.1 11.7 9.5 12.7 11.2 10.2 12.3 11.5	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.4 2.2 2.9 2.0 2.2 1.8 1.7 1.9 2.0 2.0 2.0 2.0 2.1 8 2.7 2.0 3.3 3.3 3.3 2.5 2.4 1.4	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.5 1.7 2.6 2.5 1.7 2.6 2.5 1.7 1.8 2.0 2.1 1.8 2.0 2.1 1.9 1.9 1.9	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 63.5 58.9 64.6 63.5 55.3 55.4 55.3 55.3 55.3 55.3 55.3 5	Corrected 60.0 62.2 67.9 65.4 64.6 54.6 54.6 55.2 67.9 67.9 67.9 62.6 68.1 63.7 62.6 58.1 63.7 56.3 67.5 54.6 54.5 57.9 63.7 65.5 65.5
14:12:23 14:13:23 14:14:23 14:14:23 14:15:23 14:16:23 14:16:23 14:18:23 14:19:23 14:20:23 14:22:23 14:22:23 14:25:23 14:25:23 14:25:23 14:25:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.1 11.7 9.9 11.5 11.4 10.9 11.8 11.8 11.8 11.7 11.9 11.1 11.7 11.7 11.7 11.7 11.7	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 12.8 12.8 12.8 12.8 11.8 11.8 11.8 11.8	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 2.2 2.9 2.2 2.9 2.2 1.8 1.7 1.9 2.8 2.0 2.2 1.8 2.0 3.3 3.3 2.5 2.4 1.4 2.1	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.7 2.6 2.5 1.7 2.6 2.5 1.7 2.6 2.5 1.9 1.7 2.6 2.1 2.0 2.7 2.9 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 60.2 57.3 58.7 64.6 58.3 56.1 60.2	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 66.3 67.5 56.3 57.5 52.4 54.6 54.5 55.4 66.3 67.5 55.4 66.3 67.5 66.3 67.5 66.6 67.9 68.7
14:12:23 14:13:23 14:14:23 14:15:23 14:16:23 14:16:23 14:17:23 14:18:23 14:19:23 14:20:23 14:20:23 14:20:23 14:22:23 14:22:23 14:22:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:28:23 14:30:23 14:30:23 14:31:23 14:30:23 14:31:23 14:31:23 14:32:23 14:31:23 14:32:23 14:33:23 14:38:23 14:38:23 14:38:23 14:38:23 14:38:23 14:38:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.7 9.9 12.5 11.4 10.9 11.8 11.8 11.7 11.7 11.7 11.7 11.7 11.7	Corrected 11.3 11.5 9.9 11.7 11.2 11.8 11.9 11.9 11.9 11.9 11.9 11.9 11.9	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 1.3 1.4 2.2 2.9 2.0 2.2 1.7 1.9 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.0 2.2 2.8 2.7 2.1 4.0 3.1	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.1 2.0 2.0 2.7 1.8 2.0 1.5 1.7 1.8 2.6 2.6 2.6 2.7 1.8 2.0 1.7 1.8 2.0 1.7 2.6 2.6 2.7 1.8 2.9 2.9	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.5 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 55.3 55.5	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 54.0 52.9 57.9 55.2 61.9 63.7 62.6 58.1 63.7 56.3 57.5 54.6 54.5 59.4 59.4 59.4 59.4 56.5 57.9 63.7 65.3
14:12:23 14:13:23 14:14:23 14:14:23 14:15:23 14:16:23 14:16:23 14:18:23 14:19:23 14:20:23 14:22:23 14:22:23 14:25:23 14:25:23 14:25:23 14:25:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:26:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23 14:36:23	Recorded 11.2 11.4 9.8 12.9 11.6 11.1 11.1 11.7 9.9 11.5 11.4 10.9 11.8 11.8 11.8 11.7 11.9 11.1 11.7 11.7 11.7 11.7 11.7	Corrected 11.3 11.5 9.9 13.0 11.7 11.2 11.8 10.0 12.6 11.5 11.9 11.9 11.9 11.9 11.9 11.9 12.8 12.8 12.8 12.8 11.8 11.8 11.8 11.8	Recorded 1.9 1.8 2.7 1.8 1.3 1.8 2.2 2.9 2.2 2.9 2.2 1.8 1.7 1.9 2.8 2.0 2.2 1.8 2.0 3.3 3.3 2.5 2.4 1.4 2.1	Corrected 1.8 1.7 2.5 1.6 1.1 1.6 1.2 2.0 2.7 1.8 2.0 1.6 1.7 2.6 2.5 1.7 2.6 2.5 1.7 2.6 2.5 1.9 1.7 2.6 2.1 2.0 2.7 2.9 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Recorded 60.8 52.9 58.7 57.2 55.4 52.3 54.8 53.6 58.7 56.0 62.8 64.6 63.5 58.9 64.6 57.1 58.3 55.4 55.3 55.4 55.3 55.4 55.3 55.4 60.2 57.3 58.7 64.6 58.3 56.1 60.2	Corrected 60.0 52.2 57.9 56.4 54.6 51.6 52.9 57.9 66.3 67.5 56.3 57.5 54.6 54.5 55.4 66.3 67.5 55.4 66.6 67.9 68.7 69.6 68.7 68.7 69.6 68.7 69.6 68.7 69.6 68.7 69.6 68.7 69.6 68.7 69.6 68.7 69.6 68.7 68.7 68.7 68.7 68.7 68.7 68.7 68

RATA	40					
Date Test:	10		15 1	un-22		
Analyzer	_)2		un-22 :0	N/	Ox
Low		12		.0	IN.	UX .
Zero Value (Cv)	0	00	0	00	0	00
Direct (C Dir)		00		41		.61
Calibration Error (ACE)	0.00%	PASS	0.82%	PASS	-0.24%	PASS
System Initial (Csi)		00		45		59
System Post (Csf)		00		37		77
Average (Co)	0.	00	0.	41	0.	68
System Bias Initial (SBi)	0.0%	PASS	0.1%	PASS	0.5%	PASS
System Bias Post (SBf)	0.0%	PASS	-0.1%	PASS	0.6%	PASS
Drift Assessment (D)	0.00%	PASS	-0.16%	PASS	0.07%	PASS
Mid						
Mid Value (Cv)	10.00			.00		5.00
Direct (C Dir)		98		.87		5.07
Calibration Error (ACE)	-0.10%	PASS	-0.26%	PASS	0.03%	PASS
System Initial (Csi)		96		.92		1.58
System Post (Csf)		96		.88 4.9		1.67 1.58
Average (Cm) System Bias Initial (SBi)	-0.1%	0.0 PASS	0.1%	PASS	-0.2%	1.58 PASS
System Bias Initial (SBI) System Bias Post (SBI)	-0.1% -0.1%	PASS	0.1%	PASS	-0.2% -0.2%	PASS
Drift Assessment (D)	0.00%	PASS	-0.08%	PASS	0.04%	PASS
High	0.0078	7 700	-0.0078	7 700	0.0478	7 700
High Value (CS/Cv)	20	.00	50	.00	250	0.00
Direct (C Dir)		.90		.10		9.23
Calibration Error (ACE)	-0.50%	PASS	0.20%	PASS	-0.31%	PASS
System Initial (Csi)	0.0070	77.00	0.2070	. ,,,,,,,	0.0170	77.00
System Post (Csf)						
Average (Cm)		-		-		-
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-
System Bias Post (SBf)	N/A	-	N/A	-	N/A	-
Drift Assessment (D)	N/A	-	N/A	-	N/A	-
Analyser Span (Range)	2	:5	6	60	10	100
Average	11.74	11.79	2.53	2.16	56.53	56.34
Time	Recorded	11.79 Corrected	2.53 Recorded	Corrected	56.53 Recorded	56.34 Corrected
Time 14:50:40	Recorded 10.1	11.79 Corrected 10.1	2.53 Recorded 3.0	Corrected 2.6	56.53 Recorded 76.9	56.34 Corrected 76.9
Time 14:50:40 14:51:40	10.1 12.4	11.79 Corrected 10.1 12.4	2.53 Recorded 3.0 2.6	2.6 2.2	56.53 Recorded 76.9 65.8	56.34 Corrected 76.9 65.7
Time 14:50:40 14:51:40 14:52:40	10.1 12.4 9.6	11.79 Corrected 10.1 12.4 9.6	2.53 Recorded 3.0 2.6 2.3	2.6 2.2 1.9	56.53 Recorded 76.9 65.8 70.1	56.34 Corrected 76.9 65.7 70.1
Time 14:50:40 14:51:40 14:52:40 14:53:40	Recorded 10.1 12.4 9.6 11.8	11.79 Corrected 10.1 12.4 9.6 11.9	2.53 Recorded 3.0 2.6 2.3 2.5	2.6 2.2 1.9 2.1	56.53 Recorded 76.9 65.8 70.1 68.3	56.34 Corrected 76.9 65.7 70.1 68.3
Time 14:50:40 14:51:40 14:52:40 14:53:40 14:54:40	Recorded 10.1 12.4 9.6 11.8 12.9	11.79 Corrected 10.1 12.4 9.6 11.9 12.9	2.53 Recorded 3.0 2.6 2.3 2.5 2.3	2.6 2.2 1.9 2.1 1.9	56.53 Recorded 76.9 65.8 70.1 68.3 65.5	56.34 Corrected 76.9 65.7 70.1 68.3 65.4
Time 14:50:40 14:51:40 14:52:40 14:53:40 14:54:40 14:55:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6	2.6 2.2 1.9 2.1 1.9 2.3	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0
Time 14:50:40 14:51:40 14:52:40 14:53:40 14:54:40	Recorded 10.1 12.4 9.6 11.8 12.9	11.79 Corrected 10.1 12.4 9.6 11.9 12.9	2.53 Recorded 3.0 2.6 2.3 2.5 2.3	2.6 2.2 1.9 2.1 1.9	56.53 Recorded 76.9 65.8 70.1 68.3 65.5	56.34 Corrected 76.9 65.7 70.1 68.3 65.4
Time 14:50:40 14:51:40 14:51:40 14:52:40 14:53:40 14:53:40 14:55:40 14:56:40 14:56:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1	2.6 2.2 1.9 2.1 1.9 2.3 4.8	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3
Time 14:50:40 14:51:40 14:52:40 14:53:40 14:53:40 14:55:40 14:56:40 14:56:40 14:56:40 14:58:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8	11.79 Corrected 10.1 12.4 9.6 11.9 10.7 9.8 12.8	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5	2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2
Time 14:50:40 14:51:40 14:51:40 14:52:40 14:53:40 14:53:40 14:55:40 14:56:40 14:56:40 14:58:40 14:59:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9	2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:58:40 14:58:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0	2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:56:40 15:02:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 10.9	11.79 Corrected 10.1 12.4 9.6 11.9 10.7 9.8 12.8 12.8 12.4 11.8 10.1 12.4 10.1	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 3.8	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 59.1	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0
Time 14:50:40 14:51:40 14:51:40 14:52:40 14:53:40 14:53:40 14:55:40 14:56:40 14:56:40 14:56:40 14:59:40 15:00:40 15:01:40 15:03:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 10.0 12.3 10.9	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7	2.53 Recorded 3.0 2.0 2.0 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 1.8	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.3 3.8 1.4	56.53 65.5 72.1 65.3 65.3 65.3 65.3 65.3 65.3 65.3 65.3	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:56:40 15:00:40 15:00:40 15:02:40 15:04:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.9 12.3 13.0	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.1 4.2 1.8 2.0	2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.3 3.8 1.4	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 66.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:56:40 15:00:40 15:01:40 15:02:40 15:03:40 15:03:40 15:05:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.0 12.6 13.0 11.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 1.8 2.0 2.2	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.3 3.8 1.4 1.4 1.7 1.8	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8
Time 14:50:40 14:51:40 14:51:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:59:40 15:00:40 15:01:40 15:02:40 15:03:40 15:04:40 15:06:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.9 12.6 13.0 11.5 10.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.8 11.8 11.8 10.1 12.4 11.9 12.7 13.1 11.5 10.5	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 1.7 4.2 1.8 2.0 2.2 2.3	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.3 3.8 1.4 1.7 1.8	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 10.9 12.6 13.0 11.5 10.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.8 10.1 12.4 11.8 10.1 12.7 13.1 11.5 10.5	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 2.1 2.0 1.7 4.2 1.8 2.0 2.2 2.3 1.8	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.7 1.8 1.4 1.9 1.9	56.53 Recorded 76.9 65.8 70.1 68.3 66.5 72.1 69.4 66.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5	56.34 Corrected 76.9 65.7 70.1 68.3 66.4 72.0 69.3 66.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 63.8 66.0 47.3
Time 14:50:40 14:51:40 14:51:40 14:52:40 14:53:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:58:40 15:00:40 15:01:40 15:02:40 15:04:40 15:06:40 15:06:40 15:06:40 15:06:40 15:06:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.9 10.0 12.3 11.9 11.0 12.6 13.0 11.5 10.5 11.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1 11.5 10.5 13.1 11.1	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 1.8 2.0 2.2 2.3 1.8 3.4	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.3 3.8 1.4 1.7 1.8 1.9 1.4 3.0	56.53 Recorded 76.9 66.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8 56.0 47.3
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:56:40 14:57:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.0 12.6 13.0 11.5 13.0 11.1	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.8 11.8 10.1 12.4 11.9 10.1 11.9 11.9 11.9 11.9 11.9 11.9	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 2.0 2.2 3 1.8 3.4 2.4	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.7 1.7 1.8 1.4 1.9 1.4 3.0 2.0	56.53 Recorded 76.9 65.8 70.1 68.3 66.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 57.4 59.1 57.4 59.1 56.0 47.7 54.0 56.2 47.7	56.34 Corrected 76.9 66.7 70.1 68.3 66.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 47.5 53.8 66.0 47.3 49.0
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:55:40 14:56:40 14:57:40 14:56:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.9 10.0 12.3 11.9 11.0 12.6 13.0 11.5 10.5 11.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1 11.5 10.5 13.1 11.1	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 1.8 2.0 2.2 2.3 1.8 3.4	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.3 3.8 1.4 1.7 1.8 1.9 2.0 2.0	56.53 Recorded 76.9 66.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8 56.0 47.3
Time 14:50:40 14:50:40 14:51:40 14:52:40 14:53:40 14:53:40 14:55:40 14:55:40 14:56:40 14:56:40 14:59:40 15:00:40 15:01:40 15:03:40 15:05:40 15:06:40 15:06:40 15:07:40 15:07:40 15:09:40 15:09:40 15:09:40 15:09:40 15:09:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.9 12.6 13.0 11.5 10.5 11.5 11.1 11.1	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.7 13.1 11.5 10.5 13.1 11.1 12.9 11.2	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 4.2 1.8 2.0 2.2 3.4 2.4 2.4 2.2	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.7 1.7 1.8 1.4 1.9 1.4 3.0 2.0	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5 49.2 47.1 46.3	56.34 Corrected 76.9 65.7 70.1 68.3 66.4 72.0 69.3 66.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8 56.0 47.3 49.0 46.8
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:55:40 14:56:40 14:57:40 14:56:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.9 12.6 13.0 11.5 10.5 13.0 11.1 12.8 11.1 12.2	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1 11.5 10.5 13.1 11.1 12.9 11.2	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 1.7 4.2 2.0 1.7 4.2 2.0 2.2 3 1.8 3.4 2.4 2.2 2.7	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.3 3.8 1.4 1.7 1.8 1.9 2.0 1.8 2.0	56.53 Recorded 76.9 65.8 70.1 68.3 66.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.7 49.2 47.1 46.3	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 47.5 53.8 56.0 47.3 49.0 46.8 46.0
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:55:40 14:56:40 14:56:40 14:56:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 10.9 12.6 13.0 11.5 13.0 11.1 12.8 11.1 12.2 12.8	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 12.8 12.8 10.1 11.8 10.1 12.7 13.1 11.5 13.1 11.1 11.2 12.9 11.2 12.9	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 2.1 2.0 1.7 4.2 1.8 2.0 2.2 2.3 1.8 3.4 2.4 2.2 2.7	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.7 1.7 1.8 1.4 3.0 2.0 1.8 2.4 0.6	56.53 Recorded 76.9 65.8 70.1 68.3 66.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 66.2 47.5 49.2 47.1 46.3 48.6 48.6	56.34 Corrected 76.9 65.7 70.1 68.3 66.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8 66.0 47.3 49.0 46.8 46.0 48.3 45.7
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:53:40 14:55:40 14:55:40 14:55:40 14:56:40 14:56:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 10.9 12.6 13.0 11.5 10.5 10.5 10.5 10.8 10.8 10.8 10.8 10.9	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 10.1 12.4 11.8 10.1 12.7 13.1 11.5 10.5 13.1 11.1 12.9 11.2 12.9 10.9 10.9 10.9 10.9 11.2 11.2 11.2 11.2 11.2 11.3	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 2.0 2.2 2.3 1.8 3.4 2.4 2.4 2.7 1.0	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.3 3.8 1.4 1.7 1.8 1.9 2.0 2.0 1.8 2.4 0.6	56.53 Recorded 76.9 66.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5 49.2 47.1 46.3 48.6 45.9 51.0	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 51.9 47.5 53.8 56.0 47.3 49.0 46.8 48.3 45.7 50.7
Time 14:50:40 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:55:40 14:56:40 14:56:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.0 12.3 11.1 12.6 13.0 11.5 10.5 11.5 10.5 11.1 12.2 12.8 10.8 10.5 10.8 10.5 10.8 10.5 10.5 10.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1 11.5 10.5 13.1 11.1 12.9 11.2 12.8 10.9 11.0 11.0 11.1 12.1 12.1 12.1 12.2 12.8 10.9 10.6 13.5	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 2.0 2.3 1.8 2.4 2.4 2.4 2.2 2.7 1.0 2.9 3.0	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.3 3.8 1.4 1.7 1.8 1.9 2.0 2.0 1.8 2.4 0.6 1.8 3.8 2.6 2.6	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5 49.2 47.1 46.3 48.6 46.8 46.8	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 61.9 47.5 47.3 46.8 46.0 48.3 45.7 50.7 56.4 46.5
Time 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:55:40 14:55:40 14:56:40 14:56:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:00:40 15:01:41 15:11:41 15:11:41 15:11:41 15:11:41 15:11:41 15:11:41	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.0 12.6 13.0 11.5 13.0 11.1 11.1 12.8 10.8 10.8 10.9 12.8 10.9 12.8 11.1 11.1 11.1 11.1 11.1 11.1 11.1	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.8 11.8 10.1 12.4 10.9 12.7 13.1 11.5 10.5 13.1 11.1 12.9 12.2 12.8 10.9 10.9 11.2 12.9 12.7 13.1 11.1 11.2 12.9 13.1 11.1 11.2 12.9 13.1 14.1 15.1 15.1 16.5 17.7 18.8 18.9 19.9 19.9 19.9 19.9 19.9 19.9	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 2.0 2.2 2.3 1.8 3.4 2.4 2.2 2.7 1.0 2.9 3.0 2.6	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.7 1.8 1.4 3.0 2.0 1.8 2.4 0.6 1.8 3.8 2.6 2.6 2.6	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5 49.2 47.1 46.3 48.6 45.9 51.0 56.6 46.8	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 47.5 53.8 66.0 47.3 49.0 46.0 48.3 45.7 50.7 56.4 46.5 43.0 47.6
Time 14:50:40 14:50:40 14:51:40 14:52:40 14:52:40 14:53:40 14:55:40 14:55:40 14:55:40 14:56:40 14:56:40 15:00:40	Recorded 10.1 12.4 9.6 11.8 12.9 10.6 9.8 12.7 12.3 11.8 10.0 12.3 11.8 10.0 12.3 11.1 12.6 13.0 11.5 10.5 11.5 10.5 11.1 12.2 12.8 10.8 10.5 10.8 10.5 10.8 10.5 10.5 10.5	11.79 Corrected 10.1 12.4 9.6 11.9 12.9 10.7 9.8 12.8 12.4 11.8 10.1 12.4 10.9 12.7 13.1 11.5 10.5 13.1 11.1 12.9 11.2 12.8 10.9 11.0 11.0 11.1 12.1 12.1 12.1 12.2 12.8 10.9 10.6 13.5	2.53 Recorded 3.0 2.6 2.3 2.5 2.3 2.6 5.1 2.5 1.9 2.1 2.0 1.7 4.2 2.0 2.3 1.8 2.4 2.4 2.4 2.2 2.7 1.0 2.9 3.0	Corrected 2.6 2.2 1.9 2.1 1.9 2.3 4.8 2.1 1.5 1.7 1.7 1.7 1.3 3.8 1.4 1.7 1.8 1.9 2.0 2.0 1.8 2.4 0.6 1.8 3.8 2.6 2.6	56.53 Recorded 76.9 65.8 70.1 68.3 65.5 72.1 69.4 65.3 59.5 58.7 62.1 57.4 59.1 52.2 47.7 54.0 56.2 47.5 49.2 47.1 46.3 48.6 46.8 46.8	56.34 Corrected 76.9 65.7 70.1 68.3 65.4 72.0 69.3 65.2 59.4 58.5 62.0 57.2 59.0 61.9 47.5 47.3 46.8 46.0 48.3 45.7 50.7 56.4 46.5

RATA Test:	11						
Date	<u> </u>		15-Ji	un-22			
Analyzer)2		:0	N/	Ox	
Low		, <u>-</u>				<u> </u>	
Zero Value (Cv)	0	00	0	00	0	00	
Direct (C Dir)		00		41		.61	
Calibration Error (ACE)	0.00%	PASS	0.82%	PASS	-0.24%	PASS	
System Initial (Csi)		00		37		77	
System Post (Csf)	0.			31		63	
Average (Co)		01		34		70	
System Bias Initial (SBi)	0.0%	PASS	-0.1%	PASS	0.6%	PASS	
System Bias Post (SBf)	0.1%	PASS	-0.2%	PASS	0.5%	PASS	
Drift Assessment (D)	0.05%	PASS	-0.12%	PASS	-0.06%	PASS	
Mid							
Mid Value (Cv)	10.00		25.00		125.00		
Direct (C Dir)	9.98			24.87		125.07	
Calibration Error (ACE)	-0.10% PASS		-0.26%	PASS	0.03%	PASS	
System Initial (Csi)	9.96		24	.88	124	1.67	
System Post (Csf)	9.	97	24	.90	124.58		
Average (Cm)		0.0		1.9		1.67	
System Bias Initial (SBi)	-0.1%	PASS	0.0%	PASS	-0.2%	PASS	
System Bias Post (SBf)	0.0%	PASS	0.1%	PASS	-0.2%	PASS	
Drift Assessment (D)	0.05%	PASS	0.04%	PASS	-0.04%	PASS	
High							
High Value (CS/Cv)	20	.00	50	.00	250	0.00	
Direct (C Dir)	19	.90	50	.10	249	9.23	
Calibration Error (ACE)	-0.50%	PASS	0.20%	PASS	-0.31%	PASS	
System Initial (Csi)							
System Post (Csf)							
Average (Cm)		-				-	
System Bias Initial (SBi)	N/A		N/A	-	N/A	-	
System Bias Post (SBf)	N/A	-	N/A	-	N/A		
Drift Assessment (D)	N/A	-	N/A	-	N/A	-	
Analyser Span (Range)	2	25	6	60		100	
Average	11.21	11.25	2.36	2.06	63.88	63.71	
Time	Recorded	Corrected	Recorded	Corrected	Recorded	Corrected	
15:24:32	11.4	11.4	2.7	2.4	62.3	62.1	
15:25:32	12.4	12.5	1.9	1.6	55.1	54.8	
15:26:32	11.4	11.5	2.1	1.8	54.3	54.0	
15:27:32	8.6	8.6	4.9	4.6	60.6	60.4	
15:28:32	12.7	12.7	1.7	1.4	67.5	67.4	
15:29:32	11.4	11.4	1.7	1.4	69.2	69.0	
15:30:32	11.0	11.0	1.0	0.6	66.4	66.2	
15:31:32	13.5	13.6	1.9	1.6			
					61.9	61.7	
15:32:32	11.6	11.7	2.2	1.9	71.0	70.9	
15:33:32	11.6 9.4	11.7 9.4	2.2 4.4	1.9 4.2	71.0 75.8	70.9 75.8	
15:33:32 15:34:32	11.6 9.4 11.9	11.7 9.4 12.0	2.2 4.4 1.3	1.9 4.2 1.0	71.0 75.8 59.2	70.9 75.8 59.0	
15:33:32 15:34:32 15:35:32	11.6 9.4 11.9 11.7	11.7 9.4 12.0 11.8	2.2 4.4 1.3 1.2	1.9 4.2 1.0 0.8	71.0 75.8 59.2 63.0	70.9 75.8 59.0 62.8	
15:33:32 15:34:32 15:35:32 15:36:32	11.6 9.4 11.9 11.7 10.0	11.7 9.4 12.0 11.8 10.1	2.2 4.4 1.3 1.2 3.2	1.9 4.2 1.0 0.8 2.9	71.0 75.8 59.2 63.0 67.1	70.9 75.8 59.0 62.8 66.9	
15:33:32 15:34:32 15:35:32 15:36:32 15:37:32	11.6 9.4 11.9 11.7 10.0 11.4	11.7 9.4 12.0 11.8 10.1 11.5	2.2 4.4 1.3 1.2 3.2 2.6	1.9 4.2 1.0 0.8 2.9 2.3	71.0 75.8 59.2 63.0 67.1 62.2	70.9 75.8 59.0 62.8 66.9 62.0	
15:33:32 15:34:32 15:35:32 15:36:32 15:37:32 15:38:32	11.6 9.4 11.9 11.7 10.0 11.4	11.7 9.4 12.0 11.8 10.1 11.5 10.6	2.2 4.4 1.3 1.2 3.2 2.6 2.5	1.9 4.2 1.0 0.8 2.9 2.3 2.2	71.0 75.8 59.2 63.0 67.1 62.2 65.2	70.9 75.8 59.0 62.8 66.9 62.0 65.0	
15:33:32 15:34:32 15:35:32 15:36:32 15:37:32 15:38:32 15:39:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6	
15:33:32 15:34:32 15:35:32 15:36:32 15:37:32 15:38:32 15:39:32 15:40:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9	
15:33:32 15:34:32 15:35:32 15:36:32 15:36:32 15:38:32 15:39:32 15:40:32 15:41:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6	
15:33:32 15:34:32 15:36:32 15:36:32 15:37:32 15:38:32 15:39:32 15:40:32 15:41:32 15:42:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3	
15:33:32 15:34:32 15:35:52 15:36:32 15:36:32 15:37:32 15:38:32 15:40:32 15:41:32 15:42:32 15:42:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.0 10.2	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3 66.6	
15:33:32 15:34:32 15:36:32 15:36:32 15:37:32 15:38:32 15:39:32 15:40:32 15:41:32 15:42:32 15:44:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5 11.8	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4 1.5 2.4	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7 61.7	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3 66.6 61.5	
15:33:32 15:34:32 15:36:32 15:36:32 15:36:32 15:37:32 15:38:32 15:40:32 15:41:32 15:42:32 15:43:32 15:44:32 15:44:32	11.6 9.4 11.9 11.7 10.0 10.1 10.6 10.1 11.8 10.0 10.2 12.5 11.8 9.6	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9 9.6	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4 4.8	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2 2.1 4.5	71.0 75.8 59.2 63.0 67.1 62.2 65.2 65.2 60.1 61.8 65.4 66.7 61.7 65.9	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3 66.6 61.5	
15:33:32 15:34:32 15:35:32 15:36:32 15:36:32 15:38:32 15:39:32 15:40:32 15:41:32 15:42:32 15:44:32 15:44:32 15:45:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5 11.8 9.6 12.1	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9 9.6 12.1	2.2 4.4 1.3 1.2 2.6 2.5 2.4 2.0 2.1 2.4 1.5 2.4 4.8 2.2	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2 2.1 4.5	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7 61.7 65.9 57.9	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3 66.6 61.5 65.8	
15:33:32 15:34:32 15:36:32 15:36:32 15:37:32 15:38:32 15:39:32 15:40:32 15:41:32 15:42:32 15:44:52 15:45:32 15:46:32 15:47:32	11.6 9.4 11.9 11.7 10.0 10.1 11.4 10.6 10.1 11.8 10.0 10.2 11.8 9.6 12.1 10.3	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9 9.6 12.1	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4 1.5 2.4 4.8 2.2	1.9 4.2 1.0 0.8 2.9 2.2 2.1 1.7 1.8 2.1 1.2 2.1 4.5 1.9 1.5	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7 61.7 65.9 57.9	70.9 75.8 59.0 62.8 66.9 62.0 65.0 65.0 65.6 65.3 66.6 61.5 65.8 57.7 63.9	
15:33:32 15:34:32 15:36:32 15:36:32 15:36:32 15:37:32 15:38:32 15:40:32 15:40:32 15:41:32 15:42:32 15:44:32 15:44:32 15:46:32 15:46:32 15:47:32 15:47:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5 11.8 9.6 12.1 10.3	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9 9.6 12.1 10.4 10.5	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4 1.5 2.4 4.8 2.2 4.8 2.2 7	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2 2.1 4.5 1.9 1.5 2.4	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7 61.7 65.9 57.9 64.1	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3 66.6 61.5 65.8 57.7 63.9	
15:33:32 15:34:32 15:35:32 15:36:32 15:36:32 15:37:32 15:38:32 15:40:32 15:41:32 15:42:32 15:44:32 15:46:32 15:46:32 15:48:32 15:48:32 15:48:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5 11.8 9.6 12.1 10.3 10.4 10.4	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9 9.6 12.1 10.4 10.5 12.8	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4 4.5 2.4 4.8 2.2 1.8 2.7 2.7	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2 2.1 4.5 1.9 1.5 2.4	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7 61.7 65.9 57.9 64.1 69.6	70.9 75.8 59.0 62.8 66.9 62.0 67.6 59.9 61.6 65.3 66.6 61.5 65.8 57.7 63.9 69.5	
15:33:32 15:34:32 15:36:32 15:36:32 15:36:32 15:37:32 15:38:32 15:40:32 15:41:32 15:42:32 15:44:32 15:45:32 15:46:32 15:48:32 15:48:32 15:48:32 15:48:32 15:48:32 15:48:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5 11.8 9.6 12.1 10.3 10.4 12.8 9.2	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 12.5 12.1 10.4 10.4 10.5	2.2 4.4 1.3 1.2 2.6 2.5 2.4 2.0 2.1 2.4 1.5 2.4 4.8 2.2 1.8 2.7 2.7	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2 2.1 1.5 2.4 2.4 2.4 3.2	71.0 75.8 59.2 63.0 67.1 62.2 65.2 65.2 67.8 60.1 61.8 65.4 66.7 65.9 57.9 64.1 69.6 55.8 70.2	70.9 75.8 59.0 62.8 66.9 62.0 65.0 67.6 59.9 61.6 65.3 66.6 61.5 65.8 57.7 63.9 69.5	
15:33:32 15:34:32 15:35:32 15:36:32 15:37:32 15:38:32 15:39:32 15:40:32 15:41:32 15:42:32 15:44:32 15:46:32 15:46:32 15:47:32 15:48:32 15:48:32	11.6 9.4 11.9 11.7 10.0 11.4 10.6 10.1 11.8 10.0 10.2 12.5 11.8 9.6 12.1 10.3 10.4 10.4	11.7 9.4 12.0 11.8 10.1 11.5 10.6 10.1 11.8 10.0 10.2 12.5 11.9 9.6 12.1 10.4 10.5 12.8	2.2 4.4 1.3 1.2 3.2 2.6 2.5 2.4 2.0 2.1 2.4 4.5 2.4 4.8 2.2 1.8 2.7 2.7	1.9 4.2 1.0 0.8 2.9 2.3 2.2 2.1 1.7 1.8 2.1 1.2 2.1 4.5 1.9 1.5 2.4	71.0 75.8 59.2 63.0 67.1 62.2 65.2 67.8 60.1 61.8 65.4 66.7 61.7 65.9 57.9 64.1 69.6	70.9 75.8 59.0 62.8 66.9 62.0 67.6 59.9 66.6 61.5 66.6 61.5 65.8 57.7 63.9 69.9 63.9	

RATA	40						
Date Test:	12		15 1	un-22			
Analyzer	_)2		un-22 O	N/	Ox	
Low		12		.0	IN.	OX.	
Zero Value (Cv)	0	00	0	.00	0	00	
Direct (C Dir)		00		41		.61	
Calibration Error (ACE)	0.00%	PASS	0.82%	PASS	-0.24%	PASS	
System Initial (Csi)		01		31		63	
System Post (Csf)		00		32		69	
Average (Co)	0.	01	0.	32	0.	66	
System Bias Initial (SBi)	0.1%	PASS	-0.2%	PASS	0.5%	PASS	
System Bias Post (SBf)	0.0%	PASS	-0.2%	PASS	0.5%	PASS	
Drift Assessment (D)	-0.05%	PASS	0.02%	PASS	0.02%	PASS	
Mid							
Mid Value (Cv)	10.00 9.98			25.00		125.00	
Direct (C Dir)				.87		5.07	
Calibration Error (ACE)	-0.10%	PASS	-0.26%	PASS	0.03%	PASS	
System Initial (Csi)		97		.90		4.58	
System Post (Csf) Average (Cm)		98		.58 4.7		4.63 4.58	
System Bias Initial (SBi)	0.0%	PASS	0.1%	PASS	-0.2%	PASS	
System Bias Post (SBf)	0.0%	PASS	-0.6%	PASS	-0.2%	PASS	
Drift Assessment (D)	0.05%	PASS	-0.64%	PASS	0.02%	PASS	
High	0.0070		0.01,0		0.02,0	·	
High Value (CS/Cv)	20	.00	50	.00	250	0.00	
Direct (C Dir)		.90		.10		9.23	
Calibration Error (ACE)	-0.50%	PASS	0.20%	PASS	-0.31%	PASS	
System Initial (Csi)							
System Post (Csf)							
Average (Cm)		-		-		-	
System Bias Initial (SBi)	N/A	-	N/A	-	N/A	-	
System Bias Post (SBf)	N/A	-	N/A	-	N/A		
Drift Assessment (D)	N/A	-	N/A	-	N/A	-	
Analyser Span (Range)	2	- 11.60	6	60	10	000	
Analyser Span (Range) Average	11.57	11.60	2.74	2.48	56.96	56.80	
Analyser Span (Range) Average Time	11.57 Recorded	11.60 Corrected	2.74 Recorded	2.48 Corrected	56.96 Recorded	56.80 Corrected	
Analyser Span (Range) Average Time 15:56:26	11.57 Recorded 12.1	11.60 Corrected 12.1	2.74 Recorded 2.7	2.48 Corrected 2.4	56.96 Recorded 57.7	56.80 Corrected 57.5	
Analyser Span (Range)	11.57 Recorded 12.1 10.7	11.60 Corrected 12.1 10.7	2.74 Recorded	2.48 Corrected 2.4 2.4	56.96 Recorded 57.7 61.9	56.80 Corrected 57.5 61.8	
Analyser Span (Range)	11.57 Recorded 12.1	11.60 Corrected 12.1	2.74 Recorded 2.7 2.6	2.48 Corrected 2.4	56.96 Recorded 57.7	56.80 Corrected 57.5	
Analyser Span (Range)	11.57 Recorded 12.1 10.7 13.3	11.60 Corrected 12.1 10.7 13.3	2.74 Recorded 2.7 2.6 2.4	2.48 Corrected 2.4 2.4 2.1	56.96 Recorded 57.7 61.9 58.4	56.80 Corrected 57.5 61.8 58.3	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:58:26 15:59:26	11.57 Recorded 12.1 10.7 13.3 9.9	11.60 Corrected 12.1 10.7 13.3 9.9	2.74 Recorded 2.7 2.6 2.4 2.2	2.48 Corrected 2.4 2.4 2.1 1.9	56.96 Recorded 57.7 61.9 58.4 65.4	56.80 Corrected 57.5 61.8 58.3 65.3	
Analyser Span (Range)	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0	56.80 Corrected 57.5 61.8 58.3 65.3 58.2 60.7 59.9	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:03:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 3.1	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8	56.96 Recorded 57.7 61.9 58.4 65.4 58.4 60.8 60.0 64.5	56.80 Corrected 57.5 61.8 58.3 65.3 58.2 60.7 59.9 64.4	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:02:26 16:04:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 2.8 1.8	56.96 Recorded 57.7 61.9 58.4 65.4 58.4 60.8 60.0 64.5 58.7	56.80 Corrected 57.5 61.8 58.3 65.3 58.2 60.7 59.9 64.4 58.5	
Analyser Span (Range)	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8	10 56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.4	56.80 Corrected 57.5 61.8 58.3 66.3 58.2 60.7 59.9 64.4 58.5 52.1	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:03:26 16:04:26 16:04:26 16:06:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4 2.5	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.2	56.96 Recorded 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1	56.80 Corrected 57.5 61.8 58.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:58:26 15:59:26 16:00:26 16:01:26 16:02:26 16:04:26 16:05:26 16:05:26 16:05:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 10.3 13.3 10.9 10.0 12.2	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 3.1 2.1 2.4 2.5 2.4	2.48 Corrected 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.1	56.96 Recorded 57.7 61.9 58.4 65.4 58.4 60.8 60.0 64.5 58.7 52.4 55.1	56.80 Corrected 57.5 61.8 58.3 65.3 68.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:00:26 16:03:26 16:05:26 16:05:26 16:05:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 10.0 11.2 11.8	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1 12.2 11.9	2.74 Recorded 2.7 2.6 2.2 2.7 2.0 2.0 2.0 2.1 2.1 2.4 2.5 2.4 3.1	2.48 Corrected 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.2 2.2 2.1 2.8	56.96 Recorded 57.7 61.9 58.4 65.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 60.5	56.80 Corrected 57.5 61.8 58.3 65.3 65.3 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:03:26 16:04:26 16:05:26 16:07:26 16:07:26 16:07:26 16:07:26 16:07:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 10.0 12.2 11.8	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1 12.2 11.9 9.6	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 3.1 2.1 2.4 2.5 2.4 3.7 3.1 9.7	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 2.8 1.8 2.2 2.2 2.1 2.1 9.6	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.1 60.5 59.4	56.80 Corrected 57.5 61.8 58.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:03:26 16:03:26 16:04:26 16:04:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:07:26 16:08:26 16:08:26 16:08:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 11.2 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1 12.2 11.9 9.6 13.5	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4 2.5 2.4 3.1 9.7 3.4	2.48 Corrected 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.1 2.8 9.6 3.2	56.96 Recorded 57.7 61.9 58.4 65.4 58.4 60.0 64.5 58.7 52.4 55.1 52.1 60.5 59.4 52.1	56.80 Corrected 57.5 61.8 58.3 65.3 65.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:03:26 16:03:26 16:04:26 16:07:26 16:07:26 16:07:26 16:09:26 16:09:26 16:09:26 16:09:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.0 12.2 11.8 9.6 13.5	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 10.4 13.3 10.9 10.1 12.2 11.9 9.6 13.5 12.0	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.1 2.5 2.4 3.1 9.7 3.4 2.6	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 2.8 1.8 2.2 2.2 2.1 2.1 9.6	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 52.1 60.5 59.4 56.3	56.80 Corrected 57.5 61.8 58.3 66.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 55.1.9	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:03:26 16:03:26 16:04:26 16:04:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:07:26 16:08:26 16:08:26 16:08:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 11.2 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1 12.2 11.9 9.6 13.5	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4 2.5 2.4 3.1 9.7 3.4	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.2 2.1 2.8 9.6 3.2 2.3	56.96 Recorded 57.7 61.9 58.4 65.4 58.4 60.0 64.5 58.7 52.4 55.1 52.1 60.5 59.4 52.1	56.80 Corrected 57.5 61.8 58.3 65.3 65.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:58:26 16:02:26 16:01:26 16:02:26 16:02:26 16:04:26 16:05:26 16:05:26 16:06:26 16:07:26 16:08:26 16:08:26 16:08:26 16:08:26 16:08:26 16:08:26 16:08:26 16:10:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 12.2 11.8 9.6 13.5 12.0 9.3	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 11.2 10.1 12.2 11.9 9.6 13.5 12.0	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 2.0 2.1 2.1 2.4 2.5 2.4 3.1 3.1 2.5 2.4 3.1 2.5 2.4 3.1 2.5 2.5 2.5 3.4 3.6 3.6 3.6 3.7 3.7 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 2.2 2.1 2.8 9.6 3.2 2.3 2.2	56.96 Recorded 57.7 61.9 58.4 66.4 58.4 60.0 64.5 58.7 52.4 60.5 55.1 52.1 60.5 59.4 56.3 55.7	56.80 Corrected 57.5 61.8 68.3 68.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 55.5 54.2 44.3	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:02:26 16:02:26 16:02:26 16:02:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:10:26 16:11:26 16:11:26 16:11:26 16:15:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 10.1 12.2 11.9 12.2 13.5 12.0 13.5 12.0 8.4	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 2.1 2.1 2.4 2.5 2.4 3.1 9.7 3.4 2.6 2.5 2.4 2.6 8.4	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 2.2 2.2 2.1 2.8 3.2 2.1 2.8 3.2 2.1 2.4 8.3	56.96 Recorded 57.7 61.9 58.4 65.4 60.0 64.5 58.7 52.4 60.5 52.1 60.5 59.4 52.1 56.3 55.7 54.4 44.6	56.80 Corrected 57.5 61.8 58.3 65.3 68.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.9 51.8 60.4 44.3 55.5 54.2 44.3	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:10:26 16:10:26 16:10:26 16:11:26 16:11:26 16:11:26 16:14:26 16:14:26 16:14:26 16:16:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 13.3 10.9 10.1 12.2 11.9 9.6 13.5 12.0 9.3 12.2 13.7 8.4 12.8	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.1 2.4 2.5 2.4 3.1 9.7 3.4 2.6 2.5 2.4 2.6 8.4 2.8	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.2 2.1 2.8 9.6 3.2 2.3 2.2 2.1 2.4 8.3 2.6	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 52.1 60.5 59.4 55.7 56.3 55.7 54.4 44.6 51.5	56.80 Corrected 57.5 61.8 58.3 65.3 65.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 51.3 53.2	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:58:26 16:00:26 16:01:26 16:02:26 16:03:26 16:04:26 16:05:26 16:05:26 16:07:26 16:09:26 16:01:26 16:05:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 12.2 11.9 12.2 11.9 12.2 12.0 9.6 13.5 12.0 9.3 12.2 13.7 8.4 12.8	2.74 Recorded 2.7 2.6 2.4 2.2 2.0 2.0 2.0 2.1 2.1 2.1 2.4 3.1 9.7 3.4 2.6 2.5 2.4 2.6 8.4 2.8 8.4 2.8	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.1 2.8 9.6 3.2 2.1 2.8 3.2 2.1 2.8 3.2 2.1 2.8 3.2 2.1 2.8 3.2 2.1 2.8 3.2 2.1 2.1 3.2 3.2 3.2 3.2 3.3 3.2 3.3 3.2 3.3 3.3	56.96 Recorded For.7 61.9 58.4 66.4 60.8 60.0 64.5 58.7 52.4 60.5 59.4 52.1 60.5 59.4 52.1 56.3 55.7 54.4 44.6 51.5 53.4 47.3	56.80 Corrected 57.5 61.8 58.3 66.3 58.2 60.7 59.9 64.4 58.5 52.1 51.8 60.4 59.9 51.9 51.9 55.5 54.2 44.3 51.3 53.2 47.1	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:58:26 15:59:26 16:00:26 16:01:26 16:02:26 16:02:26 16:02:26 16:05:26 16:05:26 16:05:26 16:05:26 16:08:26 16:08:26 16:10:26 16:10:26 16:11:26 16:11:26 16:11:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 10.3 13.3 10.0 11.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.8	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 10.1 12.2 11.9 12.2 13.5 12.0 13.5 12.0 12.1 12.0 12.2 13.7 12.8 12.8 12.8 12.8 12.9 10.7	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 3.1 2.1 2.1 2.5 2.4 3.1 9.7 3.4 2.6 2.5 2.4 2.6 2.8 1.6 1.6	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 2.2 2.2 2.2 2.1 2.8 9.6 3.2 2.3 2.2 2.1 2.4 8.3 2.6 1.3	56.96 Recorded 57.7 61.9 58.4 65.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 50.5 59.4 56.3 55.7 54.4 44.6 51.5 53.4 47.3 50.7	56.80 Corrected 57.5 61.8 58.3 66.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 51.3 53.2 47.1 50.5	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:01:26 16:02:26 16:02:26 16:03:26 16:03:26 16:03:26 16:04:26 16:05:26 16:07:26 16:07:26 16:07:26 16:10:26 16:10:26 16:11:26 16:11:26 16:11:26 16:11:26 16:15:26 16:15:26 16:17:26 16:17:26 16:17:26 16:17:26 16:17:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.8 12.8 12.1	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 10.1 12.2 11.9 12.2 11.9 9.6 13.5 12.0 9.3 12.2 13.7 8.4 12.8 12.2 10.7 11.0	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4 2.5 2.4 2.5 2.4 2.6 2.6 2.6 2.6 2.6 3.1 9.7 3.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 2.2 2.1 2.8 9.6 3.2 2.2 2.1 2.8 9.6 3.2 2.3 2.2 2.1 3.3 3.2 3.2 3.3 3.2 3.3 3.3 3.3 3.3 3.3	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.1 60.5 59.4 52.1 56.3 55.7 54.4 44.6 51.5 53.4 47.3 50.7	56.80 Corrected 57.5 61.8 68.3 68.3 68.3 68.3 69.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 51.3 53.2 47.1 50.5	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:01:26 16:02:26 16:03:26 16:04:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:10:26 16:11:26 16:11:26 16:11:26 16:11:26 16:16:26 16:16:26 16:16:26 16:16:26 16:16:26 16:18:26 16:18:26 16:18:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.8 12.2 10.7 11.0 11.0 12.6	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 10.1 12.2 11.9 12.2 11.9 8.6 13.5 12.0 9.3 12.2 13.7 8.4 12.8 12.8 12.2 10.7 11.0 11.0 12.6	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 2.0 3.1 2.1 2.4 2.5 2.4 3.1 9.7 3.4 2.5 2.4 3.1 1.6 1.6 1.6 1.5	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 1.8 2.2 2.1 2.8 9.6 3.2 2.1 2.8 9.6 3.2 1.3 1.3 1.3 1.5	56.96 Recorded Feconded 67.7 61.9 58.4 66.4 60.8 60.0 64.5 58.7 52.4 60.5 55.1 62.1 60.5 55.7 54.4 44.6 51.5 53.4 47.3 50.7 63.3 53.7	56.80 Corrected 57.5 61.8 58.3 66.3 58.2 60.7 59.9 64.4 58.5 52.1 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 51.3 53.2 47.1 50.5 63.2 53.5	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:01:26 16:02:26 16:03:26 16:04:26 16:05:26 16:05:26 16:05:26 16:07:26 16:07:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26 16:11:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.1 13.7	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 13.0 11.2 10.4 10.9 10.1 12.2 11.9 9.6 13.5 12.0 9.3 12.2 13.7 8.4 12.8 12.2 10.7 11.0 12.6 10.6	2.74 Recorded 2.7 2.6 2.4 2.2 2.0 2.0 2.0 3.1 2.1 2.1 2.5 2.4 2.5 2.4 2.6 2.6 3.1 9.7 3.4 2.6 2.5 2.6 8.4 2.8 1.6 1.5 1.8 2.9	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 2.2 2.2 2.2 2.1 2.8 9.6 3.2 2.3 2.3 2.1 2.4 8.3 2.6 1.3 1.2 1.5 2.6	56.96 Recorded 57.7 61.9 58.4 65.4 65.4 60.8 60.0 64.5 58.7 52.1 60.5 59.4 55.1 52.1 56.3 55.7 54.4 44.6 51.5 53.4 47.3 50.7 63.3 55.7 60.5	56.80 Corrected 57.5 61.8 58.3 66.3 68.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 51.3 53.2 47.1 50.5 63.2 53.5 60.4	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:58:26 16:00:26 16:01:26 16:03:26 16:04:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:05:26 16:10:26 16:11:26 16:11:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26 16:15:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 11.0 12.2 11.9 12.2 11.9 9.6 13.5 12.2 12.0 9.3 12.2 13.7 8.4 12.8 12.2 10.7 11.0 12.6 10.6 12.6	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4 2.5 2.4 2.5 2.4 3.1 9.7 3.4 2.6 2.5 2.4 3.1 9.7 3.4 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 2.8 1.8 2.2 2.1 2.8 9.6 3.2 2.1 2.8 3.2 2.1 2.1 3.2 2.1 1.3 1.3 1.3 1.3 1.5 2.6	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 52.1 60.5 59.4 52.1 56.3 55.7 54.4 44.6 51.5 53.4 47.3 50.7 63.3 63.7 60.5	56.80 Corrected 57.5 61.8 61.8 58.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 61.3 61.3 61.3 60.4 60.4 61.2	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 15:59:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:00:26 16:10:26 16:10:26 16:11:26 16:11:26 16:11:26 16:15:26 16:16:26 16:19:26 16:19:26 16:19:26 16:19:26 16:19:26 16:20:26 16:21:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.8 12.2 10.7 11.0 12.6 10.6 12.6 11.7	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 10.1 12.2 11.9 10.1 12.2 11.9 8.6 13.5 12.0 12.2 13.7 12.2 13.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 3.1 2.1 2.1 2.5 2.4 3.1 9.7 3.4 2.6 2.5 2.4 2.6 2.6 1.6 1.5 1.8 2.9 1.4	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 1.7 2.8 3.2 2.2 2.1 2.8 3.2 2.1 2.8 3.2 2.1 3.2 2.1 3.3 2.6 1.3 1.3 1.5 2.6 1.1 1.5	56.96 Recorded 57.7 61.9 58.4 65.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 50.5 59.4 65.3 55.7 54.4 44.6 61.5 53.4 47.3 50.7 63.3 55.7 60.5 61.3	56.80 Corrected 57.5 61.8 58.3 65.3 65.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 51.3 53.2 47.1 50.5 63.2 53.5 60.4 61.2 59.1	
Analyser Span (Range) Average Time 15:56:26 15:57:26 15:59:26 16:00:26 16:01:26 16:02:26 16:02:26 16:02:26 16:02:26 16:03:26 16:03:26 16:03:26 16:04:26 16:03:26 16:03:26 16:04:26 16:03:26 16:04:26 16:05:26 16:10:26 16:11:26 16:11:26 16:11:26 16:14:26 16:15:26 16:15:26 16:18:26 16:18:26 16:18:26 16:18:26 16:18:26 16:18:26 16:18:26 16:18:26 16:18:26 16:18:26	2 11.57 Recorded 12.1 10.7 13.3 9.9 11.9 12.9 11.2 10.3 13.3 10.9 10.0 12.2 11.8 9.6 13.5 12.0 9.3 12.1 13.7 8.4 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	11.60 Corrected 12.1 10.7 13.3 9.9 11.9 11.2 10.4 13.3 10.9 11.0 12.2 11.9 12.2 11.9 9.6 13.5 12.2 12.0 9.3 12.2 13.7 8.4 12.8 12.2 10.7 11.0 12.6 10.6 12.6	2.74 Recorded 2.7 2.6 2.4 2.2 2.7 2.0 2.0 3.1 2.1 2.4 2.5 2.4 2.5 2.4 3.1 9.7 3.4 2.6 2.5 2.4 3.1 9.7 3.4 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.48 Corrected 2.4 2.4 2.1 1.9 2.5 1.7 2.8 1.8 2.2 2.1 2.8 9.6 3.2 2.1 2.8 3.2 2.1 2.1 3.2 2.1 1.3 1.3 1.3 1.3 1.5 2.6	56.96 Recorded 57.7 61.9 58.4 65.4 60.8 60.0 64.5 58.7 52.4 55.1 52.1 60.5 59.4 52.1 56.3 55.7 54.4 44.6 51.5 53.4 47.3 50.7 63.3 63.7 60.5	56.80 Corrected 57.5 61.8 61.8 58.3 65.3 58.2 60.7 59.9 64.4 58.5 52.1 54.9 51.8 60.4 59.2 51.9 56.1 55.5 54.2 44.3 61.3 61.3 61.3 60.4 60.4 61.2	

APPENDIX I



RWDI AIR Inc. Consulting Engineers

Moisture Analysis Data Sheet

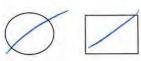
Project #: 2202865		Project: Stericyc	le	
Date:	June 15,2022	Test:	_ 71	
		Filter ID:	MA 220217	121
Sample Loc.	Incinerator	XAD Trap ID:	N/A	
Sample Loc.	Incherator	XAD TIAP ID.	IN/A	
		Train ID:	M29	
Pre-weights By	y: <u>M05</u>	Post-weights By:	w	
Impinger #	Impinger Contents	Final Weight (g)	Initial Weight (g)	Net Condensate (g)
1	5%HNO3 + 10% H2O2	817.8	785.3	
2	5%HNO3 + 10% H2O2	828.3	757.7	-
3	Empty	663.5	640.5	
4	H2SO4/KMnO4	759.0	799.4	
5	H2SO4/KMnO4	748.0	743.5	
6	Silica	889.8	844.2	
7			- 120	
8				
4	TOTAL		L.	
Balance QA C	theck:			
	Actual (g)	Measured (g)	Error < 0.5 g	Initials
Pre-weights	[000]	1000.1	~	00
Post-weights	(000.0	1000-1		0.2
Comments:				easurements: O-32 O-32 O-32 O-32
	Signature		June	15,2322 Pate

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Test No.: 71-729 Start Time: 9:8 Stack D.: 24"
Source: Incinerator Operators: 69 Finish Time: Pitot Check: 17 Traverse: 1/2 Traverse Dir.: 017-714 Date: 3 to 15:2-22 Port length: 8". 4

Dn: 0.32 Cp: 0.827 Bws: 53 dH@: 1.7813 Y: 0.984) Pbar: 29.96 Pstatic: 0.07 CO2: 12.2 O2: 12.2 Pitot ID hard 44

Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	Imp.		ter 4vs	Vac.	Comments
1		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF) _	(oF)	("Hg)	
1	0		1.4	-	654.19	112	290	290	65	83	1	-2	
	2.5	0.15	1.4	155.82	655 -87	/12	250	249	7,5	83		-2	
	5	0.15	1.4	757.55	657.56	110	250	250	12	83		-2	
	7.5	0.13	10	159.24	859.25	119	200	250	60	83		-2	•
	10	0-11	P	660.68	660.70	122	250	250	58	82		-1	
	12.5	0.11	10	162.13,	662-13	1.0	250	248	58	82		-1	
		0-15	1.3	863-56	663.57	110	250	25	58	82		-2	
	17.5	0.19	1.3	165. 24	665-26	111	250	249	57	82		-2	
2	20		1.3	666-93	666.94	112	25	249	57	82		-8	
	22.5		1.3	6.68.61	7/8-61	112	250	250	57	82		-2	2"
	25		1.3	670-28	1,70.22	112	250	293	57	82		21	
	27.5		1.2	671.94	671.94	112	250	28	57	8~2		-2	+
		1.15	1.2	673.61	675.62	112	250	249	5/	82		-2	
	32.5		1-3	175.27	675-28	112	250	250	56	82		-2	
	35		1.3	676.99	676-96	113	249	250	58	83		-2	
	37.5		1-3	678.64	1.78.13	112	250	250	58	63		-2	
3	40		1-1	18031	180.31	113	250	250	59	83	111111	-2	
1	42.5		1.1	681-87	181.88	t13	299	250	59	83		-2	
		0.13	61	683.44	683.42	113	249			84		-2	
1		0.13	1-1	684.98	184.97	113	2=17	251	59	84			
1	50		1.1	686-53	686.53	112	250	252	60	84		-2	
1	52.5		1-1	(20109	688.68	112	251	252	60	84		_	
		0.13	1.1	189. 14	189.64	113	251	وي م	12			-3	
	57.5		1-1	691-20	691.20	113	250	252	661	84		-2	
4	60		1.2	192.76	192.76	110	249	252	13	84		-2	
7	62.5		1-3	694.44	674.42	113	252	252	20	84		-2	
-	65		1-3	196-13	696-13	13	255	ess	S	84		-2	
-	67.5		1.3	697. 72	697.78	113	200	249	58	84		-2	
-	70		3	649.41	199.42	112	251	251	57	84		3-	
-	72.5		1-3	701.10	701-08	110	251	250	52			-2	
-	75		1.3	22.76	1-2-76	112	28	249	57	84		-2	
-		0.15	1.3	704.44		113	252	250	57	84		-2	
	11.5	0.10	1.5	124	707.45	112	×22	ar you	05	84			
-													
-													
-													
						_	R						
-						-							
_										-			


Pretest Leak Check Rate (cfm) at vacuum ("Hg)
Posttest Leak Check Rate (cfm) at vacuum ("Hg)

Leak Vol Start 653 - 11 -Leak Vol Start

Leak Vol. End 654 . 19 Leak Vol. End

Dn: 0-32 Cp: 0-824 Bws: 53 dH@: 1-7813 Y: 0-8843 Pbar: 29-91 Pstatic: 0.07

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 1/2

Test No.: 71-1929

Start Time: Traverse Dir.: Out port length: 8"

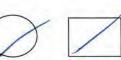
Stack D.: 24" Pitot Check:

Page: 2 of 4

12.2

O2: Pier Pier

Pt.	Time	Velocity	Orifice	Gas Mete	r Reading	Stack	Probe	Box	Imp.	Me	ter Auc	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5		0.11	1.0	706.10	706.09	114	251	250	57	86		-2	
		0.11	1.0	707, S3	707.56	1/4	251	250	57	87.		-2	
		0.11	10	709.00	709.02	114	250	248	57	86		-2	
	87.5		10	710.41	710:49	1/4	2 48	250	57	36		-2	
		0:11	1.0	711.93	711-95	114	248	250	57	86		-2	
		0-15	1.3	713.39	713.41	115	20	250	58	86		-2	
		DIS	1.2	215.09	715.06	lic	249	250	58	87		r	
		0.15	1.3	716.74	716.74	115	250	249	58	87		-2	
6	100		1.3	718.42	718.41	115	250	250	59	87		-2	
	102.5	0.15	1.3	720.09	12012	115	251	249	59	87		-2	
	105		1.3	721.80	721.82	115	28	250	59	87		-2	
100	107.5		13	723.50	723.51	LIS	250	250	55	87		-2	
- 1			1.3	725.19	729.19	115	260	250	59	87		-2	
	112.5	_	1.2	721.87	126.85	lis	250	Dyg	63	8 T		-2	
	115	21.0	7.3	728.53	728.50	112	250	249	61	87		-2	
		0.15	1.3	730.78	730.15	116	250	249	62	87		-7	
7	120		173	731.83	721.83	115	250	251	62	87		-2	
	122.5		1.0	733.51	733.50	116	250	050	62	87		-2	
	125		1.0	734.94	734.96	116	200	251	62	87		-2	
	127.5		1.0	736.40	736-44	1/6	00	2109	R	87			
	130		10	737-88	727.90	116	251	250	12	87		-2	
	132.5		0.85	739.34	739.38	115	251	250	64	82		-1	
	135		D.85	740.75	710-77	11.6	850	250	64	87		-1	
	137.5		0.85	742-15	742.08	116	249	20	64	87		-1	
8	140		0.85	743.55	743.57	716	250	250	65	86		-1	
		0-10	0.85	744.94	744.95	116	251	250	65	86		-(
		0.12	0.85	746.32	746.30	116	250	251	66	86		-1	
		0-10	0.85		747.66	116	250	250	6.1	86		-	
	150		0.85		749.03	116	248	250	86	86		-1	
	152.5	0.10	085	730.40	750.42	116	249	249	66	86		-1	
	155	0.10	0.85	751- 79	751.81	116	249	24/2	33	84	1	~/	
		0.15	0.85	753.18	753.20	1196	201	251	66	84	Y	-1	
	160		V.E.F.	754.57	154-59								
					,							7	
1													
			11-										
					2 3 3 3			- T					
1													


Pretest Leak Check	Rate (cfm)	-	_at	-	vacuum ("Hg)
Posttest Leak Check	Rate (cfm)	_	at	-	vacuum ("Hg)

Leak Vol. End _ Leak Vol. End _

Dn: 0-12 Cp: 0-822 Bws: 52 dH@: 1-3813 Y: 0-9843 Pbar: 29-56 Pstatic: 0.07

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: -2.12 Test No.: 11-1929 Start Time:

Finish Time: Traverse Dir.: 047 11 Date: 3 une 15, 2022

Stack D.: 24" Pitot Check: Port length: 8"

CO2:

(min)	Press. ("H20)	Press.	Desired	Actual	***	CONTRACTOR OF THE PARTY OF THE						
	("H20)	/III LOOL			Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
0		("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
		1.5		754.59	114	240	250	61	81		- 3	
	0.17	1.5	7-56.36	756.36	114	249	250	62	81		-2	
		1.5	758.13	758.12	113	251	249	62	81		-2	
			759.89	759.88	113	250	249				-2_	
			761.65	761.67	113	250	250		81			
			763.44	763.45	114	249	251	63	80			
				765-23	173		250		80			
			767:00	767.02	113	250	250	65				
		1.5		768-74	113	251	seg	62	79		-2	
22.5	0.17	1.9	770.51	770.49	113	250	250		79			
			722.21	172.24	114	250	290		79		-2	
27.5	0.17	1.5	774.01	774.0			250		79		-2	
30					116		251					
		1.5	777.54	777.55	115		249	60	78		-2	
		1.5	779-31		1/6		249	60	78		-2	
		1.5	78109	781.11	116	250	Ques	60	78		-2	
40	D-22	1.9	7582.87	782.87	17%		249	60	78			
		15	784.88	784.87	117	250	25	600	78			
		15	786.87	786.87	117	249	249	60	78			
47.5	0-22		788187	788.86	116	250		-59	77			
50	0-22	19	720-86	790.90	116	250	251		22		-5	
	0-22	19			116	250	251		77		-3	
55	0-22	1.5	794.92	794.95	116	251	250				-3	
57.5	0.22	1.9	79695	776.94	116	250	249	59	72		-7	
	0.15	1.3		798.95	li S	25	255	58			-3	
62.5	0.15	1.3	800-58	800.11	116	251	249	58			-3	
65		1.5	802.26	862-22	ils		250	58				
67.5	11.15	1.3	803.92	803.94	117	249	252	57			-3	
70	1).(5	1.3	805.59	805/10	11/2		245	57	77		-2	
72.5		1.3	807.25	807.27	116	250		57			-2	
75		1-2		808-95	116	248		57				
77.5	10-15	1.3	810.10	815-60	117	250	280	57	76			
		100					-			1		
		1										
					2							
	10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 47.5 50 52.5 57.5 60 62.5 65,67.5	12.5 0.17 15 0.17 17.5 0.17 20 0.17 22.5 0.17 25 0.17 25 0.17 30 0.17 32.5 0.17 30 0.17 32.5 0.17 40 0.22 45 0.22 45 0.22 47.5 0.22 50 0.22 55 0.22 55 0.22 56 0.15 66 0.15 67.5 0.15 70 0.15	10 0.17 1.5 12.5 0.17 1.5 15 0.17 1.5 17.5 0.17 1.5 20 0.17 1.5 22.5 0.17 1.5 25 0.17 1.5 30 0.17 1.5 30 0.17 1.5 30.0.17 1.5 31.5 0.17 1.5 32.5 0.17 1.5 37.5 0.17 1.5 40 0.22 1.5 45 0.22 1.5 45 0.22 1.5 50 0.2	10 0.17 1.5 761.65 12.5 0.17 1.5 763.44 15 0.17 1.5 763.22 17.5 0.17 1.5 763.71 20 0.17 1.5 763.71 22.5 0.17 1.5 770.51 25 0.17 1.5 770.51 26 0.17 1.5 770.51 30 0.17 1.5 770.51 30 0.17 1.5 770.54 31 0.17 1.5 770.54 32.5 0.17 1.5 770.54 35 0.17 1.5 770.54 36 0.17 1.5 770.54 40 0.22 1.9 770.54 45 0.22 1.9 786.87 47.5 0.22 1.9 786.87 50 0.22 1.9 790.56 52.5 0.22 1.9 790.56 52.5 0.22 1.9 790.56 52.5 0.22 1.9 790.57 55 0.22 1.9 790.58 65 0.15 1.3 802.21 67.5 0.15 1.3 802.21 67.5 0.15 1.3 802.21 67.5 0.15 1.3 803.92	10 0.17 1.5 761.65 761.67 12.5 0.17 1.5 765.22 765.23 17.5 0.17 1.5 767.00 767.02 20 0.17 1.5 767.00 767.02 20 0.17 1.5 768.79 768.79 22.5 0.17 1.9 70.61 770.49 25 0.17 1.5 77.57 77.5.77 30 0.17 1.5 77.57 77.55 35 0.17 1.5 77.57 77.55 35 0.17 1.5 77.57 77.55 35 0.17 1.5 77.57 77.55 36 0.17 1.5 77.57 77.58 37.5 0.17 1.5 77.31 77.33 37.5 0.17 1.5 78.09 781.11 40 0.22 1.9 782.87 782.87 42.5 0.22 1.9 783.87 788.86 50 0.22 1.9 783.87 788.86 50 0.22 1.9 78.98 77.99 55 0.22 1.9 79.99 55 0.22 1.9 79.99 56 0.15 1.3 80.58 80.69 66 0.15 1.3 80.58 80.69 72.5 0.15 1.3 80.59 805.10 72.5 0.15 1.3 805.57 805.10 72.5 0.15 1.3 805.57 805.10	10 0.17 1.5 761.65 761.67 113 12.5 0.17 1.5 763.49 114 15 0.17 1.5 763.21 763.23 173 17.5 0.17 1.5 767.70 767.72 113 20 0.17 1.5 763.71 763.74 113 22.5 0.17 1.5 770.51 770.49 113 25 0.17 1.5 770.51 770.49 113 27.5 0.17 1.5 770.51 770.49 113 30 0.17 1.5 770.77 770.49 113 30 0.17 1.5 770.77 770.49 116 32.5 0.17 1.5 770.77 775.77 166 32.5 0.17 1.5 770.77 775.77 166 32.5 0.17 1.5 771.31 771.33 116 37.5 0.17 1.5 771.31 771.33 116 40 0.22 1.9 1882.87 772.87 116 40 0.22 1.9 1882.87 772.87 116 40 0.22 1.9 1882.87 772.87 116 50 0.22 1.9 783.87 788.86 116 50 0.22 1.9 770.86 770.90 116 55.5 0.22 1.9 770.86 770.90 116 55.5 0.22 1.9 770.86 770.90 116 55.5 0.22 1.9 770.86 770.90 116 55.5 0.22 1.9 770.86 770.90 116 56.5 0.15 1.3 800.68 800.61 116 67.5 0.15 1.3 800.68 800.61 116 67.5 0.15 1.3 800.68 800.61 116 67.5 0.15 1.3 800.68 800.61 116	10 0.17 1.5 761.65 761.67 113 250 12.5 0.17 1.5 765.22 765.23 113 250 17.5 0.17 1.5 767.00 767.02 113 260 20 0.17 1.5 767.00 767.02 113 260 20 0.17 1.5 767.00 767.02 113 260 22.5 0.17 1.5 770.51 770.49 113 250 25 0.17 1.5 774.01 774.0 114 250 27.5 0.17 1.5 774.01 774.0 114 250 30 0.17 1.5 774.01 774.0 114 250 30 0.17 1.5 774.51 775.5 116 251 32.5 0.17 1.5 774.31 774.33 116 252 35 0.17 1.5 774.31 774.33 116 252 40 0.22 1.9 788.87 772.87 11 250 40 0.22 1.9 788.87 772.87 11 250 40 0.22 1.9 788.88 116 250 50 0.22 1.9 788.87 766.87 117 250 50 0.22 1.9 788.87 766.87 117 250 50 0.22 1.9 788.87 776.87 116 250 50 0.22 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.20 1.9 776.96 770.90 116 250 50 0.15 1.3 800.58 800.61 116 251 70 0.15 1.3 800.58 800.61 116 251 70 0.15 1.3 800.58 800.61 116 251 70 0.15 1.3 800.58 800.61 116 251 70 0.15 1.3 805.59 805.60 116 251 70 0.15 1.3 805.59 805.60 116 251 70 0.15 1.3 805.59 805.60 116 251 70 0.15 1.3 805.59 805.60 116 251	10 0.17 1.5 761.65 761.67 113 250 250 12.5 0.17 1.5 763.44 763.45 11.1 249 261 15 0.17 1.5 763.22 763.23 113 260 260 17.5 0.17 1.5 767.00 767.02 113 260 260 20 0.17 1.5 763.71 763.74 113 251 240 22.5 0.17 1.5 770.51 770.49 113 250 260 25.5 0.17 1.5 772.21 770.49 113 250 260 27.5 0.17 1.5 774.01 774.0 114 250 260 30 0.17 (5 775.77 775.77 116 251 251 32.5 0.17 1.5 777.31 777.35 116 252 243 37.5 0.17 1.5 777.31 777.33 116 252 243 37.5 0.17 1.5 777.31 777.33 116 252 243 40 0.21 1.9 788.87 762.87 117 253 251 45 0.22 1.9 781.67 787.87 117 253 251 45.5 0.22 1.9 781.67 787.87 116 260 250 50 0.21 1.9 781.67 787.87 116 260 250 50 0.22 1.9 781.67 787.87 116 260 250 55 0.22 1.9 781.67 787.99 116 260 250 57.5 0.22 1.9 78.99 78.90 116 260 250 57.5 0.22 1.9 78.99 78.90 116 250 250 60 0.15 1.3 78.99 78.90 116 250 250 60 0.15 1.3 78.99 78.90 116 251 248 67.5 0.15 1.3 80.58 80.61 116 251 252 70 0.15 1.3 80.58 80.61 116 251 252 70 0.15 1.3 80.58 80.61 116 251 252 70 0.15 1.3 80.58 80.61 116 251 252 70 0.15 1.3 80.58 80.61 116 251 252 70 0.15 1.3 80.58 80.61 117 249 252 70 0.15 1.3 80.58 80.61 117 251 249 67.5 0.15 1.3 80.58 80.61 117 251 249 67.5 0.15 1.3 80.58 80.72 116 251 252	10 0.17 1.5 761.65 761.67 113 250 250 62 12.5 0.17 1.5 76.44 761.45 11, 249 251 62 15 0.17 1.5 76.22 765.23 113 250 250 65 17.5 0.17 1.5 767.00 767.02 113 250 250 65 20 0.17 1.5 767.70 767.72 113 250 250 65 20 0.17 1.5 767.71 770.49 18 250 260 62 25 0.17 1.5 77.72 174.01 114 250 260 60 27.5 0.17 1.5 774.01 774.0 114 250 250 60 30 0.17 1.5 774.57 775.77 16 251 251 251 60 35 0.17 1.5 777.31 777.35 116 252 245 60 37.5 0.17 1.5 777.31 777.32 116 252 245 60 37.5 0.17 1.5 7869 781.11 116 252 245 60 40 0.22 19 786.87 782.87 116 250 250 59 50 0.22 19 781.87 117 250 250 59 50 0.22 19 781.87 117 250 250 250 59 50 0.22 19 781.97 788.86 116 250 250 59 50 0.22 19 781.97 788.86 116 250 250 59 50 0.22 19 781.97 182.97 116 260 251 55 52.5 0.20 19 712.70 712.97 116 260 251 55 55.5 0.22 19 712.70 712.97 116 260 250 59 50 0.15 1.3 788.94 788.91 116 250 250 59 50 0.15 1.3 788.94 788.95 116 250 250 59 50 0.15 1.3 788.94 788.95 116 250 250 59 50 0.15 1.3 805.58 800 61 116 251 249 58 65.0 1.5 1.3 805.58 800 61 116 251 249 58 67.5 0.15 1.3 805.58 800 61 116 251 249 58 67.5 0.15 1.3 805.58 805.60 116 250 248 250 57 70 0.15 1.3 805.58 805.60 116 250 248 250 57 70 0.15 1.3 805.58 805.60 116 250 250 57 75 0.15 1.3 805.58 805.60 116 250 250 57 75 0.15 1.3 805.58 805.60 116 250 250 57 75 0.15 1.3 805.58 805.60 116 250 248 250 57 75 0.15 1.3 805.58 805.60 116 250 248 250 57 75 0.15 1.3 805.58 805.60 116 250 248 250 57 75 0.15 1.3 805.58 805.60 116 250 248 250 57 75 0.15 1.3 805.58 805.60 116 250 248 250 57 75 0.15 1.3 805.58 805.60 116 248 250 57	10 0.17 1.5 761.65 761.67 (1) 250 250 (2) 81 125 0.17 1.5 760.44 760.45 (1) 249 251 (3 80 15 0.17 1.5 765.22 765.21 113 250 250 65 80 17.5 0.17 1.5 767.00 17.702 113 250 250 65 80 20 0.17 1.5 767.00 17.702 113 250 250 65 80 22.5 0.17 1.5 769.71 769.74 113 250 250 60 77 25.5 0.17 1.5 770.51 70.49 113 250 250 60 77 27.5 0.17 1.5 770.51 770.49 114 250 250 60 77 30 0.17 1.5 774.01 774.0 114 250 250 60 77 30.0 1.7 1.5 777.31 779.32 116 250 249 60 77 30.0 1.7 1.5 777.31 779.32 116 250 249 60 78 35.5 0.17 1.5 777.31 779.32 116 250 249 60 78 40 0.21 1.5 777.31 779.32 116 250 249 60 78 40 0.21 1.5 780.67 782.87 117 250 251 60 78 42.5 0.22 1.5 782.87 782.87 117 250 251 60 78 45.5 0.22 1.5 780.68 780.90 116 250 250 59 777 55.5 0.22 1.9 770.67 770.90 116 250 251 59 777 56.0 0.15 1.3 782.97 782.87 116 250 250 59 777 66.0 0.15 1.3 782.97 782.97 116 250 250 59 777 67.5 0.15 1.3 80.68 80.68 80.10 116 251 249 58 777 67.5 0.15 1.3 80.68 80.68 80.10 116 251 249 58 777 67.5 0.15 1.3 80.68 80.68 80.60 116 251 249 58 777 67.5 0.15 1.3 80.68 80.68 80.10 116 251 249 58 777 67.5 0.15 1.3 80.68 80.68 80.10 116 251 249 58 777 67.5 0.15 1.3 80.68 80.72 80.194 117 240 252 57 77 77.5 0.15 1.7 80.892 80.721 116 251 249 58 777 77.5 0.15 1.7 80.892 80.721 116 251 249 58 777 77.5 0.15 1.7 80.892 80.785 116 251 249 557 77	10 0.17 1.5 741.65 761.67 113 250 250 (2 81) 125 0.17 1.5 76.44 763.45 1111 249 251 (3 80) 15 0.17 1.5 76.27 76.27 112 250 250 68 80 17.5 0.17 1.5 76.70 76.70 113 250 250 68 80 20 0.17 1.5 76.70 76.70 113 250 250 68 80 20 0.17 1.5 76.70 76.70 113 250 250 62 79 22.5 0.17 1.5 76.51 76.49 113 250 250 62 79 27.5 0.17 1.5 77.21 77.22 17.22 114 250 250 60 79 30 0.17 1.5 77.5.7 77.55 115 250 260 62 79 30 0.17 1.5 77.5.7 77.55 116 251 251 20 27.5 60 77 37.5 0.17 1.5 77.51 77.31 77.35 116 251 251 20 27.5 60 78 40 0.20 19 78.86 78.87 11 250 250 60 78 40 0.20 19 78.86 78.87 11 250 250 60 78 45 0.20 19 78.87 78.87 11 250 250 60 78 45 0.20 19 78.87 78.87 11 250 250 250 59 77 55 0.20 19 79.86 79.90 11 250 250 59 77 55.5 0.20 19 79.86 79.90 11 250 250 59 77 57.5 0.20 19 79.65 79.90 11 250 250 59 77 60 0.15 13 80.58 80.61 116 250 250 59 77 67.5 0.15 13 80.58 80.61 116 251 249 58 77 67.5 0.15 13 80.58 80.72 117 249 251 249 50 77 70 0.15 13 80.58 80.72 117 249 250 250 57 77 77.5 0.15 1.3 80.58 80.72 111 220 250 57 77 77.5 0.15 1.3 80.58 80.72 111 220 250 57 77 77.5 0.15 1.3 80.58 80.72 111 220 250 57 77 77.5 0.15 1.3 80.58 80.72 111 220 250 57 77 77.5 0.15 1.3 80.58 80.72 111 220 250 57 77	10 0.17 1.5 741.18 741.67 118 250 250 12 81 -2 12.5 0.17 1.5 76.29 76.22 113 250 250 65 80 -2 17.5 0.17 1.5 76.20 76.22 113 250 250 65 80 -2 17.5 0.17 1.5 76.20 76.22 113 250 250 65 80 -2 20 0.17 1.5 76.21 77.22 113 250 250 65 80 -2 22.5 0.17 1.5 76.21 77.22 113 250 250 65 80 -2 23.5 0.17 1.5 76.21 77.22 113 250 250 60 77 -2 25.5 0.17 1.5 77.21 77.24 114 250 250 60 77 -2 27.5 0.17 1.5 77.21 77.57 77.57 116 250 250 60 77 -2 30.0 1.7 1.5 77.31 77.32 116 250 250 60 77 -2 35.5 0.17 1.5 77.31 77.33 116 252 255 60 78 -2 35.0 1.7 1.5 77.31 77.33 116 252 255 60 78 -2 40.0 20 1.5 77.31 77.31 17.33 116 252 255 60 78 -2 40.0 20 1.5 77.31 77.31 17.33 116 252 255 60 78 -2 40.0 20 1.5 77.31 77.31 17.33 116 252 255 60 78 -2 45.0 20 1.5 77.31 77.31 17.32 116 250 250 60 78 -2 45.0 20 1.5 77.31 77.31 17.32 116 250 250 60 78 -2 45.0 20 1.5 77.31 77.31 117 250 250 60 78 -2 45.0 20 1.5 77.31 77.31 117 250 250 60 78 -2 45.0 20 1.5 77.31 77.31 117 250 250 60 78 -2 45.0 20 1.5 77.31 77.31 117 250 250 60 78 -2 45.0 20 1.5 77.31 77.31 117 250 250 60 78 -2 45.0 20 1.5 77.41 77.41 117 250 250 60 77 -1 50.0 20 1.5 77.41 77.41 77.41 117 250 250 60 77 -1 50.0 20 1.5 77.41 77.41 77.41 117 250 250 50 77 -1 50.0 20 1.5 77.41

Pretest Leak Check Rate (cfm) ____ at ___ vacuum ("Hg) Posttest Leak Check Rate (cfm) ___ at __ vacuum ("Hg) Leak Vol Start Leak Vol Start Leak Vol. End _ Leak Vol. End_

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Dn: 0 .32 Cp: 0 .627 Bws: 55 dH@: 1-38 13 Y: 0 .98 47 Pbar: 23.26 Pstatic: 0.07

Plant: Stericycle Test No.: 11-1729 Start Time: - Stack D.: 24"

Source: Incinerator Operators: Description of the plant o

CO2: 100 Pitot ID RUSO 1 HELT GY

Meter AVG Orifice Gas Meter Reading Stack Comments Press. Press. Desired Temp. Inlet Outlet Actual Temp. Temp. Temp. Press. (min) ("H20) ("H20) (ft3) (ft3) (oF) (oF) (oF) (oF) (oF) (oF) ("Hg) 80 0.25 2.2 8 2.73 812.72 117 250 250 -4 82.5 0-25 2-7 814.85 814.84 -4 250 250 71 117 85 0-25 22 816.92 816-97 117 2.2 819.10 76 87.5 O -26 819.10 117 250 250 -4 90 0-25 2-2 821-23 821-22 11/ 250 200 -4 92.5 0-25 2.2 823.35 823.32 200 76 250 -4 95 0.25 2-2 829.50 250 825-53 250 -4 22 827-66 827.66 97.5 0-25 77 -4 829.79 77 100 0-20 1.7 829.79 831.68 102.5 0.20 1.7 831.70 250 77 833.60 833.59 250 105 0.20 1.7 835.52 11/3 107.5 D.20 1-7 835.51 250 250 77 837.43 250 110 0.20 17 837.43 251 77 112.5 0-20 1.7 839.34 819.54 72 249 250 114 -7 115 0 - 20 1.7 841.25 841.28 114 249 -3 1.7 843.15 113 250 117.5 0-20 843.21 250 77 -3 120 0.15 1.3 845-12 245.12 114 250 251 122.5 0.15 1.2 846.77 84677 250 577 250 125 0-15 1.3 848.42 848, A4 250 -3 113 13 850.09 890-10 250 250 3 127.5 0-15 1.3 851.35 130 D.LS 85175 113 250 1.3 853.45 77 132.5 0.15 13 250 853.40 855.05 249 -1 135 0-(5 13 855.04 112 251 77 137.5 0-15 856.69 856-20 112 Rus 250 -2 140 (5.15 1.3 858.35 858.37 2 49 25 112 860.01 113 249 251 77 142.5 0-15 860.02 861.68 250 145 0-15 250 77 863.3 250 147.5 0-15 250 1:3 864.97 864.97 13 866.62 866.61 150 0.16 250 77 113 =1 152.5 0-15 113 13 868.26 868-25 250 155 0-15 72 157.5 0-15 1.3 869.90 869.90 77 871.55 871.55 160

Pretest Leak Check Rate (cfm) at vacuum ("Hg)

Posttest Leak Check Rate (cfm) vacuum ("Hg)

Leak Vol Start _____ Leak Vol Start 871-55 Leak Vol. End 87 1.65

RWDI AIR Inc. Consulting Engineers

Moisture Analysis Data Sheet

Project #: 2202	865	Project: Stericyc	le	
Date:	June 16,2082	Test:	T2 -	
		Filter ID:	N/A 2203110	5
Sample Loc. In	ncinerator	XAD Trap ID:	N/A	
		Total ID:	1400	
		Train ID:	<u>M29</u>	
Pre-weights By:	00	Post-weights By:	0	
Impinger#	Impinger Contents	Final Weight (g)	Initial Weight (g)	Net Condensate (g)
1	5%HNO3 + 10% H2O2	962.3	787.8	
2	5%HNO3 + 10% H2O2		760.7	
3	Empty	833.7 (59.7	642.9	
4	H2SO4/KMnO4	739.8	742.5	
5	H2SO4/KMnO4	752.9	750.1	
6	Silica	992.2	929.2	
7				
8				
	TOTAL			
Balance QA Ch	neck:			
	Actual (g)	Measured (g)	Error < 0.5 g	Initials
Pre-weights	(0)0-0	1000-1	V	00
Post-weights	word	1-64	~	6)
Comments:			1	easurements:
	1 NOS		4()· }2
	Signature		_ sure 16	2010 Date

Q.	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	7

Job Name: Stericycle

Plant: Stericycle

Test No.: <u>T7 - M29</u> Start Time: <u>3</u>:58

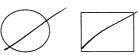
											6.7		
Pt.	Time	Velocity	Orifice	Gas Mete	r Reading	Stack	Probe	Box	lmp.		eter AU 6	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
1	0	0.27	1.84	_	871.88	121	250	250	68	84	1	-3	
	2.5	0.28	1.91	874.11	874.03	121	250	250	6.8	84		-3	
	5			876,76	876.23	124	280	250	758	84		-3	
l I	7.5	0.27	1.84	878.50	878.45	124	250	250	68	84		~ 3	-
 	10	0.18		881,06	880.67	124	250	250	68	84		- 7	
			2.05	882.94	883.00	126	250	250	68	83		- 3	***************************************
	15		2.18	885.35	885.39	126	250	250	68	83		-3	
 	17.5		2.18	887.74	887.72	126	250	250	68	83		~ 3	
		0.31		890.14	890.13	115	250	250	67	83		- 3	
 	22.5		2.12	892.52	892.82	125	250	250	67	83		- 3	
ļ			2.18	894.91	894.82	125	250	250	67	83	 	-3	<u> </u>
	25	0.32	2.10	897.24	897.19	125	250	250	66	83		-3	
-	27.5				899.61	125	250	250	65	43		- 3	
	30		2.25	899,61		125		250	65	83	 	-3	
	32.5		2.25	902.07	902.01		250	250		\$3	 	-3	
	35	0.30	2.05	904.49	904.34	125	250		64		 	-3	
	37.5	0.29	1.48	906.69	906-63	125	250	250	64	83	\vdash		
3	40		1.98	908.94	908.95	125	250	250		83		-3	40.400.60
	42.5		1,48	911,26	911,26	125	250	250	64	83		- 3	***
	45		1.48	913.57	913.58	127	250	250	64	83	 	-3	
	47.5		2.05	915.89	915.86	127	250	250	64	83		-3	
	50		2.05	918.21	918.17	127	250	250	64	83		~3	
	52.5	0.31	2.12	920.52	920.45	127	250	250	64	8.3		-3	
	55	0.29	1.98	972.84	911.80	127	250	750	64	83		-3	
	57.5		1.98	925.19	424.96	127	250	250	64	28		- 3	
4	60	0.26	1.77	927.27	924.23	127	250	250	64	83		-3	
	62.5	0.25	1.71	929.42	929.38	127	250	250	66	83		- 3	
	65	0.25		931.52	931.55	127	250	250	66	83		-3	
		0.25		933.69	933.72	127	250	250	67	83		-3	
	70	0.25	1.71	935.86	935.87	127	250	250	67	83		-3	
		0.25	1.71	938.01	938.02	127	250	250	67	83		~ 7	
		0.26	1.77	940.15		127	250	250	67	84		-3	
		0.25	1.21	942.35		127	750	250	67	84		- 3	162
	,,,,	J											
-							†				,		
 							<u> </u>		<u> </u>	1			
\vdash			 						 				
			<u> </u>					_					
 			<u> </u>									-	
											 		
			1]			<u> </u>		<u> </u>	<u> </u>	L	

Pretest Leak Check	Rate (cfm) < ℓ	.02 at	-9	vacuum	("Hg
Posttest Leak Check	Rate (cfm)	∕ at	_	vacuum	("Hg

Leak Vol Start 871.00 Leak Vol. Start

Leak Vol. End 271.88 Leak Vol. End

Job Name: Stericycle Job Number: 2202865 Client: Stericycle


Dn: 0.32 Cp: 0.827 Bws: 5% dH@: 1.7813 Y: 0.9843 Pbar: 29.85 Pstatic: 0.97 CO2: 6.4 O2: 17.2 Pitot ID 41 #4

Pt.	Time	Velocity	Orifice	Gas Mete	r Reading	Stack	Probe	Box	Imp.	Me	ter Auc	Vac.	Comments
' "		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	Comments
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5	80	0.27	1.84	9 44.50	944.48	127	250	250	67	83	· · · · · · · · · · · · · · · · · · ·	~ 3	
	82.5	0.27	1.84	9 46.71	946.67	126	249	249	67	83	1	-3	
	85	0.14	0.96	9 48.90	948.50	126	249	248	67	83		~3	
	87.5	0.14	0.96	950.10	9 50,20	126	249	248	67	83		- 3	
	90	0.14	0.96	951.80	951.84	126	249	248	67	83		- 3	
	92.5	0.14	0.96	953.44	953.46	126	249	248	67	83		-3	
	95	0.13	0.89	955,06	955.06	126	250	249	67	83		-3	
	97.5	0.15	1.02	956.61	956.63	126	250	249	67	83		~3	
6	100	0.15	1.02	988.29	288.23	126	251	249	67	83		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	102.5	0.12	0.82	959.89	959.87	126	251	249	67	83		-3	
	105	0.13	0.89	961.35	261.48	176	250	249	67	83		-z	
	107.5	0.13	0.89	963.03	963.01	126	250	249	67	23		~ Z	
	110	0.12	0.82	964,56	964.55	126	250	249	67	83		-2	
	112.5	0.11	0.45	966.10	966.08	126	250	249	67	83		-2	
	115	0.11	0.75	967.50	967.58	126	250	249	67	83		-2	
	117.5	0.11	0.75	969.00	969.01	126	250	248	64	83		-2	
7	120	0.10	0.68	970.43	970.40	126	750	248	67	83		-2	
·		0.12	0.82	971.76	971.73	127	250	248	67	83		-2	
	125	0.11	0.75	973.21	973.16	127	250	248	67	83	1	- 2	4
	127.5	0.11	0.75	974.58	944.61	127	750	248	67	82		-2	***************************************
	130	0.11	0.75	976.03	975.99	125	250	248	66	82		-Z	
	132.5	0.11	0.45	977.41	477.37	126	250	248	66	82		-2	-1
	135	0.61	0.75	978.79	948.77	17.6	249	249	67	83		-2	
	137.5	0.11	0.75	980.19	980-18	126	249	249	67	हेर्ड		-2	
8	140	0.11	0.75	981.60	981.59	125	249	249	67	83		- z	
	142.5	0.12	0.82	983.01	983.00	125	249	249	67	83		- 2	
	145	0.10	0.68	984.48	984.45	125	250	249	66	82		- 2	
	147.5	0.11	0.45	985.93	985.93	125	250	249	66	82		-2	
	150	0.09	0.61	987.35	487.42	125	250	249	66	82		-2	
l	152.5	0.05	0.34	988.71	988.78	125	250	250	66	SZ		-2	
	155	0.05	0.34		490.00	125	250	250	66	82		-2	
	157.5	0.05	0.34	990.96	991.37	125	250	750	66	8Z	1	-2	
	160	0.05	4.34		992.44	ins	250	250	66	RZ	 	- 2	
					, , ,								
							 						
							 						

Pretest Leak Check	Rate (cfm)	 at		vacuum	("Hg)
Posttest Leak Check	Rate (cfm)	at	_	vacuum	("Ha)

Leak Vol Start Leak Vol Start

Leak Vol. End Leak Vol. End

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 2/2

Test No.: T2-M29
Operators: SRR
Finish Time: Pitot Check: Port length: 8"

Traverse Dir.: OUT-DIN

Tra

Dn: 0-32 Cp: 0.827 Bws: 5% dH@: (.7813 Y: 0.9843 Pbar: 29.85 Pstatic: 0.07 CO2: 6.4 O2: 12.2 Pitot ID 41 #4

Pt.	Time	Velocity	Orifice	Gas Mete		Stack	Probe	Box	Imp.	1110	ter Av6	Vac.	Comments
1		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
1	0	0.12	0.82	-	992.44	117	280	249	67	83	,		START: 12:01
	2.5	0.13	0.89	993.92	993.73	119	250	249	67	83		-7	
	5	0.12	0.82	995.28	995.28	119	250	249	67	83		-2	
	7.5	0.08	0.55	996.70	996.85	118	250	248	6,4	81		-2	
	10		0.55	998.06	998.20	117	248	248	767	81		-2	
	12.5	0.03	0.20	199.41	999.47	117	248	248	67	81		-2	
	15		0.68	1000.21	1000.60	117	750	248	67	81		-2	
	17.5		0.89	1001.96	1004.91	117	75c	7 518	67	81		-2	
2	20		0.89	1003.46	1003.46	117	250	2 48	67	81		- 7	
		0.12	0.82	1005.01	1005.01	117	250	248	67	81		-2	
	25	0.10	0.68	1006.56	1006.20	117	250	248	67	81		-2	
		0.09	0.61	1007.49	1007.93	116	280	248	67	81		- 2	PAUSE: 1230 - 14.5
		6.07	0.48	1009.06	1000-10	129	250	248	67	77		-2	
		0.25	1.71	1042.24	1041.23	(29	75c	248	67	77		-2_	
		0,25	1.71	1013.37	1013.32	129	250	248	67	77		-2	
	37.5	0.24	1.60	1015.46	1015.46	127	150	248	67	77		-2	
3	40	6.24	1.60	101747	1017.48	127	250	248	67	77		-z	
	42.5	0.20	1.40	1019.55	1019.51	126	250	248	67	77		-2	
	45	0.15	1.00	1021.51	1021.36	(26	250	250	67	77		-2	
	47.5	0.16	1.07	1023.00	1023.05	126	250	753	67	77		-2	
	50		1.13	1024.74	1024.67	126	251	250	67	77		-2	
	52.5	0.19		La 26.42	1026.33	126	251	749	67	77		-2	
	55	0.23	1.53	1028.18	1028.04	128	251	249	66	77		- 2	
	57.5	0.25		1030.07	1029.99	128	251	246	66	77	7	- 2	
4		0.26	1.73	1032.11	1031.27	128	251	246	66	77	1	-7	
			1.66	1034.13	1034.03	127	250	245	67	27		-2	
		0.25	1.66	1036.15	1036.13	127	750	243	67	48		-2	
		0.24	1.60	1038.25	1038.20	177	251	245	67	18		-2	
		0.27		1040.27	1040.23	127	251	244	67	48		-2	
$\neg \uparrow$		0.20	1.33	1042.34	L04230	127	251	243	64	78		-2	
$\neg \dagger$		0.21		1044.19	1044.21	127	251	243	67%	28		-7	
		0.21	1.40		1046.09	124	251	243	67	78	j	12	
\neg									<u> </u>				·
\neg													
										1			
\neg									<u> </u>				

												······································	w
\neg													

Pause @ 11:49 Piccess Interruption Unforseen Circumstances

Pretest Leak Check Rate (cfm) ____ at ___ vacuum ("Hg) Posttest Leak Check Rate (cfm) ____ at ____ vacuum ("Hg) Leak Vol Start Leak Vol Start Leak Vol. End Leak Vol. End

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 2/2 Test No.: Tz-M29 Start Time:

Operators: SKR Finish Time: 16 > 16 Pitot Check:

Traverse Dir.: OUT -> IN Date: June 16 Out Port length: 8"

Stack D.: 24"

Dn: 0.32 Cp: 0.827 Bws: 5% dH@: 1.7813 Y: 0.9843 Pbar: 29.85 Pstatic: 0.07 CO2: 6.4 O2: 17.7 Pitot ID 4 P4

Pt.	Time	Velocity	Orifice		r Reading	Stack	Probe	Box	Imp.	Me	ter Auc	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	·
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5		0.20	1.33	104803	1047.98	127	250	246	67	79		~ 2_	
	82.5	0.21	1.40	1049.92	1049.89	127	250	246	67	79		- 2	
	85	0.21	1.46		1051.81	127	250	246	67	79		-2	
	87.5	0.21	1.40	(053.75	1053.41	127	250	2 ₹ 6	67	79		-2	
	90	0.24	1.60	1055.78	1055.62	128	520	246	67	79		-3	
	92.5	0.25	1.66	1057.74	1057.68	128	250	246	67	80		-3	
<u> </u>			1.80	1029 88	1059.77	129	251	246	72967	80		-3	
<u> </u>	97.5	0.24	1.60	1081.97	1062.09	129	251	246	67	80		- 3	
6	100	0.24	1.60	1064.16	1064.00	129	250	246	67	80		- 3	1/2-12114
		0.25	1.66	1066.09	1066-29	128	250	246	67	80		-3	
	105	0.25	1.66	1068.36	1068.40	128	250	246	67	80		- 3	
<u> </u>	107.5	0.25	1.66	1070.52	1070.52	128	250	246	67	80		-3	
	110	0.25	1.66	1071.77	107174	128	250	246	67	80		- 3	
	112.5	0.25	1.66	1073.86	1074.71	178	25c	246	67	ВС		-3	
	115	0.25	1.66	076.83	1076.73	128	250	246	67	80		-3	
	117.5	0.20	1.34	107885	1078.80	128	250	246	67	80		- 2	
7	120	0.20	1.34	1080.93	1080.85	124	250	246	67	80		-3	
	122.5	0.20	1.34	1082.40	1082.90	127	25c	246	67	81		-3	
	125	0.20	1.34	1084.80	1084.78	127	250	246	67	81		-3	
	127.5	0.10	L.34	1086.68	1086.61	127	250	246	67	81		-3	
	130	0.20	(.34	1088.51	1088.43	125	250	250	67	82		-3	
	132.5	0.20	1.34		1070,23	123	250	250	67	82		- 3	
	135	9.21	1.40	1092.13	1092-05	123	251	250	67	81		- 3	
	137.5	0.21	1.40	094.00	1094.02		251	250	67	81		- 3	
8	140	0.23	1.54	1095,97	1096.05	123	251	250	67	81		-3	
	142.5	0.19	1.27	1098.09	1098.17	122	248 248	249	64	81		<u>- 3</u>	
	145	0.18	L20	1100.02	1100.02	122		249	67	32		-3	
	147.5	0.19	1.24	1101.82	1101.85	122	248	249	67	82		-3	
	150	0.19	1.27	1103.65	(103.53	122	250	750	67	82		- 3	
	152.5	0.19	1.27	1105.38	1105.33	122	250	250	67	क्ष		-5	
	155	0,19	1.27	1107.19	1107.24	122	250	750	67	81		-3	
	157.5	0.18	1,22	1109,10	1109.07	122	250	750	67	18		-3	
	160	0.18	hrr	1110.92	1110.92	122	250	251	67	81	l l	-3	STOA: 16"
											,		

Pretest Leak Check	Rate (cfm)	at	_	vacuum	("Hg
Posttest Leak Check	Rate (cfm)	(007 at	-9	vacuum	("Ha

Leak Vol Start Leak Vol Start 110.92

Leak Vol. End Leak Vol. End 1110. 99

RWDI AIR Inc. Consulting Engineers

Moisture Analysis Data Sheet

Project #: 22028	865	Project: Stericyc	cle	
Date:	Jun 17,2022	Test:		
		Filter ID:	NA 2203110	6
Sample Loc. In	ncinerator	XAD Trap ID:	N/A	
		Train ID:	M29	
Pre-weights By:	00	Post-weights By	0	
Impinger#	Impinger Contents	Final Weight (g)	Initial Weight (g)	Net Condensate (g)
1	5%HNO3 + 10% H2O2	919.8	788.6	
2	5%HNO3 + 10% H2O2	825.4	758-1	
3	Empty	6649	643.4	
4	H2SO4/KMnO4	741.8	742-1	
5	H2SO4/KMnO4	756.1	752.5	
6	Silica	896.6	850.7	
7		0100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
8				
	TOTAL			
Balance QA Ch	heck:	Measured (g)	Error < 0.5 g	Initials
D			Life 4 0.0 g	60
Pre-weights	[000-0	10001	-	m
Post-weights	(5)0-0	(000.)		00
Comments:			Nozzle M 1 2 3 4 Avg	easurements: D-32 D-32 D-32
	Signature		17/5UM	t /2211

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle

Test No.: 13 - M29 Start Time: 8:36

Source: Incinerator Operators: JRR Finish Time: Pitot Check:
Traverse: 1,7 Traverse Dir.: 60T + IN Date: June 17,2022 Port length: 8"

Dn: 0.32 Cp: 0.827 Bws: 0.05 dH@: 1.7813 Y: 0.4843 Pbar: 29.06 Pstatic: 0.07 CO2: 17.72 O2: 6.42 Pitot ID 4

Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	Imp.	Me	ter AUG	Vac.	Comments
	-	Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
1	0	0.13	1.16	_	111,01	116	250	250	67	77		-2	5TART: 836
	2.5	- , , , ,	0.95	112.93		116	250	250	67	77		-2	
	5	0.14	0.95	114.72	114.80	117	250	248	67	77		-2	
	7.5	0.14	0.95	116.41	116.42	118	251	248	67	77		-2	
	10	0.14	0.95	118.03	118.03	118	249	248	67	77		-2	
	12.5	0.14	0.95	119.64	119.64	117	250	248	67	76		-7	
	15	0.14	0.98	121.22	121.24	118	250	248	67	76		-2	
	17.5	0-14	0.95	172.85	122.85	117	248	245	67	76		-2	
2	20	0.14	0,95	124.46	124.45	117	252	323	66	75		- 2	
	22.5	0.14	0.95	176.06	126.05	116	250	247	66	75		-2	- 1544
	25	0.14	0.95	127.65	124.64	118	250	248	65	75		7 ~	
	27.5	0.14	0.95	129.24	129.24	168	250	248	65	75		~ Z	
	30	0.14	0.95	130.84	130.85	120	249	249	64	75		-2	
	32.5	0.14	0.95	132.45	132.45	120	249	249	64	75		-2	
	35	0.14	0.95	134.05	134.03	119	249	249	64	75		-2	
	37.5	0.14	0.95	135.63	135.62	119	250	249	63	74		-2	
3	40	0.14	0.95	137,22	134,22	119	251	750	63	74		- Z	
	42.5	0.14	0.95	138,82	138.80	119	251	7SC	64	75		-2	
	45	0.16	1.09	140.40	140-41	119	250	250	64	75		-2	
	47.5	0.14	0.95	142.01	142.03	119	280	250	65	75		-2	
	50	0.14	0.95	143.63	143.63	119	251	251	65	75		- Z	
	52.5	0.14	0.95	145.22	145.24	119	247	245	65	75		-2	
	55	0.14	0.95	146.83	146.86	119	251	250	65	75		-2	
	57.5	0-14	0.95	148.45	148.45	119	250	251	65	75		-2	
4	60	0.14	0.95	150.04	150.05	119	249	247	66	75		-2	
	62.5	0.14	0.95	151.64	181.65	117	520	250	66	75		-2	
	65	0.14	0.95	153.24	153.24	118	252	249	66	75		-2	
	67.5		0.95	121.83	154-85	1(8	251	520	66	75		-2	
	70	<u> </u>	1.01	156.44	156.43	119	251	250	66 67	75		-2	
	72.5	<u> </u>	1.01	158.08	158.10	119	248	246	67	45		- 2	
	75		(.01	189.75	124.80	119	248	246	67	75		-2	
	77.5	0.15	Loi	161.45	161.47	120	248	246	67	75	1	-5	
ļ													
										ļ			
 													
	1									<u> </u>			

Pretest Leak Check	Rate (cfm) (0.01 at -10 vacuu	um ("Hg
Posttest Leak Check	Rate (cfm) at vacuu	um ("Hg

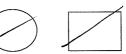
Leak Vol Start 110.92 Leak Vol Start

Leak Vol. End HIO III. 01 Leak Vol. End

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 1/2

Test No.: 73-M29
Operators: 5RR
Finish Time: 11:16


Traverse Dir.: 6UT-P(N)
Date: 5UNC 17:2022
Port length: 8"

Dn: <u>0.32</u> Cp: <u>0.877</u> Bws: <u>0.05</u> dH@: <u>1.7813</u> Y: <u>0.9843</u> Pbar: <u>29.06</u> Pstatic: <u>0.07</u> CO2: <u>17.2%</u> O2: <u>6.4%</u>Pitot ID 41 #4

Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	lmp.	l Me	eter Aug	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	Comments
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5	80		1.01	163.12	163.05	1(8	251	249	68	75	(0.7	- Z	
	82.5		1.01	164.70	164.76	118	251	249	60	75	ī	- 2	
	85		1.01	166.41	166.41	118	252	249	68	75	 	- 2	
	87.5		1.01	168.08	168.08	118	282	249	64	75		-2	
	90		0.74	169.49	169.50	121	251	249	67	75		-2	
	92.5	0.15	1.01	121.15	170.95	121	251	244	67	75		-7	
	95		1.01	172.60	172.56	121	251	249	67	75		-2	
	97.5	0.15	1.01	174.21	174.26	124	251	249	67	25		-2	
6	100		1,01	175.91	175.82	124	251	ZU ?	67	75		-2	
H	102.5	0.15	(.01	177.47	177.50	125	225	252	67	75		-2	
	102.5	0.15	1.01	79.15	179.16	125	249	248	67	75			
	107.5	0.15	1.01	180.81	180-80	127	250	249	67			-2	
	110	0.17	(.45	182.45	195-90	126	250	249	67 67	75		-2	
	112.5	0.17	615	184,24	184.32	125		249				-2	
	112.5	0.17	1.15	186.07	186.05		281		67	75		-3	
 	117.5	0.17	1.15	187.80	100.00	125	281	249	67	75		-3	
7			0.81	189.55	187.80	125	521	249	67	75		-3	
 ' 	120 122.5	0.12			184.54	124	250	248	67	75		- 3	
			18.0	191.01	191.08	123	250	249	67	75		~ 3	
-	125	0.13	0.88	92.55	192.59	123	250	249	67	75		<u>-3</u>	
ļ	127.5	0.13	0.88	194,12	194.15	125	250	249	67	75		-3	
	130	0.13	0.88	195.68	195.20	125	220	249	67	75		~ 7	
 	132.5	0.13	88.0	197.23	194.23	126	282	250	67	75		- 2	
	135	0.13	0.88	198.76	198.76	125	250	250	67	75		-2	
	137.5	0.13		200.29	20c.27	127	283	520		75		-2	
8	140	0.13	0.88	201.80	201.78	126	253	251	67	75		-2	
	142.5	0.13	0.88	203.31	203.35	125	253	251	67	75		-2	
	145	0.13	88.0	204.88	204.86	125	223	252	67	75		-2	
ļ	147.5		88.0	206.39	206.39	126	250	248	67	75		-2	
 	150		68.0	207.92	204.94	126	249	248	67	45		-2	
<u> </u>	152.5	0.13	0.88	209.47	209.48	125	249	249	67	75		- Z	
	155	a-13	88.0	211.01	211.01	123	251	249	67	75		- Z	
	157.5	0-13		212.54		123	250	249	67	75		-2	_
	160	0.13	0.88	214.09	214.09	126	250	249	67	75		-2	STOP : 116
						*						- WARRAN	
											····		
							1177000						

							***************************************		***************************************				
												w	-
	<u>-</u>					!				<u> </u>			I

Pretest Leak Check	Rate (cfm)	<u> </u>	at_		vacuum	("Hg)
Posttest Leak Check	Rate (cfm)	_	at	_	vacuum	("Hg)

Leak Vol Start Leak Vol Start

				Operator Sigi	hature: <u>ال</u>	-		_ (,	
Job Name: Stericycle	Plant: Stericycle	Test No.: T3-M29 Operators: SRR Traverse Dir.: QUT-D(N	Start Time:	11:3	1	Stack D.: 2	24"	×	
Job Name: Stericycle Job Number: 2202865 Client: Stericycle	Source: Incinerator	Operators: 8KK	Finish Time	:		Pitot Check	::		7 . U
Client: Stericycle	Traverse:	Traverse Dir.: QUI - (N	Date: <u>Ju</u>	ive it,	2022	Port length:	8"		Page: Of T
Dn: <u>0.32</u> Cp: <u>0.82</u>	Bws: 0-05 dH@	D: [.7813 Y: 0.9843	Pbar: 29	.06 Pstat	ic: <u>0.07</u>	_ co2: <u>/</u>	2.2%	02: 6.4	6 Pitot ID 4 # 4
Pt. Time Velocity		er Reading Stack	Probe	Box	Imp.		er AUG	Vac.	Comments
(#) (min) ("H20)	Press. Desired (#20) (ft3)	Actual Temp. (ft3) (oF)	Temp. (oF)	Temp. (oF)	Temp. (oF)	Inlet (oF)	Outlet (oF)	Press. ("Hg)	
	3.04 214.09		251	251	67	75	1	_ 4	START : (1:31
2.5 0.36		216.22 125	281	251	62	74		-4	
5 0.30		218.54 125	250	249	62	74		-4	
7.5 0.3 ×	2.03 220.85	220.87 124	251	249	61	75		-4	
10 0-21	1.40 223.18	223.14 123	250	250	60	74		-4	
12.5 0.21	1.40 225.08	225.13 123	250	251	61	75		-4	
15 0.2(224.06 124	250	520	62	75		-4	
17.5 0.2 1	1.40 229,00	229,00 124	250	250	62	75 75 75		- 4	
2 20 0.21	1.40 230.94	230-24 123	220	250	62	75		-4	
22.5 C.71	1.40 732.88	237.86 122	250	248	63	75		<u>-3</u>	
25 0.21		234.79 124	250	248	63	75		-3	
27.5 0.21	1.40 236,73	236.71 124	250	248	63	75		-3	
30 0.21		238.69 123	250	249	64	75	_	-3	
32.5 C.ZI			250	249	64	75		-5	
35 0.21	1.40 242.56	242.58 125	250	249	68	75		- <u>3</u>	
37.5 Q.21	1.40 244.52	244.52 123	251	249	65	75 75		- 3	
3 40 0.21		246.46 123	251	249	66 66	75		-3	
42.5 O.2 L		248.36 122	251	250	67	70		-3	
45 0.21	1.40 250.30	250.31 122	251	250	67	75 76	-	-3	
47.5 0.18	1.20 252.25		282	249	66	75		- 3	
50 0.18 52.5 0.18	1.20 255.94		251	250	67	75		-3	
55 0.18		257.76 124	250	249	63	75		~3	
57.5 0-18			250	249	687	75		-3	
4 60 0,18		761.35 124	251	248	67	75		-3	1,000
62.5 0.18		26814 124	251	248	67	75		~ ₹	
65 0.18	1.20 264.93	264.97 125	250	249	67	76		-3	
67.5 0.18	1.20 266.76	766.63 125	250	249	67	76		-3	
70 0.12		7.68.36 125	250	249	67	76 76		-3	
72.5 O · 17	1.13 769.82	269.92 125	25c	249	67	76		-3	
75 0.14	1.13 271.66	176.US 125	250	249	67	76 76 75		-3	
77.5 0-17	1.13 273.19	272.97 125	250	249	67	75	<u> </u>	~3	
					yam.				- Maria III
			<u> </u>			-		ļ	
	<u> </u>	<u> </u>					, cop		
				<u> </u>				<u></u>	

Pretest Leak Check	Rate (cfm)		at _		vacuum	("Hg)
Posttest Leak Check	Rate (cfm)	_	at	_	vacuum	("Ha)

Leak Vol Start _____ Leak Vol Start

Leak Vol. End _ Leak Vol. End

Operator Signature: 54

/
/

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle
Source: Incinerator
Traverse: 1212

Test No.: 11 - 129
Operators: 5RR Finish Time: 19:11

Pitot Check: 17 - 100 Date: 14 2022
Port length: 8"

Page: 4 of 4

Dn: 0.32 Cp: 0.827 Bws: 0.05 dH@: 1.7813 Y: 0.9843 Pbar: 29.06 Pstatic: 9-07 CO2: 12.7% O2: 6.4% Pitot ID 41 \$4

1					er Reading	Stack	Probe	Box	Imp.	IVIC	ter Aus	Vac.	Comments
	200	Press.	Press.	Desired	Actual (ft3)	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
	(min)	("H20)		12 (ft3) N	(ft3) V.V	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5	80	0.17			272.97	ves	250	249	67	75	-	-3	-> Desired: 274.71 A
	82.5	0.17		\$274.7t	276.47	125	251	249	66	75		-3	\$ 276.45
	85	0.17	(,13		278.23	125	250	249	66	75		-3	
1	87.5	0.17	1.13	279.97	279.97	125	249	247	66	75		-3	
- 1	90	0.18	1.20		281.74	124	249	247	66	75		-3	
	92.5	0.18	1.20		283.56	125	249	249	65	75		-3	
111	95	81.0	1.20	285.35	285.37	125	248	248	65	76		-3	
-11-	97.5	0.18	1.20	284.16	287.17	125	248	248	65	76		-3	
6	100	0.18	1.20		288.91	125	248	248	65	76		-3	
	102.5	0.18	1.20		290.68	125	249	248	65	76		-3	
	105	0.11	0.43		292.49	124	248	248	65	76		-3	
7 1	107.5	0.11	0.73	293.89	293.76	124	251	251	66	76		-3	
	110	0.11	0.43	295.16	295.25	124	250	251	66	76		-3	
	112.5	0.11	0.43	296.65	296.69	121	251	249	67	76		-3	
	115	0.11	0.73	298.05	298.03	124	2117	246	67	76	100	-3	
- 1	117.5	0.11	0.73		299,38	124	247	246	67	78		-3	
7	120	0.11	0.73	300.78	300.80	124	247	246	67	76	T-1	-3	
	122.5	0.11	0.73		307.20	122	247	246	67	76		-3	
	125	0.11	0.73	303,60	303-61	122	249	247	63	76		-3	
	127.5	0.11	0.43		305.02	124	249	247	67	76		-3	
	130	0.15	1.00			124	249	247	67	76		-3	
	132.5	0.15	1.00	308.06	307.84	123	249	247	63	76		-3	
		0.15	1.00	3091.48	309.51	123	250	247	59	76		-3	
			6.00	311.15	311.21	123	249	248	60	76	p-14, p-17.	-3	
8	140	0.15			312.84	122	247	247	60	76		-3	
-	142.5	0.15		314.94	314.07	122	248	248	60	76		-3	
	145	0.15	1.00	316.50	316.16	123	249	249	61	26	5_44_	-3	
	147.5	0.15	1.00	317.80	317.85	123	250	250	6i	76		-3	
	150	0.15	(00	319.49		123	251	251	62	76		-3	
-	152.5	0.15	1.00		321.12	123	251	251	62	76		-3	
	155	0.15	(.00	322,76		123	248	249	64	76			
_	157.5	0.15	1.00	32437	324.36	124	248	249	64	76		-3	LINE BURNEY FOR
-	160	0.15	1:00		326.01	124	248	249	64	76	1	-3	STOP: 1411
	100	-13	1100	326.00	1	10	2 10	-	-	1			The late of the la
+				500.00									
+			-										
-													
-	-												
+						-							
-	-												
-	-	_											
			-										

Pretest Leak Check Rate (cfm) ____ at ___ vacuum ("Hg)
Posttest Leak Check Rate (cfm) < 0.02 at 10 " vacuum ("Hg)

Leak Vol Start ____ Leak Vol Start 326.01

Leak Vol. End _ Leak Vol. End 326.14

RWDI AIR Inc. Consulting Engineers

Moisture Analysis Data Sheet

Project #: 2202	865	Project: Stericycle	e	
Date:	06/14/2022	Test:	SUOC-TI	
		Filter ID:		
Sample Loc. I	ncinerator	XAD Trap ID:	Trap #6	
2000	Mos	Train ID:	Trap #6 svoc 6C284	240
Pre-weights By	77703	Post-weights By:	Mos	
Impinger#	Impinger Contents	Final Weight (g)	Initial Weight (g)	Net Condensate (g)
1	КО	608.1	499.1	
2	IMP - EG	807.1	764.1	
3	IMP - MT	626.0	626.0	
4	Silica Gel	894.2	864.8	
5	Condenser	262.2	264.8	
6	XAD	356.8	356.7	
7				
8				
	TOTAL			
Balance QA Ch				
	Actual (g)	Measured (g)	Error < 0.5 g	Initials
Pre-weights	1000.0	1000.4	V	Mas
Post-weights	1000.0	999.7		Mas
Comments:			1 0.32	easurements:
			2 0.3 3 0.3 4 0.	22
			Avg o.	
M Si	Signature		June 15	
	Signature		D	ate

37

- Isokinetic Sampling Train Data Sheet -

Operator Signature:

946 .

2

 Job Name:
 Stericycle
 Plant:
 Brampton
 Test No.:
 TI - SVOC
 Start Time:
 9:18
 Stack D.:
 24"

 Job Number:
 100 N

Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	Me	eter AV4	Vac.	Comments
	1	Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	4filefi	Cities	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	contensor T (OF)
1	0	0-10	0.95	-	0.09	112	260	250	66		83	-	
	2.5	0-10	0.95	1.50	1.50	113	750	246	66		83	- 2	43
	5	0.10	0.95	2.92	2.90	113	250	249	66		02	-2	पंर
	7.5	0.10	0.95	4.32	4.79	113	250	749	66		82	-2	42
	10	0.10	0.95	5.71	5.71	113	750	751	57		82	-7	42
	12.5	0.10	0.95	7-13	7.12	113	750	247	57		82	-2	42
	15	0.10	0.95	8 . 54	9.51	113	250	752	57		82	-2	43
	17.5	0.10	0.95	9.43	9.95	113	250	249	51		32	-2	13
2	20	0.10	0.95	1 .37	11.34	113	250	249	\$7		82	-2	43
	22.5	0.10	0.95	12.76	12.76	114	750	250	56		83		
	25	0.10	0.95	14.18	14.18	114	750	250			83	-2	44
	27.5	0.10	0.95		15.60				56			-2	44
		0.10	0.95	(5.60		114	250	250	56		83	-7	44
	30		0.15	17.07	17.01	IB.		250	SG		85	-2	42
_	32.5	0.10	0.95	18.43	18.43	113	750	750	SS		8.5	-2	42
	35	0.10	0.95	19.85	19.85	113	250	250	56		82	-2	42
	37.5	0.10	0.95	21,27	21.27	113	750	250	56		82	-2	43
3	40	0.10	0.95	22.89	72.69	113	26	250	57		82	-2	42
	42.5	0.10	0.95	11-12	24.09	113	250	750	57		82	-2	45
	45	0.10	0.95	25.51	26.51	113	250	250	57		82	-2	42
	47.5	0.10	0.8	26.93	26.96	113	250	250	57		85	-2	45
	50	0.10	0.95	28-38	28.37	113	250	250	57		82	- 2	42
	52.5	0.10	0.8	29.79	29.79	113	250	250	57		85	-2	42
	55	0.10	0.95	31.21	31.22	113	250	250	57		82	-7	42
	57.5	0.10	0.95	32.64	32.65	113	250	260	57		82	-2	42
4	60	0.10	0.95	34.07	34.06	113	250	250	57		82	-2	42
	62.5	0.10	0.95	35.48	35.48	113	250	250	57		62	-2	42
	65	0.10	0.95	36.90	36.90	113	250	250	57		82	-2	42
	67.5	0.10	0 95	38.32	38.33	113	250	250	57		84	-2	42
	70	8.10	0.95	39.76	39,73	113	250	750	57		85	-2	42
	72.5	0.10	0%	41.16	41.16	113	250	250	Si		85	-2	42
	75	0.10	0.95	42.59	42.59	113	250	250	57		85	-2	42
	77.5	0.10	0.35	44.02	44.02	(13	250	250	57		85	-2	42
5	80	0.25	2.35	45.45	49.02	113	750	250	57		85	-2	115
	82.5	0.75	2.35	47.69	47.68	113	250	250	54		84	,2	42
	85	0.25	2.35	VI.93	49.93	113	750	750	Sy		85	-2	in
	87.5	0.75	2,35	52.20	52.18	115	760	750	Su		84	-2	
	90	0.25	2.35	34.43	54.40			250			85	-2	42
-				56.65	5/ 00	115	20	250	Suj				42
	92.5	0.75	235		56.65	115			Sy		85	-2	42
	95	0.25	2.35	08-82	58.90	115	250	250	Sul		85	-2	42
- 2	97.5	0.25	2.35	61.15	61.15	115	250	250	SU		85	-2	112
6	100	0.25	2.35	63.40	63.36	115	250	350	SU		gs	-2	'n
	102.5	0.25	2.35	65.61	65.61	115	250	250	54		85	7	43

Pretest Leak Check Posttest Leak Check Rate (cfm) 43 at -10 vacuum ("Hg)
Rate (cfm) - at vacuum ("Hg)

Leak Vol Start

Leak Vol. End

Post -Pitot Check: _____ (< 0.1" @ 3.0" for 15 sec)

Operator Signature:

Plant: _ Brampton Start Time: Job Name: Stericycle Plant: Brampton Test No.: Operators: HE Stack D.: 24" Job Number: 2202865 Finish Time: Pre -Pitot Check: Client: ____ Stericycle Traverse: 2/2 Traverse Dir.: Out PIM Date: June 15, 7072 Port length & "

(< 0.1" @ 3.0" for 15 sec) Page: 2 of 4

Dn: 0.320 Cp: 0849

Bws: 57. dH@: 18074 Y: 0,9814 Phar: 79,96 Pstatic: 0-07

CO2: 6.4 O2: 12.2 Pitot ID calgary 3 # 2

Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	Me	eter Ava	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	libieti	GUNER	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	condenser T (°F)
	105	0.25	2-35	67.86	67-36	115	250	250	Sy		\$5	-2	43
	107.5	0.25	2.35	70-11	70-11	115	750	326	55		85	-2	
	110	0.25	2.35	12.36	72.33	116	750	254	55		90	. 2	43
	112.5	0.25	2.35	74.60	74.56	115	250	SHZ	60		90	-2	53
	115	0.25	2.35	7683	76.83	115	250	250	64		10	-2	54
	117.5	0.25	2.35	79.10	79.08	116	250	251	61		90	- 2	58
7	120	0.25	2-35	81.35	91-33	116	250	249	6		90	-2	60
	122.5	0.25	2-35	93.60	93.62	VI6	750	250	61		90	-7	60
	125	0.25	2,35	\$5.39	85 37	116	250	250	61		90	-2	60
	127.5	0.26	2.35	38.14	33.10	115	750	249	62		90	-2	62
	130	0.75	2.35	90. 37	10.37	116	350	252	67		90	-2	62
	132.5	0.25	2.35	12.64	92.62	116	250	248	62		90	-2	67
	135	0,25	2.35	94.89	94.89	116	250	250	62		90	-2	67
	137.5	0.30	2.35	97.16	97.20	116	250	250	62		90	-2	62
8	140	0.30	2.3	9.69	99-66	116	750	250	Gu		90	-3	62
	142.5	0.30	2.35	102.15	102-11	116	250	250	60		90	-3	62
	145	0.30	2.35	104.60	104.58	116	250	28	60		90	-3	62
	147.5	0.30	2.35	101.07	107-07	116	250	250	60		90	-3	62
	150	0.30	2.35	109.56	107.55	116	250	250	60		90	-3	62
	152.5	0.30	2.35	112.04	112.02	116	250	250	60		90	-3	62
	155	0.30	2.35	114.51	114.50	116	250	250	60	led E	90	-3	62
	157.5	0.10	0.95	117.10	117.10	115	250	250	63		86	- 3	44
	160			118-53	16.53								
4			1	· .		1							
			-										
			1										
			1				4						
					1								
					-								
1													

Pretest Leak Check Posttest Leak Check Rate (cfm) ____ at ___ vacuum ("Hg) Rate (cfm) ____ at ___ vacuum ("Hg) Leak Vol Start Leak Vol Start _ - Leak Vol. End Leak Vol. End

Post -Pitot Check: _____ (< 0.1" @ 3.0" for 15 sec)

Operator Signature:

Job Name: Stericycle Plant: Brampton Source: MARCA TO Stericycle Traverse: 7/2 Test No.: TI - SVOC Start Time: Finish Time: Date: June 15, 2027

Stack D.: 24" Pre -Pitot Check: Port length & 4

(< 0.1" @ 3.0" for 15 sec)
Page: 1 of 4

Dn: 0.320 Cp: 0849 Bws: 5% dH@: 1.674 Y: 0.9814 Phar: 29.96 Pstatic: 0.07 CO2: 6.4 O2: 12.2 Pitot ID Cargory 3' #Z

Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	Imp.	Me	eter A/a	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	uniet	Quiet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	Condenser T (OF)
1	0	0.10	0.95	-	118-53	113	250	249	63		86	-	44
	2.5	0-10	0.95	119.96	119.92	113	250	250	63		86	-2	44
	5	0.10	0.95	121.35	121.35	113	750	250	63		86	-7	43
	7.5	0.10	0.95	122.78	122,78	113	250	250	63		86	-7	43
	10	0.10	0.95	124.21	124.20	113	250	25	GI		83	-7	43
	12.5	0.10	0,95	125.63	125.63	113	250	249	63		83	-2	43
1	15	0.10	0,95	127.06	127.06	113	250	249	63		83	-7	43
	17.5	0.10	0.95	128. 49	128.49	113	250	250	63		83	-2	Ϋ́S
2	20	0.10	0.96	129-92	129.93	Ilu	251	248	64		\$2	-2	46
	22.5	0.10	0.95	131.36	131.35	114	250	250	64		82	-7	46
	25	0.10	0.95	132-78	132.78	(14	250	250	62		82	-7	46
	27.5	0.10	0.95	134.21	134.20	114	250	250	62		32	-7	46
	30	0.10	0.8	135.63	135.62	116	250	750	62		82	- 7	46
	32.5	0.10	0.95	137.05	137.05	115	250	250	62		82	-2	46
	35	0.10	0,95	138.48	133-48	115	250	250	62		82	-2	46
	37.5	0.15	1.40	139.91	139,90	115	250	250	62		82	-7	46
3	40	0.15	1.40	141.65	141.59	115	250	25/	62		82	-2	46
	42.5	0.15	1.40	143.34	143.34	115	250	750	62		92	-2	46
	45	0.15	1.10	145.09	145.04	115	250	250	62		82	-2	46
	47.5	0.15	1.40	146.79	146.75	116	250	249	61		82	-1	Sv
	50	0.15	1.40	148.50	148.48	116	29	249	61		82	-2	So
	52.5	0.15	1.40	150.23	150.20	116	250	36	6	17 1	82	-2	52
	55	8.15	1.40	151.95	151-93	116	250	750	6		12	-2	52
	57.5	0.15	1.40	153.68	153.69	116	250	350	6		92	-2	\$2
4	60	0.15	1.40	155. 44	155.40	116	250	250	0		82	-7	52
	62.5	0.15	1.40	157.15	157.15	117	28	750	6		35	-2	52
	65	0.15	1.40	158.90	158-85	117	280	750	6		82	,2	52
	67.5	0.4	1.40	160. 60	160.58	117	250	250	61		82	.2	52
	70	0-15	1-40	162-33	162-35	117	250	25	0		32	-2	52
	72.5	0.15	1.40	164-10	164.10	117	250	250	6		82	.2	52
	75	0.15	1.40	165.85	165.84	117	250	75	61		32	-2	52
	77.5	0.15	1.40	161,59	167.56	ils	280	250	61		32	- y	55
5	80	0.15	1:40	169.31	169.31	NS	250	250	61		82	-4	SS
	82.5	0-15	1.40	171.06	171,05	116	260	250	63		35	-4	57
	85	0.15	(.40	172.80	112 80	116	250	250	63		32	- 4	57
	87.5	0.15	1.40	174.55	174.56	116	250	250	63		92	- 4	57
	90	0.15	1.40	176.31	176.31	116	250	260	63		82	-4	51
	92.5	0.15	1.40	178.06	178.06	116	250	250	63		82	-4	57
	95	0.15	(.40	179.81	179.80	16	250	250	63		82	-4	57
76 11	97.5	0.15	(- Yo	131.55	181.57	16	250	750	63		82	-4	57
6	100	0.15	(.40	183.32	183,29	116	250	250	63		92	-4	57
	102.5	0.15	(,-10	185.09	185.04	116	750	250	63	-	32	- 4	59

Pretest Leak Check Posttest Leak Check Rate (cfm) _____ at ____ vacuum ("Hg) Rate (cfm) ____ at ___ vacuum ("Hg)

Leak Vol Start Leak Vol Start

Leak Vol. End Leak Vol. End

Post -Pitot Check: ____ (< 0.1" @ 3.0" for 15 sec)

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: ____ Stericycle

Plant: Brampton Source: Minerator Operators: HE

Test No.: TI - SVOC Start Time:

Finish Time: Traverse: 2/2 Traverse Dir.: MI Date: JME 15, 2077

Stack D.: 24" Pre -Pitot Check Port length

(< 0.1" @ 3.0" for 15 sec) Page: <u>Y</u> of <u>Y</u>

Dn: 0.320 Cp: 0.849

Bws: 5% dH@: 1.8074 Y: 0.9814 Pbar: 79.96 Pstatic: 0.07 CO2: 6-4 O2: 12.2 Pitot ID algary 3' #Z

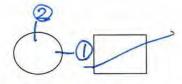
Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	Me	eter /-V4	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Mot	Gonet	Press.	(70) - (75)
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	Conduser + (of)
	105	0.15	1.40	136,79	136.76	116	765	250	63	1	85	- 4	59
	107.5	0.15	1.40	138.51	15-881	116	250	250	63		85	-4	\$9 \$9
	110	0.15	1.40	190,26	190.26	114	750	750	63		85	- 4	59
	112.5	0.15	1.40	192-01	192.0	ily	254	750	64		87	-4	59
	115	0.15	1.00	193.76	193-76	114	750	250	61		82	- 4	59
	117.5	0.15	1-10	195.50	195.54	114	28	750	61		97	- 4	39
7	120	0.15	1.40	197.28	197.24	114	75	250	64		32	- 4	60
	122.5	0.15	1.40	198-98	199.0	114	250	750	62		8)	- 4	60
	125	0.15	(.40	200.75	200.78	113	756	750	67		83	-4	60
	127.5	0.15	1.40	202.52	202.51	113	250	250	67		83	-4	60
	130	0.15	1-40	204.25	204.25	113	250	750	67		33	- 4	60
	132.5	0.15	1.40	205.99	205.98	(13	25	25	62	12	83	-4	60
	135	0.15	1-40	201.72	207.72	113	250	250	67.		\$3	-4	60
	137.5	0.15	1.40	209.46	209.46	113	28	58	62		83	-4	60
8	140	0.15	(.40	211.20	211.70	113	250	750	62		\$3	-4	60
	142.5	0.15	1.40	46-212	212.93	(13	250	750	62		33	-4	67
	145	0.15	1.40	214.67	214-69	113	250	280	62	10 m	83	-4	62
	147.5	0.15	(.40	216. 43	216416	113	250	250	62		33	- 4	67
	150	0-15	1.40	218.20	218.17	113	250	750	62		33	-4	61
	152.5	0.15	1.40	219.91	219.91	113	250	250	63		33	-4	62
	155	0.15	1.40	231.64	221.62	113	250	750	62		83	-4	62
	157.5	0.15	1.40	723.39	223.39	113	250	750	62		83	- 4	62
	160			225.12	325.13								1
			-										
												-	
				2									
									1			1	
											1		
					V								1
			-					1		N 5	5		
			PELE		2								
		(
				_ 4									
					V			-					

Pretest Leak Check Posttest Leak Check

Rate (cfm) ____ at ____ vacuum ("Hg) Rate (cfm) 40-07 at -10 vacuum ("Hg)

Leak Vol Start _____ Leak Vol Start 723.41 Leak Vol. End Leak Vol. End 223-56

(< 0.1" @ 3.0" for 15 sec) Post -Pitot Check:


RWDI AIR Inc. Consulting Engineers

Moisture Analysis Data Sheet

Project #: 2202	865	Project: Stericycle		
Date:	June 15 202	2 Test:	SVOL-T2	
Sample Loc. I	ncinerator	Filter ID: XAD Trap ID:	Trap # 3	
Pre-weights By	Mos	Train ID: Post-weights By:	Mos	
Impinger#	Impinger Contents	Final Weight (g)	Initial Weight (g)	Net Condensate (g)
1	КО	738.7	501.3	
2	IMP - EG	759.8	717.3	
3	IMP - MT	622-1	621.7	
4	Silica Gel	951.8	918.8	
5	Condenser	315.2	315.2	
6	XAD	338.3	335.8	
7				
8				
	TOTAL			
Balance QA CI	heck:			
	Actual (g)	Measured (g)	Error < 0.5 g	Initials
Pre-weights	[000.0	1000.1	V	M05
Post-weights	0.000	1000.3	V	Mos
Comments:				
			1	easurements:
MA	strull		June 16	
	Signature		L	Date

Operator Signature:

0		1	
11	1	1	
4		U	

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: Test No.: T2-SVOC Start Time: 08:58
Operators: HE Finish Time:

Traverse Dir.: in - out Date: Tune 16, 2022

Stack D.: 24" Pitot Check: _ Port length: 8"

Dn: 0.32 Cp: 0.849

Bws: 5% dH@: 1.8074 Y: 0.9814

Pbar: 29.85

CO2:

02:	MUCA	Pitot ID Calgar V	3,	#2
	12.2			

Pt.	Time	Velocity	Orifice	Gas Met	ter Reading	Stack	Probe	Box	Imp.	Me	eter AUG	Vac.	Comments
7.7	,,,,,,	Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	相相	Charles	Press	Carried Wall
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	Condust TanD.
1	0	0.10	0.90	-	0.14	122	750	252	64	1	85	~	61
		0.10	0.90	1.55	1.59	124	250	250	64		85	-2	61
		0.10	0.90	3.00	2.98	123	249	250	64		PS	- 2	61
	7.5	0.10	0.90		4.38	123	250	250	64		85	-2	61
		0.10	0.90	5.74	5.79	124	250	750	GY		85	-2	\$7
		0.10	0.90	7.20	7.19	125	250	250	64		85	-2	57
		0.10	0.90	8.61	8.61	175	250	250	64		85	-2	57
	17.5	0.40		10.03	10.03	125	750	250	64		92	-2	57
2		0.10 1	0.10.	11.45	11.43 1	155 1	750	250 1	64 1		85.		57
		0.10	0.90		11.43	125	26	250	64		82		57
		0.10	0,90	14.26	14.23	125	250	250	GY		85	-2	57
		0.10	0.90	15.65	15.66	125	250	250	64		83	- 2	57
		0-10	0.90	17.08	17.09	126	250	250	64		83	-2	5 7
	32.5	0.10	0.90	18.91	12.8)	126	250	250	63		83	- 2	57
		0.10	0.90	19.92	19.92	127	250	250	63		83	-1	57
		0.10	10.90	71.33	21.33	127	250	750	63		33	-7	57
3		0.15 1	1.401	2774	27.75	127 1	250 ,	250 1	63 1		83 ,	-21	57,
	42.5	0.15	1.40	29.48	24.45	127	250	250	63		83	-2	57
		0.15	1.40	26.18	26.23	127	250	78	63		33	-2	57
		0.15	1.40	27.96	27.95	127	250	250	62		83	-2	22
		0.15	1-40	29.68	29-68	127	250	750	62		33	-2	55
		0.15	1.40	31.41	31.42	127	250	250	62		83	. 2	55
		0.15	1.40	33.15	33.15	127	250	250	62		83	- 4	55
	57.5	1.15	1,40	34.88	34.87	127	250	250	62		83	-4	SS
. 4		0.15	1.401	36.60	36.60 1	127 1	2501	750 1	67 1		83 1	-4 1	35 1
	62.5	0.13	1.40	38 33	38.31	128	250	250	62		83	-41	22
		0.15	1.40	40.04	40.04	128	250	250	62		83	14	55
		0.15	1.40	91.77	41.75	128	250	750	62		83	- 4	55
	70	0.15	1,40	43.48	43.48	128	250	250	62		83	-4	SS
	72.5	0.15	1,40	15.21	45.20	178	250	750	62		83	-4	\$2
	75	0.15	1,40	46.43	469	128	250	250	62		85	-5	SS
		0.15	1.40	48.64	48.63	128	750	750	62		85	_ 5	57
										1.7			
				11									
												J.E.J.	

	Rate (cfm)	0.02	1	0		
Pretest Leak Check	Rate (cfm)	Venn	at _	•	vacuum	("Hg)
Posttest Leak Check	Rate (cfm)	-	at	-	vacuum	("Hg)

U.	OU CONTRACTOR AND
Leak Vol Start	Sep. 24
Leak Vol Start	

Leak Vol. End 0. Leak Vol. End

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 1/2 Test No.: 72-5Voc Start Time:

Traverse Dir.: 14-904 Date: The 16, 2022

Stack D.: 24" Pitot Check: Port length: 8"

Dn: 0,32 Cp: 0.849

Bws: 5-/. dH@: 1.8074 Y: 0.9814 Phar: 29.85

Pstatic: m co2: 6.4 o2: 12.2 Pitot ID calgar 3 42

Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	Me	eter AVG	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Whitel	Onlet	Press.	conduser tamp.
#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5	80	0.15	1.40	50.36	50.33	700 126	580	250	64	-1	82	-5	60
	82.5	0.15	1.40	52.08	52.08	126	250	250	64		82	- 5	60
	85	0.15	1.40	53.81	53.80	136	250	750	64		82	-5	60
	87.5	015	1.40	55.53	55.5	126	250	750	64		85	-5	60
	90	0.15	1 40	57.24	57.26	126	250	250	64		92	2	60
		0.15	1.40	58. 99	58.48	126	750	250	64		23	-5	60
		0-15	1.40	60.71	60.70	126	260	250	64		85	-5	60
	97.5	0.15		62.43	62.43	126	250	250	64		85	-5	60
6		0.20 1	1.801	64.16	64.16 1	126 1	250	750 1	64 1		85 1	-5	62
	102.5	0.20	1.80	66.15	66.12	126	250	250	64		85	-51	58
	105	0.20	1.80	68.11	68.11	127	750	249	64		86	-6	58
	107.5	0.20	1.80	70.11	70.09	127	250	520	64		86	-6	58
	110	0-20	1.80	72.09	72.07	127	250	250	64		36	-6	58
	112.5	0.20		74.07	74.07	127	250	280	64		86	-6	58
	115	0.20	180	76.07	76.05	127	250	250	64		86	-6	57
	117.5	0.70	1-80	78.05	78.09	127	250	250	64		8	-6	57
7	120	0.201	180,	80.04	00.031	127	250	250	64		861	161	57
	122.5	0.76	1.80	82.03	82.02	127	250 1	250	64		86 '	-6	57
	125	0.20	1.80	84.02	84.00	125	250	200	64		86	-6	57
	127.5	0.70	180	87.98	85.98	ns	250	250	64		86	-6	57
	130	0.20	1.80	87.98	87.98	125	Q25	550	64		86	-6	57
	132.5	0.20	1.80	89.98	89.95	125	250	250	64		87	-6	57
	135	0.20	1.80	91.98	91.96	125	250	250	64		87	-6	57
	137.5	0.20	180	93,97	93.96	125	250	250	64		8.7	-6	57
8		0.201	1801	95.97	95.97	125	2501	250	64 1		37	-61	57
	142.5	0.20	1.80	97.98	97.97	125	250	750	64		37	-6	57
		0.20	1.80	99.98	99.96	rs	750	750	69		87	-6	57
	147.5	0.20	1.80	101.97	101.95	irs	250	250	64		87	-6	57
	150	0.20	1.80	103.96	103.94	125	250	230	64		87	-6	57
		0.20	1.0	105.95	VOS 95	125	250	750	64		87	-6	27
		0.20	(.80	107.96	107.97	17.5	250	250	64		87	-6	57
	157.5	0.20	150	109.98	109.95	175	750	250	64		87	.6	57
	160		1	111.96	111.96								
				N. S. S.									
			1 :- 1										

Pretest Leak Check	Rate (cfm)	at	vacuum ('Hg)
Posttest Leak Check	Rate (cfm)	at	vacuum ("Hg)

Leak Vol Start Leak Vol Start Leak Vol. End Leak Vol. End

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 2/2 Test No.: T2-SVoC

Start Time: Operators: HE Finish Time:

Traverse Dir.: M out Date: JUNE 16, 2022

Stack D.: 24" Pitot Check: Port length: 8"

Bws: 57. dH@: 1.8074 y: 0.9814 Pbar: 29.85 Pstatic: 0.07 CO2: 6.4 O2: 12.2 Pitot ID Calgury 3' #Z Dn: 0.32 Cp: 0.849

Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	Imp.	Me	eter AUG	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Gapen	voorliete	Press.	conduser temp
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
1	- 0	0.10	0.90	-	111.96	120	250	250	64		86	-	Rosume: 18:0) CT: 59
		0.10	0.90	113.34	113.39	120	250	250	65		86	-3	59
		0.10	0.00	114.82	119.82	120	250	250	65		86	-3	59
	7.5	0.10	0.90	16.25	116.30	120	250	250	65		36	-3	59
	10	0.10	0.90	117.73	117.70	170	250	250	65		86	-3	59
	12.5	0.10	0.90	119.13	119.10	120	250	250	65		86	-3	59
		0.10	0.90	120.53	120.56	120	250	250	65		86	-3	59
-		0.10	0.90	121.99	121.94	121	250	750	65		34	-3	59
2		0.10	0.901	123.41	12341	ni	250 ,	250 1	65		84 .	-31	59 1
- 2		0.10	0.90	124.83	124 83	121	250	250	65		84	-3	59
_		5.10	0.90	126.25	126.24	121	750	750	62		84	-3	C9
	25	1.10	0.90		127.65	121	250	750	65		34	-3	59 pause: 12:30
_			0.90	129.07	179.10	128	750	750	65		79	- 3	59 roune mos
_		0.10		127.01			250	249	64		79	-3	
		0.0	0.90	130.50	130.48	128	250		64		79	-3	20
-		0.10		131.00	131.00	V=0		250	64		79	-3	59
-		6.10	0.90	133.28	134.70	128	250	249	84 1		79.	- 4,	581
3		0.10	0.90	134.70	134 10	127 1	250	48			791		201
		0.10	0.90	136.10	136.10	129	750	250	64		79	- Y.	28
		0.10	0.90	137.50	137.52	129	250	250	64			-4	58
		0.10		138.92	138.93	128	250	250	64		79		53
		0.10		140.33	140.33	irs	250	250	64		79	-4	58
		0.10	0.90	141.73	141.73	128	250	250	64		79	-4	\$\frac{1}{2}\frac{1}
		0.10	090	[93.13	143.15	127	250	249	64		79	-4	\ <u>>8</u>
		0.10	0.90	144.55	144.54	127	250	250	64		79	-4	13%
4		0.151	1.351	145.94	145.94	127	2501	250 1	64	-	79	- 91	58
		0.15	1.35		147.63	127	750	750	64		79	-4	58
		0.15		149.34	199.38	127	280	250	64		79	-4	S
		0.15	1.35	151.09	151.05	127	250	250	64		79	-4	SI
	70	0.15	1.35	152.76	152.78	127	250	750	64		79	-4	58 28
	72.5	0.15	1.35	134.49	154.48	127	250	250	64		79	- 4	58
		0.15	1.35	156.19	186.16	127	750	750	64		79	-4	58
	77.5	0.15	135	157.87	157-84	127	250	250	64		79	-4	\$1
													7
				71					1.1.				
				7.								Total S	
					5								
				- 1					9				

Pretest Leak Check	Rate (cfm)	1	_at_		vacuum	("Hg)	
Posttest Leak Check	Rate (cfm)	-	at	-	vacuum i	("Hg)	

Leak Vol Start_	_
Leak Vol Start_	1

Leak Vol. End	
Leak Vol. End	-

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 2/2

Operators: Traverse Dir.: M ->04+

Start Time: Finish Time: Date: Jule 16, 2002

Stack D.: 24" Pitot Check: Port length: 8"

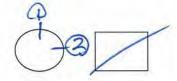
Bws: 5% dH@: 1.8074 Y: 0.9814

Pbar: 29 85

co2: 6.4 02: 12.2 Pitot ID Calgary 3" #2

Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	M	eter AVC	Vac.	Comments
2000	50000	Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Afflet	omer	Press.	Comments
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	
5			2.70	59.55	159.54	27	249	1251	62	1	82	-8	56
		0.30	270	161.96	161.92	127	750	750	62		87	-0	56
		0.30	2.70	64.34	164.35	127	250	250	62		32	-8	56
	87.5		270	166.77	166.77	129	250	250	62		82	-8	56
	90	0.30	2.70	169.19	169.18	129	250	250	62		28	-8	56
	92.5	0.30	2.70	171.60	171.57	129	250	750	62		82	-8	56
		0.30	2.70	173.49	173.99	[29	250	250	62		82	- 8	56
_	97.5	0.30	2.70	176.41	176.40	129	7.50	250	62		28	-8	56
6	100	0.30 1	2701	178.82	178.82,	129	2501	250 1	63		82.	-81	56 1
- 13			2.70	181.24	181.27	129	250	250	63		82 1	-0	(7
				183.69	123.67	129	250	250	63		28	-8	57
		0.30	2.70	186.09	186.07	179	250	250	63		82	-8	57
			2.70	188 - 49	188.47	129	250	750	62		81	- 8	57
	112.5	0.30	2.70	190.89	190.87	129	250	750	62		84	-0	57
	115	0.30	270		193.25	129	250	225	62		84	- 0	57
		0.30	2.70	195.67	195.65	129	750	250	62		84	- 2	57
7	120	0.30 1		198.07	198.05,	125,	750	251 1	621		841	-81	57 1
				200.47	200.43	125	250	250	62		34	-21	57
		0.30	2.70	202.85	202.80	125	250	250	62		34	-8	57
		0.30	2.70	205.22	205.21	125	250	150	62		84	-8	57
	130	0.30	2.70	201.63	207.63	123	750	250	61		84	-8	57
	132.5	0.30	270	210.08	20.08	123	250	250	61		84	-8	57
			2.70	212.53	212.53	123	750	250	61		84	-8	57
		0.30		714.98	24.95	124	250	250	61		84	-8	57
8	140		7.70	217.40	217.401	124 1	250 ,	2501	61		1 48	-81	57 1
				219.85	219.87	124	250	250	61		Ry	-8	57
			2.70	222.32	222.29	124	280	250	61		8-1	-8	57
	147.5			224.79	224.70	174	750	250	61		14	-8	\$7
				227.15	227.11	124	78	250	61		24	-3	57
				229.56	229.54	124	250	750	6		24	-8	57
		0.30		231.99	231.95	124	250	250	61		85		57
	157.5	0.30	2.70	234.40	234-40	124	250	250	61		85	-8	27
	160			236 85	236.85							-	
						7							
									0 15				
			1 3										
			1										
				1								-	
3.84 1													

Pretest Leak Check	Rate (cfm) a	at vacuum ("Hg
Posttest Leak Check	Rate (cfm) 40.02	at 5" vacuum ("Hg



RWDI AIR Inc. Consulting Engineers

Moisture Analysis Data Sheet

Project #: 22025	865	Project: Stericyc	Project: Stericycle							
Date:	Ture 17 26	722 Test:	SVOC-T3							
		Filter ID:								
Sample Loc. In	ncinerator	XAD Trap ID:	Trap # 2							
Dample Loc. 1	loniciator		7							
		Train ID:	svoc Clean N	M5-F						
Pre-weights By:	Mos	Post-weights By	HE							
Impinger#	Impinger Contents	Final Weight (g)	Initial Weight (g)	Net Condensate (g)						
1	КО	693.6	456.6							
2	IMP - EG	783.7	750.0							
3	IMP - MT	632.3	632.3							
4	Silica Gel	864.8	840.0							
5	Condenser	262.5	260.7							
6	XAD	318.4	3+5.1							
7										
8										
	TOTAL									
Balance QA Ch	neck:									
	Actual (g)	Measured (g)	Error ≤ 0.5 g	Initials						
Pre-weights	1000.0	1000-1		HE						
Post-weights	1000.0	1000.1		HE						
Comments:										
			Nozzle M	easurements:						
			1	Sahe as						
				TI						
			3							
			.4							
			Avg							
	Al Call HH			17						
	Trame (June	17, 2022						
	Signature			Date						

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

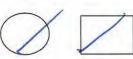
Plant: Stericycle Source: Incinerator Traverse: 1/2

Test No.: T3 - SVOC Start Time: 08:36
Operators: HE Finish Time: — Traverse Dir.: 11704t Date: June 17, 2072

Stack D.: 24"

Dn: 0.32 Cp: 0.849 Bws: 5% dH@: 1.8074 Y: 0.9814 Pbar: 79.06 Pstatic: 0.07 CO2: 6.4 O2: 12.7 Pitot ID Calgary 31 #2

Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	Me	eter Aug	Vac.	Comments
200	0.70	Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Milet	outer	Press.	Con lare TAIN
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	Condeser Teap
1	0	0.10	0.90	_	0.07	119	250	251	62	1	20	-	63
	2.5	0.10	0.90	1.50	1.47	114	250	248	62		78	-1	63
	- 5	0.10	0.00	2.90	7.89	119	250	250	62		78	-7	63
- 1	7.5	0.10	0.90	U.32	4.32	120	250	251	62		78	-2	63
		0.10	0.90	5.75	5'.75	120	760	248	62		78	-2	63
		0.10	0.90	7.18	7.12	120	250	250	62		78	-2	63
- 1		0.10	0.90	8.55	8.55	120	250	250	62		78	-7	63
	17.5	0.10	0.90	9.98	9.95	120	250	250	62		77	-7	63
2		0.10	0.901	11.38	16.37	120	750 1	750 1	62 1		77 .	-2,	62 1
		0.10	0.90	12.80	1280	119	750	249	61		77	-71	61
		0.10	0.00	14.23	14.20	119	250	751	61		77	-7	61
		0.10	0.10	15.63	15.63	119	780	750	61		77	12	61
		0.10	0,00	17.06	17.06	119	250	250	60		77	-7	< 9
		0.10	6.00	18.49	18.49	120	250	250	60		77	-2	\$0
		0.10	0.90	19.92	14:41	120	750	250	60		77	-7.	\$8
		0-10	0.90	21.34	21.34	TW	250	750	60		77	-2	58
3		0.101	0,90	22,77	22-78	120	250 ,	252	60 1		77 1	-2 ,	50
		0.00	0.90	24.21	24.13	121	250	249	60		77	-7	58 1
		0.10	0.90	25.61	25.61	120	250	249	60		77	-7	20
		0.10		27.04	27.02	120	250	249	59		77	-7	58
\rightarrow		0.10	0.00	28.45	28.43	120	250	249	59		77	-2	
-		0.10	0 90	29.86	29.85	120	250	251	24		48	-3	58 58 58
-		0.10	0.90	31.27	21 25	100	750		59		78	-3	158
-		0.10	0.90	32.67	31.25	120	250	750	69		780	-3	128
4		0.10	0.90	34.07	34.05	119	250	250 1	59		78	-31	178
4		0.10	0.90	35.47	35.4	11 9	250	250	59		78 1	-31	58 1
-			0.90	36.90	36.88	119	250	250	59		78	-3	28
-		0.10	0,40						59		78	-3	3
-		0.10	090	38.30	38.30	119	250	250	59		78	-3	38
-		0.10	0.90				750	247	59			- 3	28
-		0.10	0.90	41.13	41.13	119	750				78	-3	58
		0.10	0.90	42.55	43.91	119	250	249	59		78	-3	58
-	77.5	0.10	0.90	43.45	43.7	119	Cap	249	34	1	10	-)	-20
_									1				
-		-						-					
-							-					-	
-												-	
-							-						
_													
												-	


Pretest Leak Check	Rate (cfm) 4	0.02 at	10	vacuum ("Hg)
Posttest Leak Check	Rate (cfm)	at	-	vacuum ("Hg)

Leak Vol Start 0.00 Leak Vol Start -

Leak Vol. End 0.01 Leak Vol. End

Operator Signature:

1	311	
1	UU.	
-	100	

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 1/2 Test No.: T3- SVac Start Time:

Operators: Finish Time: Pitot Check: Traverse Dir.: 1 - out Date: JULE 17, 2071 Port length: 8"

Stack D.: 24"

Dn: 0.32 Cp: 0.849

Bws: 57, dH@: 1.8074 y: 0.9814 Pbar: 29.06 Pstatic: @-07 CO2: 6.4 O2: 12.2 Pitot ID Calgary 5 #2

Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	Imp.	Me	eter Aus	Vac.	Comments
		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	4nlet	Druttet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	conduse Tonp
5	80	00.10		Y# 33	45.33	119	1251	252	61		79	-3	59
	82.5			46.75	46.77	119	249	247	61	1	79	-3	59
		0.10	0.90	48.19	48.19	119	250	280	61		79	-3	59
- 1		0.10	0.90	49.61	49.60	119	250	200	60		79	-3	59
-		0.10	0.00	\$1.02	51.02	121	750	150	60		79	-3	54
		6.10	0.90	52.44	52.44	121	750	750	60		79	-3	39
		0.10	6-40	53.86	53.36	hi	250	250	60		79	-3	59
-		0.10	0.90	55.28	55.28	153	550	250	60		79	-3	59
6			3.65	56.70	56.68	154 1	750 1	750 1	60 1		79 1	-9 1	59 1
В		104.0	2 65	59.53	59.49	124 1	250	350	60		90	-8	59
_						125			60		80	-8	60
-			3.65	62.34	62.30		250	750	60		80	-8	
-		0.40	3.65	65.15	67.91	127	250	250	60		80	-8	60
-		0.40	3.03			124	250	750			80	-9	60
-		0.40	3.65	70.75	70.73			250	60			- 9	60
-		0.40	3.65	73.57	73.53	124	250	750	60		80	- 9	60
_		0.40	3.65	76.37	76.35	124	250				81 ,	-7.	
7		0.301	7.70	79.19	79.17	126	750 1	750 1	60 1			-71	60
		0.30	7.10	81.63	81.60	126	250	250	60		81 ,	-7	60
		0.30	L.70	84.06	84.06	126	250	250	60		81		60
		0.30	2.10	86.52	86.50	125	250	250	60		81	-7	60
		0.30	2.70	88. 46	88.97	125	250	750	66		81	-7	60
	132.5	0.30	2.70	41.43	41.42	125	250		60		81	-7	61
	135	0.30	2.70	93.88	93.86	125	250	750	60		12	-7	61
	137.5	0.30	220	96.32	96.30	125	250	250	60		di	-7	61
8	140	0.30 1	2201	98.76	98.73	125 1	750	250	60 1		51	-71	6/
	142.5	0.30	2.70	101.19	101.19	125	250	250'	60		82,	-71	60'
	145	0.30	7.10	103.65	103.65	125	750	750	60		32	-7	60
		0.30	2-70	106-11	106.11	127	250	250	60		28	-7	60
		0.30	210	108.57	108.56	127	250	250	60		82	-7	60
		0.30	2.70	111.02	111.02	123	250	250	60		82	-7	60
		0.30	2.70	113.48	113-48	123	250	250	61		82	- 7	65
		0.30	2-70	115.94	115.95	120	250	250	61		35	-7	60 panse:11:16
	160			118.41	118.41			7 11 1		1			
1													
		4											
_								-					
												1	

retest Leak Check	Rate (cfm)	-	at		vacuum	("Hg)
Posttest Leak Check	Rate (cfm)	-	at_	-	vacuum	("Hg)

Leak Vol Start Leak Vol Start

Leak Vol. End Leak Vol. End

Operator Signature:

CU	
1	5

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 2/2 Test No.: T3-SVoC
Operators: HE Traverse Dir.: // Joht

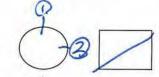
Start Time: Finish Time: Date: J We 17, 2012

Stack D.: 24" Pitot Check: _ Port length: 8"

Page: 3 of 4

Bws: 51, dH@: [.874 Y: 0.98 Pbar: 29.06 Pstatic: __

_____ CO2: 64. O2: 12.2 Pitot ID Calgary 3' # Z


Pt.	Time	Velocity	Orifice	Gas Mete	er Reading	Stack	Probe	Box	Imp.	Me	ter AUG	Vac.	Comments
	27711747	Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	Condason resp
1	0	0.20	\$.KO	ma -	118.46	126	756	250	62		80	-	60 resume: 11:
	2.5	0.20	1.80	120.47	120.45	126	250	250	62		80	-6	60
		0.20		122.46	122.42	126	250	250	62		80	-6	60
		0.20	1.80	124.43	124.43	126	520	750	62		80	-6	60
		0.20	1.80	126.44	126.45	175	250	25/	61		60	-6	66
1	12.5	0.20	1.80	178.46	128.45	125	250	250	61		80	-6	60
	15	0.20	1.80	130.46	130.44	125	250	251	61		80	-6	60
	17.5	0.20	1.10	132.45	132.45	125	250	20	61		80	-6	60
2	20	0.15 1	1.40,	134.46	134.47	125	250 ,	250 1	61		80 1	161	60,
	22.5	0.15	1.40	136,21	136.24	125	250	250	61		80 '	16	60
	25	0.15	1.40	137.98	137.98	125	750	750	61		80	-6	60
	27.5	0.15	1.40	139.72	139.70	125	250	750	61	100	80	-6	60
	30	0.15	1.40	141.44	141.42	125	750	250	60		80		60
		6.15	1.40	143.16	143.19	152	250	249	60		80	-6	60
		0-15	1.40	144.93	144.93	125	250	249	60		26	-6	69
		0-15	1.40	146.67	146.68	125	250	252	60		81	-6	69
3		0.10 1	0.90,	148.42	148.47 1	1221	2491	2491	60		811	-41	601
	42.5	0.10	0.90	149.85	149.85	123	251	260	60		81 '	- 4'	60
	45	0.10	0.90	151.28	151.28	123	251	250	GO		81	- 4	60
		0.10	0.90	152.71	152.71	123	251	250	61		81	-4	60
		0.10	0.90	154.14	154-15	123	280	230	61		81	- 4	60
	52.5	0.10	0.90		155.59	123	250	250	61		31	-9	60
	55	0.10	0.90	157.02	157.02	123	250	750	61		31	-4	68
	57.5	0.10		158.45	158.46	123	750	250	61		81	-4	6
4		0.15.	1.40.		159.89	123 1	2501	750 1	61 1		81 1	-41	60 1
		0.15	1.46	161.64	161.60	123	250	250	61		31	-41	60
		0.15		163.35	163.36	123	250	780	61	- 1	SI	-4	60
		0.15	1.40	165.06	165.08	123	250	750	61		81	-4	60
		0.15	1.46	166.83	GB 88	123	250	750	61		७।	-4	GO ACTUAL! 166.87
		0.15		163.58	168.58	123	250	250	61		31	-4	60
		0.15		170.33	170.30	123	250	250	61		81	-4	60
	77.5	0.15	1.40	172.05	172.05	123	250	250	61		81	-4	60
												-	
			-										
-		/					-1						

Pretest Leak Check	Rate (cfm)	at	vacuum ("Hg)
Posttest Leak Check	Rate (cfm)	at	vacuum ("Hg)

-
_

Leak Vol. End	-
Leak Vol. End	-

Operator Signature:

Job Name: Stericycle Job Number: 2202865 Client: Stericycle

Plant: Stericycle Source: Incinerator Traverse: 2/2

Test No.: 73 - SVoC
Operators: 1 | Start Time: 9 | Stack D.: 24"

Traverse Dir.: 1 | Stack D.: 24"

Pitot Check: 17, 2072 | Port length: 8"

Stack D.: 24"

Dn: 0.37 Cp: 0.844 Bws: 5/, dH@: 1.8074 Y: 0.9814 Phar: 29.06 Pstatic: 0.07 CO2: 614 O2: 12.2 Pitot ID calgary 3' #2

Pt.	Time	Velocity	Orifice	Gas Met	er Reading	Stack	Probe	Box	Imp.	Me	eter AUG	Vac.	Comments
No.		Press.	Press.	Desired	Actual	Temp.	Temp.	Temp.	Temp.	Inlet	Outlet	Press.	
(#)	(min)	("H20)	("H20)	(ft3)	(ft3)	(oF)	(oF)	(oF)	(oF)	(oF)	(oF)	("Hg)	cartagen tab.
5		0.25	2.30	173.80	173.80	125	250	250	63	1	8	-6	59
_		0.25	2.30	176.86	176.06	125	250	250	63		80	-6	59
_	85	0.25	2.30	178.32	178.30	152	250	250	63		80	-6	59
	87.5	0.25	7.30	180.56	180.58	125	250	250	63		80	-6	59
		0.25	2.30	182.84	182.82	125	250	250	63		86	-6	Sq
	92.5	0.25	1.30	185.08	192.02	125	250	520	63		80	-6	59
		0.25	2.30	187.31	187.31	125	250	250	61		80	-6	59
		0.75	2.30	189.57	189.57	152	750	250	61		80	-6	59
6		0.25		191.83	19183	125	250	750 1	61 1		1 68	-61	59
	102.5		7.30	194.00	194.09	152	250	250	61		80	-6	59
			2.30	196.35	196.35	125	250	250	61		8	-6	Sq
		0.25	2.30	198.61	198.60	125	750	750	61		80	-6	59
-		0.25	2.30	20.86	200.86	125	250	750	61		8	-6	59
-			2.30	203.12	203.13	152	250	750	62		82	-6	59
-			2.30	205.39	205.39	124	250	750	62		87	-6	59
-	117.5		2.30	207.65	20765	124	256	250	62		82	-6	59
7		0.101	0.90,	19.905	209.91	153	750	250	62		82 1	-6	59
-	122.5	0.10	0.90	211.34	211.37	123	250	751	62		82 1	-6'	60
-		0.10	0.90	212.80	212.78	123	250	SAS	62		82	-5	60
-	127.5		0.90	214.21	214-11	123	250	249	62		82	-5	60
-		0.10	0.90	215.64	215.64	123	750	750	62		82	-5	60
_		0.10	0.40	717.07	717.05	124	250	251	62		82	-5	60
_	135	0.10	0.90	718.48	219.46	124	250	249	62		82	-4	60
	137.5			219.89	219.88	124	250	250	62		82	-4'	60
8		0.101		221.31	221.31	124	2501	250	62		82.	-41	66
	142.5	0.10	0.10	222,74	272.74	124	160	250	62		821	-4'	60
-		0.10	0.40	224.17	224.18	124	250	150			28	-4	60
-	147.5		0.90	225.61	125.62	nz	250	250	62		82	- 4	60
-		0.10		227.05	227.05	123	250	749	62		82	-4	60
-	152.5			228.48	228.46	123	280	249	62		. 82	-4	60
	155 157.5	110	0.90		231.30	123	250	244	62		82	-4	60
-	160	1.10	0.90	231.30	232.73	163	230	249	62		86	-4	60
-	160		100	036.13	(12.7)								
-													
			-										
-										-			
-													
-						-							
-						-							
-	-	7											

Pretest Leak Check	Rate (cfm)	at	-	vacuum ("Hg
Posttest Leak Check	Rate (cfm) 40.0	Z at -	12	vacuum ("Ha

Leak Vol. End	-
Leak Vol. End	232.8

M26 Sampling

Project #:	roject #: 2202865 Client: Stericycle						Console ID: Vost B			
Date: 06	5/15-171	12021	Test:	~ 3		Console Y: 1.004				
Sample L	Sample Location: Incinerator Filter I.D.: N/A						Operator :			
	Orifice	Meter	I Me	Meter (く) Vacuum			Probe	Condensor	Sampling	
Time	Press	Volume	Te	mp (42)	Vacuum	Filter Box Temp	Temp		Rate	
(min)	("H ₂ O)	(L)	Inlet	Outlet	(in Hg)	(°F)	(°F)	Temp (MG)	(L/min)	
Test 1 St	art Time =		111100	Odilot		(,)		Leak Check:		
	20	0.00	75	75	-2	NIA	NIA	1		
5	2.0	5.31	25	25	-2	NIA	NIA	1	1.1	
10	7.0	9.89	25	25	-2	NIA	NIL	7	0.9	
15	7.0	14.92	25	25	-2	NIA	NIA	7	1.0	
20	7.17	20-11	75	25	-2	NIA	NIA	1 1	1.0	
25	2.0	25.05	25	25	-ر	NIA	NIA	7	1.0	
30	7.0	30.06	25	25	-2	NIA	NIA	1	1.0	
35	2.0	35.11	24	٦ς	-2	NIH	NIA	7	1.0	
40	7.0	40.13	25	રડ	-2	N14	NIA	7	1.0	
45	2.0	45-13	75	25	- 2	NI	NIA	1	1.0	
50	2.0	50.09	55	25	-2	NA	NIA	7	1.0	
55	2.0	55-04	25	25	- 2	NIA	NIA	7	1.0	
60	2.0	60.05	75	25	-1	NIA	NIX	7	1.0	
Test 1 En	nd Time =	10:20 AM						Leak Check:	V	
Test 2 Sta	art Time =							Leak Check:	7	
0	2.0	0.00	30	30	-1	NIA	NIA	0	-	
5	7-0	5-09	30	30	-1	NIA	NIA	d	1.0	
10	7-0	10.11	30	30	-1	NIA	NIA	ď	(.0	
15	2.0	15.20	30	30	-(NIA	NIA	9	1.0	
20	2.0	19.99	30	30	-(NIH	NIA	o	1.0	
25	2.0	24.89	30	30	-1	NIA	VIA	d	1.0	
30	2.0	30 · of	30	30	-1	VIA	NIA	Ì	(.0	
35	2.0	36.11	30	30	-(NIA	NIA	ģ	1.0	
40	2.0	40.12	30	30	-2	NIA	NIA	q	1.0	
45	2.0	45.20	30	30	-2	NIA	NIA	9	1.0	
50	2.0	50.13	30	30	٠٦	NIA	NIA	q q	1.0	
55	2.0	55.13	30	30	-1	NIA	NIA	Q	1.0	
60	2.0	60.13	30	30	٠٦	NIA	NIA	q	(.0	
Test 2 En	id Time =	10:00AM						eak Check:	1	
Test 3 Sta	art Time =						1	_eak Check:		
0		0.00	25	75	- 3	N /A	NIA	Q	-	
5	7.5	5.13	25	24	-3	NIA	NIA	a	1.0	
10	25	10.18	75	25	- 3	NIA	NIA	1	1.0	
15	2.5	15.19	75	25	-3	NIA	NIA	C C	1.0	
20	2.5	10.04	でく	25	-3	NIA	NIA	ļ ģ	1.0	
25	7.5	24.98	25	25	-3	NIA	NIA	q	1.0	
30	1.5	30.09	2ς	75	-3	NIA	MA	q	1.0	
35	7.5	35.00	25	25	-3	VIA	NIA	9	(.0	
40	2.5	40.08	25	25	-3	v14	NIA	(0	1.0	
45	25	74.91	25	25	-3	NIA	NIA	10	1.0	
50	7 4	49.93	75	25	-3	NA	NIA	10	1.0	
55	2,5	\$3.18	25	25	-3	NIA	NIA	10	1.1	
60	2,5	60.096	25	25	-3	NIA	NIA	10	11.0	
Test 3 En	d Time =	9:40 AM						₋eak Check:		

VOST Sampling

Project #				Stericycle		Console ID: VOST B				
		1/2022		11⇒T3	3		Console Y: 1.004			
Sample L	ocation:	Incinerator	Filter I.D.			Operator: Mos /oo				
Time	Orifice	Meter	M	leter 9C	Vacuum	Filter Box	Probe	Condensor	Sampling	
(min)	Press	Volume	Te	emp	THE PROPERTY OF THE PARTY OF TH	Temp	Temp	Temp	Rate	
(min)	("H ₂ O)	(L)	Inlet	Outlet	(in Hg)	(°F)	(°F)	(°F)	(L/min)	
	art Time							Leak Check:		
0	0.60	Ø	25	25	De la companya della companya della companya de la companya della	1		43	0.33	
5		1.66	25	25	-3			43	1	
10		3.30	25	26	-2	-		43		
15	100	5.00	25	25	-3			44		
20		6-54	25	25	-2			44		
25		8.19	25	25	-3	100		44		
30		10.02	25	25	-2		I B	94		
35		17.23	25	25	-3			43		
40			25	26.	-2			43	7 TY	
45		1465	25	25	-3			43		
50		16.52	26	25	-3			13		
55	V	18.19	25	26	-2			13	V	
60		10 880	-	_		,				
est 1 En	nd Time :	= 11:30						Leak Check:		
est 2 Sta	art Time	= 10:05 (h	1					Leak Check:	/	
0	0.60	Ø	30	30	.3			55	-	
5		1.56	4	1	-3			55	0.317	
10		3.24		170	-3			55	6.336	
15		4.99			-3			55	0.350	
20		6.50			-3		J-37	55	0.302	
25		8.23			-3			55	0.346	
30		10.05			-3			55	0.364	
35		11.56			-3			55	0-302	
40		13.25			-3			55	0.338	
45		14.90			-3			55	0.330	
50		16.50			-3		1-14	55	0.370	
55		18.18			-3			55	0.336	
60	4	19.62	-4		149-3				0.288	
st 2 En	d Time =	= 11:05/M						Leak Check:		
	art Time		4.1					Leak Check:		
0		A A	13	75	-2 1					
5	0.00	1.59	u	75	-2	1	1	SU	0.3(8	
10		3.22	75		-2	1	1	Sy	0.326	
15			25	25	-2	-	1	SU	0.364	
20		5-04	25		-2	_		54	0.302	
25		8.29	25	75	-2	1			0.348	
30			25	75	-2	1	1	55	0.342	
35		10.00	25	25	-2		-	55	0.320	
40		11.60		25				55	0.36	
45		13.18	25	2	-2		\	55	0.344	
50		14.90	75	25	-2	1	1	\$5	0.340	
55	-		25	25			1	51	0.322	
	V	19.75	75	3	-2		1	57	0.329	
60	-								19	

CARB430 Sampling

Project #: 2202865	Client: Stericycle	Console ID: Vosi B
Date: 5 me 15,2022	Test:	Console Y: 1.004
Sample Location: Incinerator	Filter I.D.: N/A	Operator: Mos

(min) Press Volume Temp (%) Vacuum Temp Temp Temp	Sampling Rate	·
(H_2O) (L) Inlet Outlet (H_2O) ((F) (F)	(L/min)	a «
Test Start Time = [1:43 Leak Check:	7	
0 0.10 0.0 25 25 8 1 55	0.33	`
5 1 1.66 25 26 6 \ 55	0.32	\
10 3.25 25 25 26 8	0.35	\
15 S.00 25 24 14 \ S5 6	0.33	
20 6.67 25 & 55 6	0.32	
25 8.25 25 25 26 56 6	0.33	
30 9.92 25 24 & \ 55	0,33	
	0.34	/
	0.33	1 111
45	0.32	A11
50 (6.5) 25 25 10 55 6	0.33	(Shift
55 18.17 26 26 8 56 6	0.35	>1 down
60 19.82 76 76 8 56	0.34	(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
65 76 76 76 76	0.33	\
70 73.15 76 71 & 56 8	0,33	\
75 24.80 26 26 8 56 0	0.32	
80 76.41 76 26 8	0.33	
85 26.05 26 26 8 56 0	0.33	
90 20,10 26 26 & \ \ \$6	0.33	
95 31.35 76 76 8	0.35	
100 33.12 16 76 16 17	0.31	/
105 34.12 21 21 6	0.33	/
	0.37	/
115 37,99 27 21 & \\ \\ \\ \\ \\	0.41	1
120 W 40.04 27 27 & ST		
Test End Time = (3), 43 Leak Check:	✓	

CARB430 Sampling

Project #: 2202865	Client: Stericycle	Console ID: VOST B
Date: Jue 16,202	Test: 2	Console Y: [.004
Sample Location: Incinerator	Filter I.D.: N/A	Operator: Mo5

Time	Orifice	Meter	Me	eter (CC)	Vacuum	Filter Box	Probe	Condensor	Sampling			
(min)	Press	Volume			(in Hg)	Temp	Temp	Temp	Rate			
, ,	("H ₂ O)	(L)	Inlet	Outlet	\	(°F)	(°F)	(°F)	(L/min)			
	Test Start Time = 4:06 Leak Check: ✓											
0	0.70	0.00	30	30	-&	\		60				
5		1.59	30	30		\	<u> </u>	60	0.37			
10		3.25	30	30	88		<u> </u>	60	<i>ω</i> .33			
15		4.96	30	30			1	60	0.35			
20		6.67	30	30	84	1	<u> </u>	60	0,34			
25		8,2(30	30	bs.			60	0.31			
30		9.85	30	30	& .			68	0.33			
35		11.55	30	30	80		<u> </u>	60	0.34			
40		13.2(30	30	Q			60	0.33			
45		14.82	30	30	ki.			60	0.32			
50		(6.40	30	30	&			60	0.32			
55		13 - 81	30	30	K			60	16.00			
60		19,79	70	30	be be			60	0.34			
65		21.46	29	70	82			16	0.33			
70		23.15	Jd	Σģ	بخ			61	0,31			
75		24.78	29	29	.			61	0.33			
80		26.43	74	79	'X	\		61	0.37			
85		78.03	20	20	كغز			61	0.32			
90		79,97	29	26	×	\	\	61	0.35			
95		3(.35	21	29	Z/Z	1			0.35			
100		33-10	24	29	×		\	61	0,35			
105		34,65	29	29	Ø			61	0.31			
110	1	36-32	30	30				62	ወ.37			
115		37.05	30	30	BB	1		62	0.33			
120	V	40.57	30	30	by.	Ì		62	0.52			
							ì	-				
Test End	Time =	16:06						Leak Check:				

CARB430 Sampling

Project #: 2202865	Client: Stericycle	Console ID: Vost B
Date: Jue 17, 2022	Test: 3	Console Y: 1.004
Sample Location: Incinerator	Filter I.D.: N/A	Operator: Mø5

Control Location in the Control of t							1-10)			
Time	Orifice Press	Meter Volume	Me Te	eter (OC)	Vacuum	Filter Box Temp	Probe Temp	Condensor Temp	Sampling Rate	
(min)	("H ₂ O)	(L)	Inlet	Outlet	(in Hg)	(°F)	(°F)	(°F)	(L/min)	
Test Star			1 111100	Outlot		<u> </u>		Leak Check:		
0	0.70	N-O	75	25	ν.	li .	4	58	-	
5	1	1.59	25	25	X &		 	58	0.32	
10		3,35	25	25	Ŕ		†	50	0.35	
15		5.00	75 75 74	25	v			5g 5g	0.33	
20		6.67	25	75	8	 		59	0.33	
25		8,33	75	75	SQ.				0.33	
30		9.95	25	ις	×			\$8 \$8	0.32	
35		11.56	75	75				50	0.32	
40		13.75	75	75	R R			\$8 \$8	0/34	
45	i	13.25	24	٦٢				Sõ	0.33	
50		16.59	25	74	220			5g 5g	0.34	
55		18.26	25	75	8			59	0,33	
60		(9.85	25	25	X			59	0.32	
65		21-46	રિં	પ્				59	0.37	
70		23.11	75	25	& &		l l	পে	0,33	
75		24.75	76	26	لا			59	0.33	
80		26:45	70	26	ki.			59 59	0.34	
85		28.06	76	76	k.		1	59	0.32	
90		29,76	26	27	8			54	0.34	
95		31,40	26	26	હે			59	0,33	
100		33.08	26	26	&			59	0.31	
105		34.66	26	26	K.			Go	0,32	
110		36.30	77	27	Ø		\	60	0.33	
115		36.30	27	27	Ø.	\	L \	60	0.34	
120	V	40.03	21	27	6	\		60	0.41	
Test End	Test End Time = ₹3.00 Leak Check: ✓									

CONTINUOUS EMISSION MONITORING LATA SYSTEM CALIBRATION AND DRIFT CALIBRATION

Client:	Starock			Date		22	
Project Number:	7202865		1	Start Time			
Sample Location:	Thamast	8		Finish Time	16:45		
	100					-	Leak Check 2
	15 2		20	210	1	/	
	O ₂	CO ₂	CO	NO _x	SO ₂	THC	Line Temp 20° P
	7.52		10	105	1		Filter Temp 25
Range			-	1 3	1		Chiller Temp 45°
TIME		1					-
Direct Zero	0.00		0.32-	0.03			-
Mid. Span	7.53	1	10 18	106.18			-
High Span	4.97		1	212-63			-
TETI TIME RIPORT	HIV		120.07	414.73			-
System Zero	0.04		0.53	003			-
Span	7.49		10.27	105.62			
TI TIME 9:1500	- 9:4600		10.2/	101.00			
Zero	0.09		0.27	0.09			
Span	7.68		10.28	105-67			
17 TIME 9:49 om	10:18 wm		1	1		1	
Zero	0.08		0.29	0.08			
Span	7.57		10.21	105.37			
73 TIME 10 230	~ 10: 17 wa			1-			
Zero	0.20		81.0	0.79	V		1
Span	7,47		10.26	104.17	Λ		
14 TIME 11050	-11-23		, , ,				
Zero	0.20		0.27	0.21			
Span	7.49		10.18	104,03			
TS TIME VI. 37	- 12:06						
Zero	0.19		0.21	0.27		1	
Span	7.52		10.13	105.18			
TO TIME 12:10	- 12-39				-		
Zero	0-15		0-20	0-21			
Span	7.53		10,14	106-10			
TIME 12:49	-13-12						2
Zeró	11.0		0.21	0.23			
Span	753		10-17	106.79	The state of the s		4
T8 TIME 13:24	- 13:50			,			
Zeio	9.69		0.20	0.21			4
Span Span	1.48		10.11	106.58		_	2
I HAIT	15:44		1 0 10			1	4
Zero	0.12		0.18	-0.51		-	4
Span TIME V	7.47		10.18	103.69			-
TIME 14:50-	15:19		211	0.00			-
Span	011		0.17	-0.38			-
TIME IC.24	7.69		10.21	103.72			-
TIME C24	15 53		0 10	-0.28			-
Span	7.68		0.19				-
TIME ICO	16:25		10.17	124-19		1	1
Zero	16.25		0-2	-0.29		1	
Span	9.49		10.19	104-29		1	
rift Criterion: <3% of Span			Bias Criterion	: <5% of Spar			Line Temp 250°P Filter Temp 250°P
		NO reading		NO _x reading	> 90%		Filter Town 2009
Converter Check	1102 value	reading	The Internal	NO _X reading	× 3070		Chilles Terror
				20 (1)			Chiller Temp 44
Response Time (sec)			Natar	And delical	NoxIsoz		
response time (sec)	30		Notes:	the ball	1404/10	(Carro	

CONTINUOUS EMISSION MONITORING SYSTEM CALIBRATION AND DRIFT CALIBRATION

Client	Steriencle			Date:	06/16	12022	7
Project Number:	2202865			Start Time:	8:34		
Sample Location:	Fruherat	of .		Finish Time:	16:30		
	16	17 02	20	210	212.32	50	Leak Check
	15	17.97	20	210		1000	Line Temp 250
	02	CO ₂	co	NO _x	SO ₂	THC	Filter Temp 200
	7.5	8.98	10	105	104.16	25 10	Chiller Temp 42°C
Range	25	30	60	(000	1000	100	
TIME 8:34							
Direct Zero		0.04	0.12	0.29	0.97	0.30	
Mid. Span High Span	2.43	8.85	19.88	(04.77	210.98	24.76	
TIME	IA.D.	18.12	19.00	211.20	-10.10	24.14	1
System Zero	0.07	0.00	0.29	.0.40	0.95	.0.31	
Span	15.14	17.90	20.09	104.95	106.09	25.13	
	- 11:35]
	0.11	0.00	0.46	0.38	(-00	0.40	1
	14.96	18.04	19.79	104.83	104.33	24.99	1
12 TIME 14:10	-16:09	0.06	0.33	0.38	1.02	0.36	-
	14.79	18:10	19.85	104.72	104.42	24.81	1
TIME	13.1	10.10		, , , , , ,	10.41	1.01	1
Zero							
Span							
TIME							4
Zero Span							
TIME							1
Zero							1
Span							
TIME]
Zero							4
Span TIME							-
Zero							-
Span							1
TIME							
Zero						1	
Span							-
TIME Zero							-
Span		1,-		-	9.		
TIME							
Zero			11				
Span							
TIME		1					-
Zero Span							-
TIME						L	
Zero					16		
Span							200
Orift Criterion: <3% of Spa				<5% of Span			Line Temp 100
Converter Check	NO ₂ Value	MQ reading	NO ₂ Reading	NO _x reading	~ 10% C		Line Temp 250 Filter Temp 250 Chiller Temp 400
Response Time (sec)	30]	Notes: Amet	rek NOx/9	502 combo		
			DICK	law CO			

CONTINUOUS EMISSION MONITORING SYSTEM CALIBRATION AND DRIFT CALIBRATION

	Zero Span Zero Zero Zero	150 02 75 25 150 17 150 17 150 07 150 02 009 150 2 7HC)	17-97 CO2 8-93 30 5-62 8-84 17-87 17-23 17-23 17-49	25 50 10 60 909 909 909 2005 0021 20039 900 100 100 100 100 100 100 10	Start Time: Finish Time: 210 NOx 125 Low 104.21 208.69 -0.32 104.21 -0.49 10.4-56	8:30 16:45 212:32 SO2 15:16 15:34 212:22 -010 104:89 -0:04 104:73	1015498 0.04 25.08	25.13 25.24	<u></u>
Range TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME	Zero Span Zero Zero	150 02 75 25 25 25 15.17 0.17 15.07 0.09 15.02 0.09 16.02 16.02	17-97 CO2 8-93 30 5-62 8-84 17-87 0-03 17-23 17-49	00 00 00 00 00 00 00 00 00 00 00 00 00	215 NOx 125 130 -0.28 104.21 208.69 -0.32 104.27	16:45 212:32 502 15:16 15:24 212:2 -010 104:89 -0:04	THC 23 10 10 28 10 25 08 10 0 0 1	Line Temp 230 Filter Temp 239 Chiller Temp 22	<u></u>
TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME	Zero Span	15-0 0 ₂ 7-5 25 15-17 15-17 15-07 15-02 0-09 15-02 16-02 16-02 16-02 16-02 16-03 16-	17-97 CO2 8-93 30 6-62 8-84 17-87 0-03 17-23 17-23	00 00 00 00 00 00 00 00 00 00 00 00 00	NO _x [25 [50] [50] [50] [50] [50] [50] [50] [50	212.32 502 15/16 1503 105.24 212.2 -010 104.89	THC 23 10 10 28 10 25 08 10 0 0 1	Line Temp 230 Filter Temp 239 Chiller Temp 22	<u></u>
TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIM	Zero Span	02 75 25 25 7.64 15.17 15.07 130 0.09 15.02 16.02 16.02 16.02	502 8-93 30 8-84 17-87 0-0-3 17-23 0-0-3 17-23	00 00 00 00 00 00 00 00 00 00 00 00 00	NO _x [25 [50] [50] [50] [50] [50] [50] [50] [50	50 ₂ 10/11 100 105:24 212:2 -010 104:89	THC 23 10 10 28 10 25 08 10 0 0 1	Line Temp 230 Filter Temp 239 Chiller Temp 22	<u></u>
TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIM	Zero Span	75 25 25 7.64 15.17 0.17 15.07 0.09 15.02 0.09 16.02 THC -	502 8-93 30 8-84 17-87 0-0-3 17-23 0-0-3 17-23	00 00 00 00 00 00 00 00 00 00 00 00 00	NO _x [25 [50] [50] [50] [50] [50] [50] [50] [50	50 ₂ 10/11 100 105:24 212:2 -010 104:89	THC 23 10 10 28 10 25 08 10 0 0 1	Filter Temp <u>23°</u> Chiller Temp <u>2 3°</u> 25.13	C
TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIM	Zero Span	75 25 25 7.64 15.17 0.17 15.07 0.09 15.02 0.09 16.02 THC -	8-93 30 8-84 17-87 0-03 17-23 0-03 17-49	0.09 7.97 20.05 0.21 20.39	125 1500 104.21 208.69 -0.32 104.27	10/16 105.24 212.2 -010 104.89	0, 28 9, 56 25, 20 49,81 2,17 20,17 20,17 20,17 20,07	Filter Temp <u>23°</u> Chiller Temp <u>2 3°</u> 25.13	C
TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIM	Zero Span	0.00 7.64 15.17 0.17 15.07 0.09 15.02 0.09 16.02 16.02 16.02	8.84 17.87 0.03 17.23 0.03 17.49	0.09 9.97 20.05 0.21 20.39	-0.28 104.21 208.69 -0.32 104.27	1503 105:24 212:2 -010 104:89	100 549 10 10 10 10 10 10 10 10 10 10 10 10 10	Chiller Temp 2 2°	C.
TIME 8 Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIM	Zero Span	0.00 7.64 15.17 0.17 15.07 0.09 15.02 0.09 16.02 16.02 16.02	8.84 17.87 0.03 17.23 0.03 17.49	0.09 9.97 20.05 0.21 20.39	-0:28 104:21 208:69 -0:32 104:27	1503 105:24 212:2 -010 104:89	0,28 9,56 25,20 49.81 0.17 marstr 2 0,11 unima 2	25.13 25.24	
Direct Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIME TIME	Zero Span	7.64 15.17 15.07 13.0 0.09 15.02 0.09 16.02 16.02 16.02	8-84 17-87 0-03 17-23 17-49	0.21 20.39	104.21 208.69 -0.32 104.27	-1.03 LOS.24 212.2 -010 104.89	0,28 9,56 25,20 49.81 0.17 marstr 2 0,11 unima 2	25.24	ax,'di
Mid High TIME System TIME TIME TIME TIME TIME TIME TIME TIM	Zero Span	7.64 15.17 15.07 13.0 0.09 15.02 0.09 16.02 16.02 16.02	8-84 17-87 0-03 17-23 17-49	0.21 20.39	104.21 208.69 -0.32 104.27	105.24 212.2 -010 104.89	9.56 25.20 49.81 2.17 50024 2.17 50024 2.10 10(5490 0.04 25:08	25.24	ax,'di
TIME TIME System TIME TIME TIME TIME TIME TIME TIME TIME	Zero Span	0.17 15.07 130 0.09 15.02 0.09 16.02 THC) - 0.13	17-87 0-03 17-23 0-03 17-49	0.21 20.39	104.21 208.69 -0.32 104.27	105.24 212.2 -010 104.89	9.56 25.20 49.81 2.17 50024 2.17 50024 2.10 10(5490 0.04 25:08	25.24	ax,'di
TIME System TIME TIME	Zero Span Zero Span Zero Span Zero Span Zero Span Zero Span Zero Span Zero Span Zero	0.17 15.07 130 0.09 15.02 0.09 16.02 THC) - 0.13	0.03	20.39	-0.32 104.27	-010 104.89 -0.04	10:54an 0.07	25.24	ax,'di
System 3, WB TIME 9:	Zero Span Zero Span Zero Span Zero Span Zero Span Zero Span Zero Zero Span Zero Span Zero	15.07 0.09 15.02 0.09 16.02 THC -	17-23	20.39	-0.49	104.89 - 0.04	10:54an 0.07	25.24	ax,'di
TIME III	Zero Span Zero Span Zero Span Zero Span Zero Span Zero Span Zero Zero Span Zero Span Zero	15.07 0.09 15.02 0.09 16.02 THC -	17-23	20.39	-0.49	104.89 - 0.04	101549M 0.04 25:08	25.24	ox,'di
TIME TIME TIME II: TI TIME IC	Zero Span Zero Span Zero Span Zero Span Jos (Zero Span Jos (Zero	0:09 15:02 0:09 16:02 THC -	17-49	0.13	-0.49	-0.04	101549M 0.04 25:08	25.24	ox,'di
TIME TIME TIME II: TI TIME IC	Zero Span Zero Span Zero Span Span Zero Span Job (0.09 15.02 0.09 16.02 7HC - 0.13	17-49	99.94		104.73	1015498 0.04 25.08		ox,'di
TIME II:	Zero Span Zero Span 50 (Zero Span 2!0 (Zero	0.09 16.02 7HC - 0.13	17-49	99.94		104.73	1015498 0.04 25.08		0x,di
TIME II:	Zero Span Zero Span So (Zero Span Jo) (Zero	0.09 16.02 THC - 0.13	14:40	49.94	10 4-56	104.73	101549M 0,04 25.08		0x,di
TIME II:	Zero Span Spo (Zero Span Joy (Zero	16.02 THC) - 0.13	14:40			~~ ~~	0.04	Secondary	Ox,di
TI TIME I	Zero Span Spo (Zero Span Joy (Zero	16.02 THC) - 0.13	14:40			~	0.04	Secondary	0x,di
TI TIME I	Zero Span SO (Zero Span Jo) (Zero	16.02 THC) - 0.13	14:40		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~	0.04	- Selviday	Oxidi
TI TIME I	Span Sero Span Span Zero Zero	16.02 THC) - 0.13	14:40			~	0.04	a - Secondary	GX, ai
TI TIME (Ç	Span Sero Span Span Zero Zero	16.02 THC) - 0.13	14:40		√		25.08		
TI TIME (Ç	Zero Span Lov Zero	THC) - 0.13	14:40			M	0.07		
TI TIME (Ç	Zero Span !o/ Zero	0.13	in	~		m	0.07	-	
	Span Lov (Zero	15.14	-1627	~		M	0.01		
1	Zero	Oxygen	-1627					-	
	2010	1027500					25.11	4	
TIME	2010	100	10:23					4	
TIME	Span							-	
THVIL	Opan					- 1		-	
	Zero		1					4	
	Span							+	
TIME	Opan							-	
(JIVIL	Zero		T					4	
	Span			794 3.6		-		4	
TIME									
7,11112	Zero			0 0				4	
	Span							4	
TIME								1	
	Zero	- 11							
	Span							1	
TIME		-0						1	
	Zero							1	
	Span							1	
TIME								1	
	Zero							1	
	Span							1	
TIME								1	
	Zero			7					
	Span	1	L.					2~	
Drift Criterion: <3%	of Span				<5% of Span	^		Line Temp 250	
Comus de Ol		NO2 Value	NQ reading	NO Reading		×90%		Filter Temp 250 Chiller Temp 42°0	
Converter Chec	K.	VVV	1					Chiller Temp(2 0)	-

APPENDIX J

SAMPLE#:	Method Blank			
Field ID#:	Method Blank			
Number of TICs found:	00	Concentra ug	tion Units	
CAS#	Compound Name	RT	Est. Conc.	Match %
1.	1,3-Butadiene < 0.05ug			
2.	Cumene < 0.05ug			
3.	1,3,5-Trimethylbenzene < 0.05 ug			
4	Trichlorotrifluoroethane < 0.05ug			

	SAMPLE#:	SYG207			
	Field ID#:	M0030-BLANK-#6A/B			
Numb	er of TICs found:	0	Concentra ug	ntion Units	
	CAS#	Compound Name	RT	Est. Conc.	Match %
1.		1,3-Butadiene < 0.05ug			
2.		Cumene < 0.05ug			
3.		1,3,5-Trimethylbenzene < 0.05 ug			
4.		Trichlorotrifluoroethane < 0.05ug			

	SAMPLE#:	SYG208			
	Field ID#:	M0030-T1-#3A/B			
Numb	er of TICs found:	1	Concentra ug	ation Units	
	CAS#	Compound Name	RT	Est. Conc.	Match %
1.		1,3-Butadiene < 0.05ug			
2.		Cumene < 0.05ug			
3.		1,3,5-Trimethylbenzene < 0.05 ug			
4.		Trichlorotrifluoroethane < 0.05ug			

SAMPLE#:	SYG209			
Field ID#:	M0030-T2-#1A/B			
Number of TICs found	:1	Concentra ug	tion Units	
CAS#	Compound Name	RT	Est. Conc.	Match %
1.	1,3-Butadiene < 0.05ug			
2.	Cumene < 0.05ug			
3.	1,3,5-Trimethylbenzene < 0.05 ug			
4.	Trichlorotrifluoroethane < 0.05ug			

S	AMPLE#:	SYG210			
	Field ID#:	M0030-T3-#2A/B			
Number of	TICs found:	1	Concentra ug	tion Units	
	CAS#	Compound Name	RT	Est. Conc.	Match %
1.		1,3-Butadiene < 0.05ug			
2.		Cumene < 0.05ug			
3.		1,3,5-Trimethylbenzene < 0.05 ug			
4.		Trichlorotrifluoroethane < 0.05ug			

Your P.O. #: 2202865 Your Project #: 2202865 Site Location: STERICYCLE Your C.O.C. #: 34346

Attention: Kirk Easto

RWDI Air Inc 600 Southgate Drive Guelph, ON CANADA N1G 4P6

Report Date: 2022/07/06

Report #: R7199081 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2G9381 Received: 2022/06/17, 17:55

Sample Matrix: Stack Sampling Train

Samples Received: 17

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Aldehydes + Ketones in Air	4	2022/06/23	2022/06/24	BRL SOP-00229	CARB 430 / Ashland
Halogens in Midget NaOH Imp.	4	2022/06/27	2022/06/27	BRL SOP-00108	EPA 26 m
Mercury 3C in HCl Rinse	4	2022/06/24	2022/06/28	BRL SOP-00104	EPA M29/M0060 m
Mercury 2B in HNO3/H2O2 Imp.	4	2022/06/22	2022/06/23	BRL SOP-00104	EPA M29/M0060 m
Mercury 3A in HNO3 Rinse	4	2022/06/22	2022/06/23	BRL SOP-00104	EPA M29/M0060 m
Mercury 3B in KMnO4/H2SO4 Imp.	4	2022/06/22	2002/06/23	BRL SOP-00104	EPA M29/M0060 m
Mercury 1B in Filter (Nitric Acid) (M29)	4	2022/06/29	2022/07/04	BRL SOP-00104	EPA Method 29 m
Mercury 1B in Filter (HF) (M29)	4	2022/06/30	2022/07/04	BRL SOP-00104	EPA Method 29 m
Hydrogen Halides -Midget H2SO4 Imp	5	2022/06/22	2022/06/22	BRL SOP-00108	EPA 26 m
Metals B.H. in H2O2/HNO3 Imp.(6010C)	4	2022/06/27	2022/06/29	CAM SOP-00408 / BRL -00102	SOPEPA 6010D/M29 m
Vietals F.H Nitric Acid Extractable	4	2022/06/29	2022/07/06	CAM SOP-00408 / BRL -00102	SOPEPA 6010D/M29 m
Metals F.H HF Total	4	2022/06/30	2022/07/06	CAM SOP-00408 / BRL -00102	SOPEPA 6010D/M29 m
Metals B.H. in H2O2/HNO3 Imp.(6020B m)	4	2022/06/27	2022/06/29	BRL SOP-00103 / BRL S 00102	OP- EPA M29/CARB 436 m
Metals on Filter - HNO3 Extractable	4	2022/06/29	2022/06/30	BRL SOP-00103 / BRL S 00102	OP- EPA 6020B/M29 m
Metals on Filter - HF Total	4	2022/06/30	2022/06/30	BRL SOP-00103 / BRL S 00102	OP- EPA 6020B/M29 m
Ammonium in Midget H2SO4 Imp(CTM-027mod)	5	2022/06/23	2022/06/23	BRL SOP-00107	EPA CTM-027 m
Particulates/Acetone Rinse (M5/315/M201)	4	2022/06/27	2022/06/24	BRL SOP-00109	EPA 5/315 m
Particulates/Filter (M5/315/NJATM1/M201)	4	N/A	2022/06/23	BRL SOP-00109	EPA 5/315/NJATM1 m
Final Volume of Acetone Probe Rinse	4	N/A	2022/06/22	BRL SOP-00109	
/olume of Sulfuric Acid Impinger	5	N/A	2022/06/22		
Volume of Sodium Hydroxide Impinger	4	N/A	2022/06/27		

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Your P.O. #: 2202865 Your Project #: 2202865 Site Location: STERICYCLE

Your C.O.C. #: 34346

Attention: Kirk Easto

RWDI Air Inc 600 Southgate Drive Guelph, ON CANADA N1G 4P6

Report Date: 2022/07/06

Report #: R7199081 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2G9381

Received: 2022/06/17, 17:55

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, CET LEAD-Air Toxics, Source Evaluation

Email: Clayton.Johnson@bureauveritas.com

Phone# (905)817-5769

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 31

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG273		SYH388		SYG274		
Sampling Date		2022/06/17		2022/06/17		2022/06/17		
COC Number		34346		34346		34346		
	UNITS	M26 - H2SO4 BLANK	RDL	M26- H20 BLANK	RDL	M26 - T1 - H2SO4	RDL	QC Batch
Sulfuric Acid Volume	ml	120	1	186	1	126	1	8067799
Ammonium (NH4)	ug	ND	6.0	ND	9.3	9.5	6.3	8070468
Hudus ald a de Asial		41	30	33	30	270	30	8067823
Hydrochloric Acid	ug	41	30	ວ	30	270	30	8007823

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas ID		SYG275		SYG276		
Sampling Date		2022/06/17		2022/06/17		
COC Number		34346		34346		
	UNITS	M26 - T2 - H2SO4	RDL	M26 - T3 - H2SO4	RDL	QC Batch
Sulfuric Acid Volume	ml	139	1	118	1	8067799
Ammonium (NH4)	ug	44	7.0	42	5.9	8070468
Hydrochloric Acid	ug	240	30	360	30	8067823
Hydrofluoric Acid	ug	ND	30	79	30	8067823

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas ID		SYG277		SYG278	SYG279		
Sampling Date		2022/06/17		2022/06/17	2022/06/17		
COC Number		34346		34346	34346		
	UNITS	M26 - NAOH BLANK	RDL	M26 - T1 - NAOH	M26 - T2 - NAOH	RDL	QC Batch
Sodium Hydroxide Volume	ml	118	1	103	110	1	8076962
Chlorine	ug	ND	180	ND	ND	360	8076971

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG280			SYG281	SYG283		
Sampling Date		2022/06/17			2022/06/17	2022/06/17		
COC Number		34346			34346	34346		
	UNITS	M26 - T3 - NAOH	RDL	QC Batch	M5/M29 - BLANK	M5/M29 - T1	RDL	QC Batch
Acetone Rinse Particulate Weight in Acetone Rinse	mg				0.8	5.4	0.5	8077489
Front Half Particulate Weight on Filter	mg				0.80	10.9	0.30	8077483
Acetone Rinse Volume	ml				74	160	1	8077498
Sodium Hydroxide Volume	ml	104	1	8076962				
Chlorine	ug	ND	360	8076971				
Fluorine	ug	ND	240	8076971				

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas ID		SYG284	SYG285		
Sampling Date		2022/06/17	2022/06/17		
COC Number		34346	34346		
	UNITS	M5/M29 - T2	M5/M29 - T3	RDL	QC Batch
		12	13		
Acetone Rinse Particulate Weight in Acetone Rinse	mg	5.5	8.0	0.5	8077489
Front Half Particulate Weight on Filter	mg	20.8	19.8	0.30	8077483
Acetone Rinse Volume	ml	140	120	_	8077498

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Report Date: 2022/07/06

RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

MERCURY BY COLD VAPOUR AA (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG281		SYG283		SYG284		SYG285		
Sampling Date		2022/06/17		2022/06/17		2022/06/17		2022/06/17		
COC Number		34346		34346		34346		34346		
	UNITS	M5/M29 - BLANK	RDL	M5/M29 - T1	RDL	M5/M29 - T2	RDL	M5/M29 - T3	RDL	QC Batch
1B (HF) Mercury (Hg)	ug	ND	0.03	0.09	0.03	0.12	0.03	0.25	0.03	8084197
1B (Nitric) Mercury (Hg)	ug	ND	0.015	5.55	0.15	13.7	0.3	23.9	0.3	8082544
2B Mercury (Hg)	ug	ND	0.15	23.8	0.22	35.0	0.32	14.2	0.28	8067839
3A Mercury (Hg)	ug	ND	0.005	0.189	0.0051	0.172	0.0045	0.0818	0.0053	8067831
3B Mercury (Hg)	ug	ND	0.02	0.059	0.028	0.59	0.03	0.527	0.028	8067614
3C Mercury (Hg)	ug	ND	0.13	10.6	0.13	14.8	0.13	5.18	0.13	8073000

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

ELEMENTS BY ICP-AES (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG281	SYG283	SYG284	SYG285		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	UNITS	M5/M29 - BLANK	M5/M29 - T1	M5/M29 - T2	M5/M29 - T3	RDL	QC Batch
Front Half (HF) Aluminum (Al)	ug	119	175	141	158	30	8084198
Front Half (Nitric) Aluminum (Al)	ug	ND	36	73	71	15	8082548
Front Half (HF) Calcium (Ca)	ug	ND	ND	ND	ND	120	8084198
Front Half (Nitric) Calcium (Ca)	ug	67	842	335	480	30	8082548
Front Half (HF) Iron (Fe)	ug	22	62	41	69	12	8084198
Front Half (Nitric) Iron (Fe)	ug	7.4	84.5	110	172	6.0	8082548
Front Half (HF) Lithium (Li)	ug	ND	ND	ND	ND	6.0	8084198
Front Half (Nitric) Lithium (Li)	ug	ND	4.6	5.4	5.2	3.0	8082548
Front Half (HF) Magnesium (Mg)	ug	ND	ND	ND	ND	40	8084198
Front Half (Nitric) Magnesium (Mg)	ug	ND	61	43	67	20	8082548
Front Half (Nitric) Silicon (Si)	ug	67	212	169	295	30	8082548
Front Half (HF) Sodium (Na)	ug	ND	96	66	74	60	8084198
Front Half (Nitric) Sodium (Na)	ug	315	3860	4740	4650	30	8082548
Back Half Aluminum (Al)	ug	8.0	43.6	39.0	18.6	7.5	8077484
Back Half Calcium (Ca)	ug	82	1350	591	377	30	8077484
Back Half Iron (Fe)	ug	12.9	36.5	51.6	80.6	3.0	8077484
Back Half Lithium (Li)	ug	ND	ND	ND	ND	3.0	8077484
Back Half Magnesium (Mg)	ug	9.3	53.4	49.1	37.9	7.5	8077484
Back Half Silicon (Si)	ug	81	115	156	105	15	8077484
Back Half Sodium (Na)	ug	644	1070	1520	910	15	8077484

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG281	SYG283	SYG284	SYG285		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	UNITS	M5/M29 - BLANK	M5/M29 - T1	M5/M29 - T2	M5/M29 - T3	RDL	QC Batch
Front Half (HF) Antimony (Sb)	ug	ND	ND	ND	ND	6.0	8084207
Front Half (Nitric) Antimony (Sb)	ug	ND	ND	4.0	3.9	3.0	8082554
Front Half (HF) Arsenic (As)	ug	ND	ND	ND	ND	1.6	8084207
Front Half (Nitric) Arsenic (As)	ug	ND	ND	ND	ND	0.80	8082554
Front Half (HF) Barium (Ba)	ug	3.7	6.8	4.4	4.3	2.4	8084207
Front Half (Nitric) Barium (Ba)	ug	5.8	12.0	13.7	14.6	1.2	8082554
Front Half (HF) Beryllium (Be)	ug	ND	ND	ND	ND	0.36	8084207
Front Half (Nitric) Beryllium (Be)	ug	ND	ND	ND	ND	0.18	8082554
Front Half (HF) Boron (B)	ug	ND	ND	ND	ND	60	8084207
Front Half (Nitric) Boron (B)	ug	ND	ND	ND	ND	30	8082554
Front Half (HF) Cadmium (Cd)	ug	ND	ND	ND	ND	0.36	8084207
Front Half (Nitric) Cadmium (Cd)	ug	ND	0.64	4.31	0.37	0.18	8082554
Front Half (HF) Chromium (Cr)	ug	ND	ND	ND	ND	6.0	8084207
Front Half (Nitric) Chromium (Cr)	ug	ND	7.9	8.4	11.7	3.0	8082554
Front Half (HF) Cobalt (Co)	ug	ND	ND	ND	ND	0.36	8084207
Front Half (Nitric) Cobalt (Co)	ug	ND	ND	0.21	0.26	0.18	8082554
Front Half (HF) Copper (Cu)	ug	ND	ND	ND	ND	3.6	8084207
Front Half (Nitric) Copper (Cu)	ug	ND	25.1	26.9	23.9	1.8	8082554
Front Half (HF) Lead (Pb)	ug	ND	ND	ND	ND	1.2	8084207
Front Half (Nitric) Lead (Pb)	ug	ND	6.48	21.2	17.7	0.60	8082554
Front Half (HF) Manganese (Mn)	ug	ND	ND	ND	ND	2.4	8084207
Front Half (Nitric) Manganese (Mn)	ug	ND	4.2	3.7	4.1	1.2	8082554
Front Half (HF) Molybdenum (Mo)	ug	23.1	24.5	24.1	25.5	2.0	8084207
Front Half (Nitric) Molybdenum (Mo)	ug	ND	1.2	1.2	1.7	1.0	8082554
Front Half (HF) Nickel (Ni)	ug	2.5	3.2	2.9	2.9	2.0	8084207
Front Half (Nitric) Nickel (Ni)	ug	ND	3.4	4.9	6.0	1.0	8082554
Front Half (HF) Phosphorus (P)	ug	ND	ND	ND	ND	180	8084207
Front Half (Nitric) Phosphorus (P)	ug	ND	ND	ND	ND	90	8082554
Front Half (HF) Selenium (Se)	ug	ND	ND	ND	ND	4.0	8084207
Front Half (Nitric) Selenium (Se)	ug	ND	ND	ND	ND	2.0	8082554
Front Half (HF) Silver (Ag)	ug	ND	1.32	6.26	0.83	0.48	8084207
Front Half (Nitric) Silver (Ag)	ug	ND	4.28	4.90	4.33	0.24	8082554
Front Half (HF) Strontium (Sr)	ug	ND	ND	ND	ND	1.8	8084207

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG281	SYG283	SYG284	SYG285		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	UNITS	M5/M29 - BLANK	M5/M29 - T1	M5/M29 - T2	M5/M29 - T3	RDL	QC Batch
Front Half (Nitric) Strontium (Sr)	ug	ND	2.50	1.90	2.44	0.90	8082554
Front Half (HF) Tin (Sn)	ug	ND	4.4	7.3	3.9	2.4	8084207
Front Half (Nitric) Tin (Sn)	ug	ND	16.0	16.6	19.0	1.2	8082554
Front Half (HF) Titanium (Ti)	ug	32.2	39.3	31.0	33.4	6.0	8084207
Front Half (Nitric) Titanium (Ti)	ug	ND	ND	ND	ND	3.0	8082554
Front Half (HF) Vanadium (V)	ug	ND	ND	ND	ND	1.2	8084207
Front Half (Nitric) Vanadium (V)	ug	ND	ND	ND	ND	0.60	8082554
Front Half (HF) Zinc (Zn)	ug	ND	26	ND	ND	20	8084207
Front Half (Nitric) Zinc (Zn)	ug	ND	1020	1040	775	10	8082554
Back Half Antimony (Sb)	ug	ND	ND	ND	ND	0.40	8077477
Back Half Arsenic (As)	ug	ND	ND	ND	ND	0.40	8077477
Back Half Barium (Ba)	ug	5.23	10.5	13.2	10.4	0.60	8077477
Back Half Beryllium (Be)	ug	ND	ND	ND	ND	0.090	8077477
Back Half Boron (B)	ug	ND	ND	ND	ND	100	8077477
Back Half Cadmium (Cd)	ug	ND	ND	ND	ND	0.090	8077477
Back Half Chromium (Cr)	ug	ND	ND	ND	ND	1.5	8077477
Back Half Cobalt (Co)	ug	ND	0.157	0.127	0.171	0.090	8077477
Back Half Copper (Cu)	ug	ND	17.0	3.67	6.97	0.75	8077477
Back Half Lead (Pb)	ug	ND	2.05	1.16	0.69	0.30	8077477
Back Half Manganese (Mn)	ug	ND	3.89	2.75	1.98	0.60	8077477
Back Half Molybdenum (Mo)	ug	ND	ND	ND	ND	0.50	8077477
Back Half Nickel (Ni)	ug	ND	0.78	1.39	0.95	0.50	8077477
Back Half Phosphorus (P)	ug	49	50	49	46	45	8077477
Back Half Selenium (Se)	ug	ND	ND	ND	ND	1.0	8077477
Back Half Silver (Ag)	ug	ND	ND	ND	ND	0.12	8077477
Back Half Strontium (Sr)	ug	ND	3.85	1.17	0.64	0.45	8077477
Back Half Tin (Sn)	ug	57.5	34.1	39.9	56.5	3.0	8077477
Back Half Titanium (Ti)	ug	ND	1.7	3.3	ND	1.5	8077477
Back Half Vanadium (V)	ug	ND	ND	ND	ND	0.30	8077477
Back Half Zinc (Zn)	ug	ND	16.8	10.9	7.2	5.0	8077477

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Report Date: 2022/07/06

RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

CARBONYL COMPOUNDS BY HPLC (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG286		SYG287		SYG288		SYG289		
Sampling Date		2022/06/17		2022/06/17		2022/06/17		2022/06/17		
COC Number		34346		34346		34346		34346		
	UNITS	CARB430 - BLANK	RDL	CARB430 - T1	RDL	CARB430 - T2	RDL	CARB430 - T3	RDL	QC Batch
Formaldehyde (Methanal)	ug/Tot.	47	12	27	8	55	20	32	12	8068727
Acetaldehyde (Ethanal)	ug/Tot.	ND	2	ND	2	3	2	ND	2	8068727
Acrolein	ug/Tot.	ND	2	ND	2	ND	2	ND	2	8068727

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

TEST SUMMARY

Bureau Veritas ID: SYG273

Sample ID: M26 - H2SO4 BLANK

Matrix: Stack Sampling Train

Collected:

2022/06/17

Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hydrogen Halides -Midget H2SO4 Imp	IC/SPEC	8067823	2022/06/22	2022/06/22	Ann-Marie Stern
Ammonium in Midget H2SO4 Imp(CTM-027mod)	IC/SPEC	8070468	2022/06/23	2022/06/23	Rupinder Sihota
Volume of Sulfuric Acid Impinger		8067799	N/A	2022/06/22	Frank Mo

Bureau Veritas ID: SYG274

Sample ID: M26 - T1 - H2SO4

Matrix: Stack Sampling Train

Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hydrogen Halides -Midget H2SO4 Imp	IC/SPEC	8067823	2022/06/22	2022/06/22	Ann-Marie Stern
Ammonium in Midget H2SO4 Imp(CTM-027mod)	IC/SPEC	8070468	2022/06/23	2022/06/23	Rupinder Sihota
Volume of Sulfuric Acid Impinger		8067799	N/A	2022/06/22	Frank Mo

Bureau Veritas ID: SYG274 Dup

Sample ID: M26 - T1 - H2SO4

Matrix: Stack Sampling Train

Collected: 2022/06/17

Shipped: Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hydrogen Halides -Midget H2SO4 Imp	IC/SPEC	8067823	2022/06/22	2022/06/22	Ann-Marie Stern

Bureau Veritas ID: SYG275

Sample ID: M26 - T2 - H2SO4

Matrix: Stack Sampling Train

Collected:

2022/06/17

Shipped: Received:

2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hydrogen Halides -Midget H2SO4 Imp	IC/SPEC	8067823	2022/06/22	2022/06/22	Ann-Marie Stern
Ammonium in Midget H2SO4 Imp(CTM-027mod)	IC/SPEC	8070468	2022/06/23	2022/06/23	Rupinder Sihota
Volume of Sulfuric Acid Impinger		8067799	N/A	2022/06/22	Frank Mo

Bureau Veritas ID: SYG275 Dup

M26 - T2 - H2SO4 Sample ID:

Matrix: Stack Sampling Train

Collected:

2022/06/17

Shipped: Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Ammonium in Midget H2SO4 Imp(CTM-027mod)	IC/SPEC	8070468	2022/06/23	2022/06/23	Rupinder Sihota

Bureau Veritas ID: SYG276

Sample ID: M26 - T3 - H2SO4

Matrix: Stack Sampling Train

Collected: Shipped:

2022/06/17

Received:

2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hydrogen Halides -Midget H2SO4 Imp	IC/SPEC	8067823	2022/06/22	2022/06/22	Ann-Marie Stern
Ammonium in Midget H2SO4 Imp(CTM-027mod)	IC/SPEC	8070468	2022/06/23	2022/06/23	Rupinder Sihota
Volume of Sulfuric Acid Impinger		8067799	N/A	2022/06/22	Frank Mo

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

TEST SUMMARY

Bureau Veritas ID: SYG277

Sample ID: M26 - NAOH BLANK

Matrix: Stack Sampling Train

Collected:

Shipped:

2022/06/17

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Halogens in Midget NaOH Imp.	IC/SPEC	8076971	2022/06/27	2022/06/27	Ann-Marie Stern
Volume of Sodium Hydroxide Impinger		8076962	N/A	2022/06/27	Lusine Khachatryan

Bureau Veritas ID: SYG278

Sample ID: M26 - T1 - NAOH

Matrix: Stack Sampling Train

Collected: 2022/06/17

Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Halogens in Midget NaOH Imp.	IC/SPEC	8076971	2022/06/27	2022/06/27	Ann-Marie Stern
Volume of Sodium Hydroxide Impinger		8076962	N/A	2022/06/27	Lusine Khachatryan

Bureau Veritas ID: SYG278 Dup

M26 - T1 - NAOH Sample ID:

Stack Sampling Train Matrix:

Collected: 2022/06/17 Shipped:

Received: 2022/06/17

Date Analyzed Test Description Instrumentation Batch Extracted Analyst Halogens in Midget NaOH Imp. 2022/06/27 IC/SPEC 8076971 2022/06/27 Ann-Marie Stern

Bureau Veritas ID: SYG279

> M26 - T2 - NAOH Sample ID:

Matrix: Stack Sampling Train Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Halogens in Midget NaOH Imp.	IC/SPEC	8076971	2022/06/27	2022/06/27	Ann-Marie Stern
Volume of Sodium Hydroxide Impinger		8076962	N/A	2022/06/27	Lusine Khachatryan

Bureau Veritas ID: SYG280

> Sample ID: M26 - T3 - NAOH

Matrix: Stack Sampling Train Collected: 2022/06/17

Shipped:

2022/06/17 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Halogens in Midget NaOH Imp.	IC/SPEC	8076971	2022/06/27	2022/06/27	Ann-Marie Stern
Volume of Sodium Hydroxide Impinger		8076962	N/A	2022/06/27	Lusine Khachatryan

Bureau Veritas ID: SYG281

Sample ID: M5/M29 - BLANK

Matrix: Stack Sampling Train Collected: 2022/06/17 Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury 3C in HCl Rinse	CV/AA	8073000	2022/06/24	2022/06/28	Jaswinder Kaur
Mercury 2B in HNO3/H2O2 Imp.	CV/AA	8067839	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3A in HNO3 Rinse	CV/AA	8067831	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3B in KMnO4/H2SO4 Imp.	CV/AA	8067614	2022/06/22	2002/06/23	Jaswinder Kaur
Mercury 1B in Filter (Nitric Acid) (M29)	CV/AA	8082544	2022/06/29	2022/07/04	Jaswinder Kaur

Report Date: 2022/07/06

RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

TEST SUMMARY

Bureau Veritas ID: SYG281

Sample ID: M5/M29 - BLANK

Matrix: Stack Sampling Train

Collected: 2022/06/17

Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury 1B in Filter (HF) (M29)	CV/AA	8084197	2022/06/30	2022/07/04	Jaswinder Kaur
Metals B.H. in H2O2/HNO3 Imp.(6010C)	ICP	8077484	2022/06/27	2022/06/29	Suban Kanapathippllai
Metals F.H Nitric Acid Extractable	ICP	8082548	2022/06/29	2022/07/06	Suban Kanapathippllai
Metals F.H HF Total	ICP	8084198	2022/06/30	2022/07/06	Suban Kanapathippllai
Metals B.H. in H2O2/HNO3 Imp.(6020B m)	ICP1/MS	8077477	2022/06/27	2022/06/29	Nan Raykha
Metals on Filter - HNO3 Extractable	ICP1/MS	8082554	2022/06/29	2022/06/30	Nan Raykha
Metals on Filter - HF Total	ICP1/MS	8084207	2022/06/30	2022/06/30	Nan Raykha
Particulates/Acetone Rinse (M5/315/M201)	BAL	8077489	2022/06/27	2022/06/24	Andrea Contreras Arenas
Particulates/Filter (M5/315/NJATM1/M201)	BAL	8077483	N/A	2022/06/23	Andrea Contreras Arenas
Final Volume of Acetone Probe Rinse		8077498	N/A	2022/06/22	Andrea Contreras Arenas

Bureau Veritas ID: SYG283

Sample ID: M5/M29 - T1

Matrix: Stack Sampling Train

Shipped:

Collected: 2022/06/17

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury 3C in HCl Rinse	CV/AA	8073000	2022/06/24	2022/06/28	Jaswinder Kaur
Mercury 2B in HNO3/H2O2 Imp.	CV/AA	8067839	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3A in HNO3 Rinse	CV/AA	8067831	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3B in KMnO4/H2SO4 Imp.	CV/AA	8067614	2022/06/22	2002/06/23	Jaswinder Kaur
Mercury 1B in Filter (Nitric Acid) (M29)	CV/AA	8082544	2022/06/29	2022/07/04	Jaswinder Kaur
Mercury 1B in Filter (HF) (M29)	CV/AA	8084197	2022/06/30	2022/07/04	Jaswinder Kaur
Metals B.H. in H2O2/HNO3 Imp.(6010C)	ICP	8077484	2022/06/27	2022/06/29	Suban Kanapathippllai
Metals F.H Nitric Acid Extractable	ICP	8082548	2022/06/29	2022/07/06	Suban Kanapathippllai
Metals F.H HF Total	ICP	8084198	2022/06/30	2022/07/06	Suban Kanapathippllai
Metals B.H. in H2O2/HNO3 Imp.(6020B m)	ICP1/MS	8077477	2022/06/27	2022/06/29	Nan Raykha
Metals on Filter - HNO3 Extractable	ICP1/MS	8082554	2022/06/29	2022/06/30	Nan Raykha
Metals on Filter - HF Total	ICP1/MS	8084207	2022/06/30	2022/06/30	Nan Raykha
Particulates/Acetone Rinse (M5/315/M201)	BAL	8077489	2022/06/27	2022/06/24	Andrea Contreras Arenas
Particulates/Filter (M5/315/NJATM1/M201)	BAL	8077483	N/A	2022/06/23	Andrea Contreras Arenas
Final Volume of Acetone Probe Rinse		8077498	N/A	2022/06/22	Andrea Contreras Arenas

Bureau Veritas ID: SYG283 Dup **Sample ID:** M5/M29 - T1

Matrix: Stack Sampling Train

Collected: 2022/06/17 Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury 3C in HCl Rinse	CV/AA	8073000	2022/06/24	2022/06/28	Jaswinder Kaur
Mercury 1B in Filter (Nitric Acid) (M29)	CV/AA	8082544	2022/06/29	2022/07/04	Jaswinder Kaur
Metals B.H. in H2O2/HNO3 Imp.(6010C)	ICP	8077484	2022/06/27	2022/06/29	Suban Kanapathippllai
Metals F.H Nitric Acid Extractable	ICP	8082548	2022/06/29	2022/07/06	Suban Kanapathippllai
Metals F.H HF Total	ICP	8084198	2022/06/30	2022/07/06	Suban Kanapathippllai
Metals B.H. in H2O2/HNO3 Imp.(6020B m)	ICP1/MS	8077477	2022/06/27	2022/06/29	Nan Raykha

RWDI Air Inc Report Date: 2022/07/06

Client Project #: 2202865 Site Location: STERICYCLE

Collected:

2022/06/17

Your P.O. #: 2202865 Sampler Initials: JDF

TEST SUMMARY

Bureau Veritas ID: SYG283 Dup **Sample ID:** M5/M29 - T1

Shipped: Matrix: Stack Sampling Train Received: 2022/06/17

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst 2022/06/30 Metals on Filter - HNO3 Extractable ICP1/MS 8082554 2022/06/29 Nan Raykha Metals on Filter - HF Total ICP1/MS 8084207 2022/06/30 2022/06/30 Nan Raykha

Bureau Veritas ID: SYG284 Collected: 2022/06/17

Sample ID: M5/M29 - T2 Shipped:

Matrix: Stack Sampling Train **Received:** 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury 3C in HCl Rinse	CV/AA	8073000	2022/06/24	2022/06/28	Jaswinder Kaur
Mercury 2B in HNO3/H2O2 Imp.	CV/AA	8067839	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3A in HNO3 Rinse	CV/AA	8067831	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3B in KMnO4/H2SO4 Imp.	CV/AA	8067614	2022/06/22	2002/06/23	Jaswinder Kaur
Mercury 1B in Filter (Nitric Acid) (M29)	CV/AA	8082544	2022/06/29	2022/07/04	Jaswinder Kaur
Mercury 1B in Filter (HF) (M29)	CV/AA	8084197	2022/06/30	2022/07/04	Jaswinder Kaur
Metals B.H. in H2O2/HNO3 Imp.(6010C)	ICP	8077484	2022/06/27	2022/06/29	Suban Kanapathippllai
Metals F.H Nitric Acid Extractable	ICP	8082548	2022/06/29	2022/07/06	Suban Kanapathippllai
Metals F.H HF Total	ICP	8084198	2022/06/30	2022/07/06	Suban Kanapathippllai
Metals B.H. in H2O2/HNO3 Imp.(6020B m)	ICP1/MS	8077477	2022/06/27	2022/06/29	Nan Raykha
Metals on Filter - HNO3 Extractable	ICP1/MS	8082554	2022/06/29	2022/06/30	Nan Raykha
Metals on Filter - HF Total	ICP1/MS	8084207	2022/06/30	2022/06/30	Nan Raykha
Particulates/Acetone Rinse (M5/315/M201)	BAL	8077489	2022/06/27	2022/06/24	Andrea Contreras Arenas
Particulates/Filter (M5/315/NJATM1/M201)	BAL	8077483	N/A	2022/06/23	Andrea Contreras Arenas
Final Volume of Acetone Probe Rinse		8077498	N/A	2022/06/22	Andrea Contreras Arenas

Bureau Veritas ID: SYG285 Collected: 2022/06/17

Sample ID: M5/M29 - T3 Shipped:

Matrix: Stack Sampling Train Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury 3C in HCl Rinse	CV/AA	8073000	2022/06/24	2022/06/28	Jaswinder Kaur
Mercury 2B in HNO3/H2O2 Imp.	CV/AA	8067839	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3A in HNO3 Rinse	CV/AA	8067831	2022/06/22	2022/06/23	Jaswinder Kaur
Mercury 3B in KMnO4/H2SO4 Imp.	CV/AA	8067614	2022/06/22	2002/06/23	Jaswinder Kaur
Mercury 1B in Filter (Nitric Acid) (M29)	CV/AA	8082544	2022/06/29	2022/07/04	Jaswinder Kaur
Mercury 1B in Filter (HF) (M29)	CV/AA	8084197	2022/06/30	2022/07/04	Jaswinder Kaur
Metals B.H. in H2O2/HNO3 Imp.(6010C)	ICP	8077484	2022/06/27	2022/06/29	Suban Kanapathippllai
Metals F.H Nitric Acid Extractable	ICP	8082548	2022/06/29	2022/07/06	Suban Kanapathippllai
Metals F.H HF Total	ICP	8084198	2022/06/30	2022/07/06	Suban Kanapathippllai
Metals B.H. in H2O2/HNO3 Imp.(6020B m)	ICP1/MS	8077477	2022/06/27	2022/06/29	Nan Raykha
Metals on Filter - HNO3 Extractable	ICP1/MS	8082554	2022/06/29	2022/06/30	Nan Raykha
Metals on Filter - HF Total	ICP1/MS	8084207	2022/06/30	2022/06/30	Nan Raykha
Particulates/Acetone Rinse (M5/315/M201)	BAL	8077489	2022/06/27	2022/06/24	Andrea Contreras Arenas
Particulates/Filter (M5/315/NJATM1/M201)	BAL	8077483	N/A	2022/06/23	Andrea Contreras Arenas

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

TEST SUMMARY

Bureau Veritas ID: SYG285

Sample ID: M5/M29 - T3

Matrix: Stack Sampling Train Collected: Shipped:

2022/06/17

Received:

2022/06/17

Test Description Instrumentation **Batch** Extracted Date Analyzed Analyst 2022/06/22 Final Volume of Acetone Probe Rinse 8077498 N/A Andrea Contreras Arenas

Bureau Veritas ID: SYG285 Dup

Sample ID: M5/M29 - T3

> Matrix: Stack Sampling Train

Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description Instrumentation **Extracted Date Analyzed** Batch Analyst 2022/06/23 Mercury 3A in HNO3 Rinse CV/AA 2022/06/22 8067831 Jaswinder Kaur Mercury 1B in Filter (HF) (M29) 8084197 2022/06/30 2022/07/04 CV/AA Jaswinder Kaur

Bureau Veritas ID: SYG286

> Sample ID: CARB430 - BLANK Matrix:

Stack Sampling Train

Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Aldehydes + Ketones in Air LC/UV 8068727 2022/06/23 2022/06/24 **Dennis Boodram**

Bureau Veritas ID: SYG287

Sample ID: CARB430 - T1

Matrix: Stack Sampling Train Collected: 2022/06/17 Shipped:

Received: 2022/06/17

Test Description Instrumentation Batch **Extracted** Date Analyzed Analyst LC/UV Aldehydes + Ketones in Air 8068727 2022/06/23 2022/06/24 Dennis Boodram

Bureau Veritas ID: SYG288

Sample ID: CARB430 - T2

Matrix: Stack Sampling Train

Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Aldehydes + Ketones in Air LC/UV 8068727 2022/06/23 2022/06/24 **Dennis Boodram**

Bureau Veritas ID: SYG289

CARB430 - T3 Sample ID:

Matrix: Stack Sampling Train Collected:

2022/06/17

Shipped: Received: 2022/06/17

Instrumentation **Test Description Batch Extracted Date Analyzed** Analyst Aldehydes + Ketones in Air LC/UV 8068727 2022/06/23 2022/06/24 **Dennis Boodram**

Bureau Veritas ID: SYH388

M26- H20 BLANK Sample ID:

> Matrix: Stack Sampling Train

Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description Instrumentation Batch Extracted Date Analyzed Analyst Hydrogen Halides -Midget H2SO4 Imp IC/SPEC 8067823 2022/06/22 2022/06/22 Ann-Marie Stern

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

TEST SUMMARY

Bureau Veritas ID: SYH388

Collected: 2022/06/17

Shipped:

Received: 2022/06/17

Sample ID: M26- H20 BLANK
Matrix: Stack Sampling Train

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Ammonium in Midget H2SO4 Imp(CTM-027mod)	IC/SPEC	8070468	2022/06/23	2022/06/23	Rupinder Sihota
Volume of Sulfuric Acid Impinger		8067799	N/A	2022/06/22	Frank Mo

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

GENERAL COMMENTS

Sample SYG278 [M26 - T1 - NAOH]: Samples were diluted due to background interference

Sample SYG279 [M26 - T2 - NAOH] : Samples were diluted due to background interference

Sample SYG280 [M26 - T3 - NAOH] : Samples were diluted due to background interference

Sample SYG286 [CARB430 - BLANK] : Sample Volume received was 170 mL; 12 mL of sample was used for analysis.

FORMALDEHYDE required dilution. The DL was adjusted accordingly.

Sample SYG287 [CARB430 - T1]: FORMALDEHYDE required dilution. The DL was adjusted accordingly.

Sample SYG288 [CARB430 - T2]: FORMALDEHYDE required dilution. The DL was adjusted accordingly.

Sample SYG289 [CARB430 - T3]: FORMALDEHYDE required dilution. The DL was adjusted accordingly.

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Metals on Filter - HF Total: Post digestion duplicate and spike were done on sample SYG283.

Metals on Filter - HNO3 Extractable: Post digestion duplicate and spike were done on sample SYG283.

Results relate only to the items tested.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QUALITY ASSURANCE REPORT

04/00			QUALITY ASSUR					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8067614	JWK	Reagent Blank	3B Mercury (Hg)	2002/06/23	ND,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ug	
					RDL=0.013			
8067614	JWK	Matrix Spike	3B Mercury (Hg)	2002/06/23		91	%	75 - 125
8067614	JWK	MS/MSD RPD	3B Mercury (Hg)	2002/06/23	0.78		%	20
8067614	JWK	Spiked Blank	3B Mercury (Hg)	2002/06/23		94	%	90 - 110
8067614	JWK	RPD	3B Mercury (Hg)	2002/06/23	0.96		%	20
8067614	JWK	Method Blank	3B Mercury (Hg)	2002/06/23	ND,		ug	
				0000 /00 /00	RDL=0.013			
8067614	JWK	RPD - Sample/Sample Dup	3B Mercury (Hg)	2002/06/23	2.4	26	%	20
8067823	A_S	Matrix Spike(SYG274)	Hydrochloric Acid	2022/06/22		96	%	80 - 120
0067033	۸.	Called Dlank	Hydrofluoric Acid	2022/06/22		99	%	80 - 120
8067823	A_S	Spiked Blank	Hydrochloric Acid	2022/06/22		100	%	90 - 110
8067823	۸ ۲	Method Blank	Hydrofluoric Acid	2022/06/22	ND,	103	%	90 - 110
8007823	A_S	METHOR PIGHK	Hydrochloric Acid	2022/06/22	RDL=30		ug	
			Hydrofluoric Acid	2022/06/22	ND,		ug	
			Trydrondone Acid	2022/00/22	RDL=30		чь	
8067823	A_S	RPD - Sample/Sample Dup	Hydrochloric Acid	2022/06/22	2.2		%	20
	-	1 / 1 1	, Hydrofluoric Acid	2022/06/22	NC		%	20
8067831	JWK	Matrix Spike(SYG285)	3A Mercury (Hg)	2022/06/23		88	%	75 - 125
8067831	JWK	MS/MSD RPD	3A Mercury (Hg)	2022/06/23	6.3		%	20
8067831	JWK	Spiked Blank	3A Mercury (Hg)	2022/06/23		97	%	90 - 110
8067831	JWK	RPD	3A Mercury (Hg)	2022/06/23	5.0		%	20
8067831	JWK	Method Blank	3A Mercury (Hg)	2022/06/23	ND,		ug	
					RDL=0.005			
8067831	JWK	RPD - Sample/Sample Dup	3A Mercury (Hg)	2022/06/23	12		%	20
8067839	JWK	Matrix Spike	2B Mercury (Hg)	2022/06/23		88	%	75 - 125
8067839	JWK	MS/MSD RPD	2B Mercury (Hg)	2022/06/23	13		%	20
8067839	JWK	Spiked Blank	2B Mercury (Hg)	2022/06/23		93	%	90 - 110
8067839	JWK	RPD	2B Mercury (Hg)	2022/06/23	0.22		%	20
8067839	JWK	Method Blank	2B Mercury (Hg)	2022/06/23	ND, RDL=0.015		ug	
8067839	JWK	RPD - Sample/Sample Dup	2B Mercury (Hg)	2022/06/23	18		%	20
8068727	DEO	Spiked Blank	Formaldehyde (Methanal)	2022/06/24	10	102	%	5 - 200
0000727	520	Spinea Blank	Acetaldehyde (Ethanal)	2022/06/24		95	%	5 - 200
			Acrolein	2022/06/24		15 (1)	%	5 - 200
8068727	DEO	RPD	Formaldehyde (Methanal)	2022/06/24	1.5	- ()	%	30
			Acetaldehyde (Ethanal)	2022/06/24	0.73		%	30
			Acrolein	2022/06/24	144 (2)		%	30
8068727	DEO	Method Blank	Formaldehyde (Methanal)	2022/06/24	ND,RDL=2		ug/Tot.	
			Acetaldehyde (Ethanal)	2022/06/24	ND,RDL=2		ug/Tot.	
			Acrolein	2022/06/24	ND,RDL=2		ug/Tot.	
8070468	RSU	Matrix Spike(SYG275)	Ammonium (NH4)	2022/06/23		97	%	75 - 125
8070468	RSU	Spiked Blank	Ammonium (NH4)	2022/06/23		101	%	90 - 110
8070468	RSU	Method Blank	Ammonium (NH4)	2022/06/23	ND, RDL=6.0		ug	
8070468	RSU	RPD - Sample/Sample Dup	Ammonium (NH4)	2022/06/23	2.5		%	20
8073000	JWK	Reagent Blank	3C Mercury (Hg)	2022/06/28	ND, RDL=0.013		ug	
8073000	JWK	Matrix Spike(SYG283)	3C Mercury (Hg)	2022/06/28		94	%	75 - 125

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

			QUALITY ASSURANCE					
QA/QC	lua:A	OC Turns	Do your oboy	Data Analysiad	Value	0/ Dagguerry	LINUTC	OC Limita
Batch 8073000	Init	QC Type MS/MSD RPD	Parameter	Date Analyzed 2022/06/28	Value 2.4	% Recovery	UNITS %	QC Limits 20
	JWK	•	3C Mercury (Hg)	• •	2.4	0.5		
8073000	JWK	Spiked Blank	3C Mercury (Hg)	2022/06/28	4.5	95	%	90 - 110
8073000	JWK	RPD	3C Mercury (Hg)	2022/06/28	1.5		%	20
8073000	JWK	Method Blank	3C Mercury (Hg)	2022/06/28	ND, RDL=0.013		ug	
0072000	IVAZIZ	DDD Commis/Commis Dun	26 Manager (11a)	2022/06/20			0/	20
8073000	JWK	RPD - Sample/Sample Dup	3C Mercury (Hg)	2022/06/28	0.57	100	%	20
8076971	A_S	Matrix Spike(SYG278)	Chlorine	2022/06/27		100	%	80 - 120
0076074	۸.	Called Dlank	Fluorine	2022/06/27		100	%	80 - 120
8076971	A_S	Spiked Blank	Chlorine	2022/06/27		100	%	90 - 110
0076074	۸.	Markla and Diamela	Fluorine	2022/06/27	ND	100	%	90 - 110
8076971	A_S	Method Blank	Chlorine	2022/06/27	ND, RDL=180		ug	
			Fluorine	2022/06/27	ND, RDL=120		ug	
8076971	A_S	RPD - Sample/Sample Dup	Chlorine	2022/06/27	NC		%	20
- '		1 7 1 1	Fluorine	2022/06/27	NC		%	20
8077477	N_R	Matrix Spike(SYG283)	Back Half Antimony (Sb)	2022/06/29		98	%	75 - 125
	-	,	Back Half Arsenic (As)	2022/06/29		97	%	75 - 125
			Back Half Barium (Ba)	2022/06/29		97	%	75 - 125
			Back Half Beryllium (Be)	2022/06/29		94	%	75 - 125
			Back Half Boron (B)	2022/06/29		91	%	75 - 125
			Back Half Cadmium (Cd)	2022/06/29		94	%	75 - 125
			Back Half Chromium (Cr)	2022/06/29		102	%	75 - 125
			Back Half Cobalt (Co)	2022/06/29		104	%	75 - 125
			Back Half Copper (Cu)	2022/06/29		104	%	75 - 125
			Back Half Lead (Pb)	2022/06/29		99	%	75 - 125
			Back Half Manganese (Mn)	2022/06/29		101	%	75 - 125
			Back Half Molybdenum (Mo)	2022/06/29		101	%	75 - 125
			Back Half Nickel (Ni)	2022/06/29		101	%	75 - 125
			Back Half Phosphorus (P)	2022/06/29		97	%	75 - 125
			Back Half Selenium (Se)	2022/06/29		92	%	75 - 125
			Back Half Silver (Ag)	2022/06/29		100	%	75 - 125
			Back Half Strontium (Sr)	2022/06/29		99	%	75 - 125
			Back Half Tin (Sn)	2022/06/29		99	%	75 - 125
			Back Half Titanium (Ti)	2022/06/29		100	%	75 - 125
			Back Half Vanadium (V)	2022/06/29		103	%	75 - 125
			Back Half Zinc (Zn)	2022/06/29		91	%	75 - 125
8077477	N R	MS/MSD RPD	Back Half Antimony (Sb)	2022/06/29	1.6		%	20
	_	-,	Back Half Arsenic (As)	2022/06/29	0.93		%	20
			Back Half Barium (Ba)	2022/06/29	0.94		%	20
			Back Half Beryllium (Be)	2022/06/29	3.9		%	20
			Back Half Boron (B)	2022/06/29	1.3		%	20
			Back Half Cadmium (Cd)	2022/06/29	0.67		%	20
			Back Half Chromium (Cr)	2022/06/29	1.2		%	20
			Back Half Cobalt (Co)	2022/06/29	2.4		%	20
			Back Half Copper (Cu)	2022/06/29	0.54		%	20
			Back Half Lead (Pb)	2022/06/29	1.3		%	20
			Back Half Manganese (Mn)	2022/06/29	0.57		%	20
			Back Half Molybdenum (Mo)	2022/06/29	0.37		%	20
			Back Half Nickel (Ni)	2022/06/29	1.0		% %	20
			Dack Hall MICKEL (MI)	2022/00/29	1.0		/0	

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Back Half Phosphorus (P)	2022/06/29	2.8		%	20
			Back Half Selenium (Se)	2022/06/29	0.16		%	20
			Back Half Silver (Ag)	2022/06/29	1.0		%	20
			Back Half Strontium (Sr)	2022/06/29	1.7		%	20
			Back Half Tin (Sn)	2022/06/29	0.74		%	20
			Back Half Titanium (Ti)	2022/06/29	1.5		%	20
			Back Half Vanadium (V)	2022/06/29	0.31		%	20
			Back Half Zinc (Zn)	2022/06/29	0.011		%	20
8077477	N_R	Spiked Blank	Back Half Antimony (Sb)	2022/06/29		99	%	85 - 115
			Back Half Arsenic (As)	2022/06/29		100	%	85 - 115
			Back Half Barium (Ba)	2022/06/29		98	%	85 - 115
			Back Half Beryllium (Be)	2022/06/29		101	%	85 - 115
			Back Half Boron (B)	2022/06/29		108	%	85 - 115
			Back Half Cadmium (Cd)	2022/06/29		97	%	85 - 115
			Back Half Chromium (Cr)	2022/06/29		102	%	85 - 115
			Back Half Cobalt (Co)	2022/06/29		104	%	85 - 115
			Back Half Copper (Cu)	2022/06/29		105	%	85 - 115
			Back Half Lead (Pb)	2022/06/29		103	%	85 - 115
			Back Half Manganese (Mn)	2022/06/29		103	%	85 - 115
			Back Half Molybdenum (Mo)	2022/06/29		100	%	85 - 115
			Back Half Nickel (Ni)	2022/06/29		103	%	85 - 115
			Back Half Phosphorus (P)	2022/06/29		113	%	85 - 115
			Back Half Selenium (Se)	2022/06/29		97	%	85 - 115
			Back Half Silver (Ag)	2022/06/29		100	%	85 - 115
			Back Half Strontium (Sr)	2022/06/29		98	%	85 - 115
			Back Half Tin (Sn)	2022/06/29		100	%	85 - 115
			Back Half Titanium (Ti)	2022/06/29		100	%	85 - 115
			Back Half Vanadium (V)	2022/06/29		104	%	85 - 115
			Back Half Zinc (Zn)	2022/06/29		98	%	85 - 115
8077477	N_R	RPD	Back Half Antimony (Sb)	2022/06/29	5.3	30	%	20
00//4//	''_''	III D	Back Half Arsenic (As)	2022/06/29	0.54		%	20
			Back Half Barium (Ba)	2022/06/29	3.8		%	20
			Back Half Beryllium (Be)	2022/06/29	3.3		%	20
			Back Half Boron (B)	2022/06/29	3.1		%	20
			Back Half Cadmium (Cd)	2022/06/29	2.9		%	20
			Back Half Chromium (Cr)	2022/06/29	1.0		%	20
			Back Half Cobalt (Co)	2022/06/29	0.019		%	20
			Back Half Copper (Cu)	2022/06/29	3.1		%	
			Back Half Lead (Pb)	2022/06/29	2.2		%	20 20
			Back Half Manganese (Mn)	2022/06/29	0.28		%	20
			Back Half Molybdenum (Mo)		4.7		%	
			Back Half Nickel (Ni)	2022/06/29 2022/06/29	0.25		% %	20 20
			Back Half Phosphorus (P)	2022/06/29	0.25		% %	20
			Back Half Selenium (Se)	2022/06/29	1.7		% %	20
			Back Half Selenium (Se) Back Half Silver (Ag)	2022/06/29			% %	
					0.45			20
			Back Half Strontium (Sr)	2022/06/29	1.5		%	20
			Back Half Titanium (Ti)	2022/06/29	3.2		%	20
			Back Half Titanium (Ti)	2022/06/29	3.1		%	20
			Back Half Vanadium (V)	2022/06/29	0.77		%	20
			Back Half Zinc (Zn)	2022/06/29	0.43		%	20

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8077477	N_R	Method Blank	Back Half Antimony (Sb)	2022/06/29	ND, RDL=0.40	,	ug	
			Back Half Arsenic (As)	2022/06/29	ND, RDL=0.40		ug	
			Back Half Barium (Ba)	2022/06/29	ND, RDL=0.60		ug	
			Back Half Beryllium (Be)	2022/06/29	ND, RDL=0.090		ug	
			Back Half Boron (B)	2022/06/29	ND, RDL=100		ug	
			Back Half Cadmium (Cd)	2022/06/29	ND, RDL=0.090		ug	
			Back Half Chromium (Cr)	2022/06/29	ND, RDL=1.5		ug	
			Back Half Cobalt (Co)	2022/06/29	ND, RDL=0.090		ug	
			Back Half Copper (Cu)	2022/06/29	ND, RDL=0.75		ug	
			Back Half Lead (Pb)	2022/06/29	ND, RDL=0.30		ug	
			Back Half Manganese (Mn)	2022/06/29	ND, RDL=0.60		ug	
			Back Half Molybdenum (Mo)	2022/06/29	ND, RDL=0.50		ug	
			Back Half Nickel (Ni)	2022/06/29	ND, RDL=0.50		ug	
			Back Half Phosphorus (P)	2022/06/29	ND, RDL=45		ug	
			Back Half Selenium (Se)	2022/06/29	ND, RDL=1.0		ug	
			Back Half Silver (Ag)	2022/06/29	ND, RDL=0.12		ug	
			Back Half Strontium (Sr)	2022/06/29	ND, RDL=0.45		ug	
			Back Half Tin (Sn)	2022/06/29	ND, RDL=3.0		ug	
			Back Half Titanium (Ti)	2022/06/29	ND, RDL=1.5		ug	
			Back Half Vanadium (V)	2022/06/29	ND, RDL=0.30		ug	
			Back Half Zinc (Zn)	2022/06/29	ND, RDL=5.0		ug	
8077477	N_R	RPD - Sample/Sample Dup	Back Half Antimony (Sb)	2022/06/29	NC		%	20
	_	, ,	Back Half Arsenic (As)	2022/06/29	NC		%	20
			Back Half Barium (Ba)	2022/06/29	2.6		%	20
			Back Half Beryllium (Be)	2022/06/29	NC		%	20
			Back Half Boron (B)	2022/06/29	NC		%	20
			Back Half Cadmium (Cd)	2022/06/29	NC		%	20
			Back Half Chromium (Cr)	2022/06/29	NC		%	20
			Back Half Cobalt (Co)	2022/06/29	3.2		%	20
			Back Half Copper (Cu)	2022/06/29	0.48		% %	20

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Back Half Lead (Pb)	2022/06/29	1.2		%	20
			Back Half Manganese (Mn)	2022/06/29	0.073		%	20
			Back Half Molybdenum (Mo)	2022/06/29	NC		%	20
			Back Half Nickel (Ni)	2022/06/29	0.36		%	20
			Back Half Phosphorus (P)	2022/06/29	0.92		%	20
			Back Half Selenium (Se)	2022/06/29	NC		%	20
			Back Half Silver (Ag)	2022/06/29	NC		%	20
			Back Half Strontium (Sr)	2022/06/29	4.2		%	20
			Back Half Tin (Sn)	2022/06/29	0.87		%	20
			Back Half Titanium (Ti)	2022/06/29	14		%	20
			Back Half Vanadium (V)	2022/06/29	NC		%	20
			Back Half Zinc (Zn)	2022/06/29	3.7		%	20
8077484	SUK	Matrix Spike(SYG283)	Back Half Aluminum (Al)	2022/06/29		99	%	80 - 120
			Back Half Calcium (Ca)	2022/06/29		103	%	80 - 120
			Back Half Iron (Fe)	2022/06/29		103	%	80 - 120
			Back Half Lithium (Li)	2022/06/29		96	%	N/A
			Back Half Magnesium (Mg)	2022/06/29		98	%	80 - 120
			Back Half Silicon (Si)	2022/06/29		104	%	80 - 120
			Back Half Sodium (Na)	2022/06/29		96	%	80 - 120
8077484	SUK	Spiked Blank	Back Half Aluminum (Al)	2022/06/29		112 (2)	%	90 - 110
			Back Half Calcium (Ca)	2022/06/29		113 (2)	%	90 - 110
			Back Half Iron (Fe)	2022/06/29		109	%	90 - 110
			Back Half Lithium (Li)	2022/06/29		104	%	90 - 110
			Back Half Magnesium (Mg)	2022/06/29		108	%	90 - 110
			Back Half Silicon (Si)	2022/06/29		346 (2)	%	70 - 190
			Back Half Sodium (Na)	2022/06/29		108	%	90 - 110
8077484	SUK	RPD	Back Half Aluminum (Al)	2022/06/29	3.1		%	20
			Back Half Calcium (Ca)	2022/06/29	1.3		%	20
			Back Half Iron (Fe)	2022/06/29	1.8		%	20
			Back Half Lithium (Li)	2022/06/29	1.1		%	20
			Back Half Magnesium (Mg)	2022/06/29	1.6		%	20
			Back Half Silicon (Si)	2022/06/29	69 (2)		%	20
			Back Half Sodium (Na)	2022/06/29	2.3		%	20
8077484	SUK	Method Blank	Back Half Aluminum (Al)	2022/06/29	ND, RDL=7.5		ug	
			Back Half Calcium (Ca)	2022/06/29	ND, RDL=30		ug	
			Back Half Iron (Fe)	2022/06/29	ND, RDL=3.0		ug	
			Back Half Lithium (Li)	2022/06/29	ND, RDL=3.0		ug	
			Back Half Magnesium (Mg)	2022/06/29	ND, RDL=7.5		ug	
			Back Half Silicon (Si)	2022/06/29	ND, RDL=15		ug	
			Back Half Sodium (Na)	2022/06/29	ND, RDL=15		ug	
8077484	SUK	RPD - Sample/Sample Dup	Back Half Aluminum (Al)	2022/06/29	0.83		%	20
JU, 1707	JUK	D Sumple/Sumple Dup	Back Half Calcium (Ca)	2022/06/29	1.0		%	20
			Back Half Iron (Fe)	2022/06/29	0.66		%	20

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC	114	00 To 112	Danasatas	Data Analonad	Malina	0/ D	LINUTC	061::
Batch	Init	QC Type	Parameter (Li)	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Back Half Lithium (Li)	2022/06/29	NC		%	20
			Back Half Magnesium (Mg)	2022/06/29	0.76		%	20
			Back Half Silicon (Si)	2022/06/29	0.47		%	20
			Back Half Sodium (Na)	2022/06/29	0.59		%	20
8077489	ANC	Method Blank	Acetone Rinse Particulate Weight in Acetone Rinse	2022/06/24	ND, RDL=0.5		mg	
8082544	JWK	Reagent Blank	1B (Nitric) Mercury (Hg)	2022/07/04	ND, RDL=0.015		ug	
8082544	JWK	Matrix Spike(SYG283)	1B (Nitric) Mercury (Hg)	2022/07/04		89	%	75 - 125
8082544	JWK	MS/MSD RPD	1B (Nitric) Mercury (Hg)	2022/07/04	2.2		%	20
8082544	JWK	Spiked Blank	1B (Nitric) Mercury (Hg)	2022/07/04		98	%	90 - 110
8082544	JWK	RPD	1B (Nitric) Mercury (Hg)	2022/07/04	0.31		%	20
8082544	JWK	Method Blank	1B (Nitric) Mercury (Hg)	2022/07/04	ND,		ug	
			, , , , , , , , , , , , , , , , , , , ,		RDL=0.015		· ·	
8082544	JWK	RPD - Sample/Sample Dup	1B (Nitric) Mercury (Hg)	2022/07/04	1.1		%	20
8082548	SUK	Matrix Spike(SYG283)	Front Half (Nitric) Aluminum (Al)	2022/07/06		98	%	80 - 120
			Front Half (Nitric) Calcium (Ca)	2022/07/06		99	%	80 - 120
			Front Half (Nitric) Iron (Fe)	2022/07/06		103	%	80 - 120
			Front Half (Nitric) Lithium (Li)	2022/07/06		102	%	N/A
			Front Half (Nitric) Magnesium (Mg)	2022/07/06		98	%	80 - 120
			Front Half (Nitric) Silicon (Si)	2022/07/06		101	%	80 - 120
			Front Half (Nitric) Sodium (Na)	2022/07/06		103	%	80 - 120
8082548	SUK	Spiked Blank	Front Half (Nitric) Aluminum (AI)	2022/07/06		93	%	90 - 110
			Front Half (Nitric) Calcium (Ca)	2022/07/06		95	%	90 - 110
			Front Half (Nitric) Iron (Fe)	2022/07/06		98	%	90 - 110
			Front Half (Nitric) Lithium (Li)	2022/07/06		96	%	90 - 110
			Front Half (Nitric) Magnesium (Mg)	2022/07/06		93	%	90 - 110
			Front Half (Nitric) Silicon (Si)	2022/07/06		96	%	70 - 190
			Front Half (Nitric) Sodium (Na)	2022/07/06		97	%	90 - 110
8082548	SUK	RPD	Front Half (Nitric) Aluminum (Al)	2022/07/06	0.32	<i>57</i>	%	20
0002510	3010	111 5	Front Half (Nitric) Calcium (Ca)	2022/07/06	0.63		%	20
			Front Half (Nitric) Iron (Fe)	2022/07/06	0.10		%	20
			Front Half (Nitric) Lithium (Li)	2022/07/06	0.52		%	20
			Front Half (Nitric) Magnesium (Mg)	2022/07/06	0.32		%	20
			Front Half (Nitric) Silicon (Si)	2022/07/06	0.41		%	20
			Front Half (Nitric) Sodium (Na)	2022/07/06	0.41		%	20
8082548	SUK	Method Blank	Front Half (Nitric) Aluminum (Al)	2022/07/06	ND, RDL=15		ug	20
			Front Half (Nitric) Calcium (Ca)	2022/07/06	ND, RDL=30		ug	
			Front Half (Nitric) Iron (Fe)	2022/07/06	ND,		ug	
			Front Half (Nitric) Lithium (Li)	2022/07/06	RDL=6.0 ND,		ug	
			Front Half (Nitric) Magnesium (Mg)	2022/07/06	RDL=3.0 ND,		ug	
			Front Half (Nitric) Silicon (Si)	2022/07/06	RDL=20 ND,		ug	
			Front Half (Nitric) Sodium (Na)	2022/07/06	RDL=30 ND,		ug	
8082548	SUK	RPD - Sample/Sample Dup	Front Half (Nitric) Aluminum (AI)	2022/07/06	RDL=30 2.6		%	20

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

04/00			QUALITY ASSURANCE RE	· · ·				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Dateir		QC 1 ypc	Front Half (Nitric) Calcium (Ca)	2022/07/06	0.67	70 Necovery	%	20
			Front Half (Nitric) Iron (Fe)	2022/07/06	1.6		%	20
			Front Half (Nitric) Lithium (Li)	2022/07/06	0.66		%	20
			Front Half (Nitric) Magnesium (Mg)	2022/07/06	2.9		%	20
			Front Half (Nitric) Silicon (Si)	2022/07/06	1.7		%	20
			Front Half (Nitric) Sodium (Na)	2022/07/06	0.39		%	20
8082554	N_R	Matrix Spike(SYG283)	Front Half (Nitric) Antimony (Sb)	2022/06/30	0.55	101	%	75 - 1 25
0002331		watik spike(51 6265)	Front Half (Nitric) Arsenic (As)	2022/06/30		96	%	75 - 125
			Front Half (Nitric) Barium (Ba)	2022/06/30		101	%	75 - 125
			Front Half (Nitric) Beryllium (Be)	2022/06/30		100	%	75 - 125 75 - 125
			Front Half (Nitric) Boron (B)	2022/06/30		97	%	75 - 125
			Front Half (Nitric) Cadmium (Cd)	2022/06/30		98	%	75 - 125 75 - 125
			Front Half (Nitric) Chromium (Cr)	2022/06/30		96	%	75 - 125 75 - 125
			Front Half (Nitric) Cobalt (Co)	2022/06/30		98	%	75 - 125 75 - 125
			Front Half (Nitric) Copper (Cu)	2022/06/30		101	%	75 - 125 75 - 125
			Front Half (Nitric) Lead (Pb)	2022/06/30		96	%	75 - 125 75 - 125
			Front Half (Nitric) Manganese (Mn)	2022/06/30		99	%	75 - 125 75 - 125
			Front Half (Nitric) Molybdenum (Mo)	2022/06/30		102	%	75 - 125 75 - 125
			Front Half (Nitric) Nickel (Ni)	2022/06/30		98	%	75 - 125 75 - 125
			Front Half (Nitric) Phosphorus (P)	2022/06/30		95	%	75 - 125 75 - 125
			Front Half (Nitric) Selenium (Se)	2022/06/30		95	% %	75 - 125 75 - 125
			Front Half (Nitric) Silver (Ag)	2022/06/30		102	% %	75 - 125 75 - 125
			Front Half (Nitric) Strontium (Sr)					
				2022/06/30		100	% %	75 - 125
			Front Half (Nitric) Tin (Sn)	2022/06/30 2022/06/30		102 97		75 - 125 75 - 125
			Front Half (Nitric) Titanium (Ti)			98	%	75 - 125 75 - 125
			Front Half (Nitric) Vanadium (V)	2022/06/30		93	%	75 - 125 75 - 125
0002554	N. D	MC/MCD DDD	Front Half (Nitric) Zinc (Zn)	2022/06/30	0.13	93	%	
8082554	N_R	MS/MSD RPD	Front Half (Nitric) Antimony (Sb)	2022/06/30	0.13		%	20
			Front Half (Nitric) Arsenic (As)	2022/06/30	0.45		%	20
			Front Half (Nitric) Barium (Ba)	2022/06/30	0.030		%	20
			Front Half (Nitric) Beryllium (Be)	2022/06/30	2.9		%	20
			Front Half (Nitric) Boron (B)	2022/06/30	3.9		%	20
			Front Half (Nitric) Cadmium (Cd)	2022/06/30	0.10		%	20
			Front Half (Nitric) Chromium (Cr)	2022/06/30	0.073		%	20
			Front Half (Nitric) Cobalt (Co)	2022/06/30	1.2		%	20
			Front Half (Nitric) Copper (Cu)	2022/06/30	1.4		%	20
			Front Half (Nitric) Lead (Pb)	2022/06/30	1.4		%	20
			Front Half (Nitric) Manganese (Mn)	2022/06/30	0.52		%	20
			Front Half (Nitric) Molybdenum (Mo)	2022/06/30	0.18		%	20
			Front Half (Nitric) Nickel (Ni)	2022/06/30	0.52		%	20
			Front Half (Nitric) Phosphorus (P)	2022/06/30	0.24		%	20
			Front Half (Nitric) Selenium (Se)	2022/06/30	1.5		%	20
			Front Half (Nitric) Silver (Ag)	2022/06/30	1.0		%	20
			Front Half (Nitric) Strontium (Sr)	2022/06/30	1.1		%	20
			Front Half (Nitric) Tin (Sn)	2022/06/30	0.34		%	20
			Front Half (Nitric) Titanium (Ti)	2022/06/30	0.70		%	20
			Front Half (Nitric) Vanadium (V)	2022/06/30	0.70		%	20
			Front Half (Nitric) Zinc (Zn)	2022/06/30	0.17		%	20
8082554	N_R	Spiked Blank	Front Half (Nitric) Antimony (Sb)	2022/06/30		103	%	85 - 115
			Front Half (Nitric) Arsenic (As)	2022/06/30		97	%	85 - 115

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Front Half (Nitric) Barium (Ba)	2022/06/30		103	%	85 - 115
			Front Half (Nitric) Beryllium (Be)	2022/06/30		104	%	85 - 115
			Front Half (Nitric) Boron (B)	2022/06/30		102	%	85 - 115
			Front Half (Nitric) Cadmium (Cd)	2022/06/30		100	%	85 - 115
			Front Half (Nitric) Chromium (Cr)	2022/06/30		96	%	85 - 115
			Front Half (Nitric) Cobalt (Co)	2022/06/30		98	%	85 - 115
			Front Half (Nitric) Copper (Cu)	2022/06/30		101	%	85 - 115
			Front Half (Nitric) Lead (Pb)	2022/06/30		96	%	85 - 115
			Front Half (Nitric) Manganese (Mn)	2022/06/30		99	%	85 - 115
			Front Half (Nitric) Molybdenum (Mo)	2022/06/30		104	%	85 - 115
			Front Half (Nitric) Nickel (Ni)	2022/06/30		97	%	85 - 115
			Front Half (Nitric) Phosphorus (P)	2022/06/30		97	%	85 - 115
			Front Half (Nitric) Selenium (Se)	2022/06/30		97	%	85 - 115
			Front Half (Nitric) Silver (Ag)	2022/06/30		101	%	85 - 115
			Front Half (Nitric) Strontium (Sr)	2022/06/30		100	%	85 - 115
			Front Half (Nitric) Tin (Sn)	2022/06/30		104	%	85 - 115
			Front Half (Nitric) Titanium (Ti)	2022/06/30		98	%	85 - 115
			Front Half (Nitric) Vanadium (V)	2022/06/30		98	%	85 - 115
			Front Half (Nitric) Zinc (Zn)	2022/06/30		96	%	85 - 115
8082554	N_R	RPD	Front Half (Nitric) Antimony (Sb)	2022/06/30	2.0		%	20
	-		Front Half (Nitric) Arsenic (As)	2022/06/30	0.18		%	20
			Front Half (Nitric) Barium (Ba)	2022/06/30	0.24		%	20
			Front Half (Nitric) Beryllium (Be)	2022/06/30	0.019		%	20
			Front Half (Nitric) Boron (B)	2022/06/30	0.38		%	20
			Front Half (Nitric) Cadmium (Cd)	2022/06/30	0.53		%	20
			Front Half (Nitric) Chromium (Cr)	2022/06/30	0.26		%	20
			Front Half (Nitric) Cobalt (Co)	2022/06/30	1.5		%	20
			Front Half (Nitric) Copper (Cu)	2022/06/30	0.24		%	20
			Front Half (Nitric) Lead (Pb)	2022/06/30	0.50		%	20
			Front Half (Nitric) Manganese (Mn)	2022/06/30	0.15		%	20
			Front Half (Nitric) Molybdenum (Mo)	2022/06/30	0.048		%	20
			Front Half (Nitric) Nickel (Ni)	2022/06/30	0.67		%	20
			Front Half (Nitric) Phosphorus (P)	2022/06/30	1.2		%	20
			Front Half (Nitric) Selenium (Se)	2022/06/30	0.46		%	20
			Front Half (Nitric) Silver (Ag)	2022/06/30	0.40		%	20
			Front Half (Nitric) Strontium (Sr)	2022/06/30	0.15		%	20
			Front Half (Nitric) Tin (Sn)	2022/06/30	0.46		%	20
			Front Half (Nitric) Titanium (Ti)	2022/06/30	1.9		%	20
			Front Half (Nitric) Vanadium (V)	2022/06/30	0.46		% %	20
			Front Half (Nitric) Zinc (Zn)		0.40		% %	20
002554	N D	Method Blank	Front Half (Nitric) Antimony (Sb)	2022/06/30	0.40 ND,			20
8082554	IN_K	Method Blank	Front Hair (Mitric) Antimony (Sb)	2022/06/30	RDL=3.0		ug	
			Front Half (Nitric) Arsenic (As)	2022/06/30	ND,		ug	
			Front Half (Nitric) Barium (Ba)	2022/06/20	RDL=0.80		ua	
			FIOHE HAH (MICHE) BAHUM (BA)	2022/06/30	ND, RDL=1.2		ug	
			Front Half (Nitric) Beryllium (Be)	2022/06/30	ND,		ug	
			Front Half (Nitric) Boron (B)	2022/06/30	RDL=0.18 ND,		ug	
			Tronc rian (Micro) boron (b)	2022/00/30	RDL=30		чБ	

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

			•	· · ·				
QA/QC	lnit	OC Tuno	Darameter	Data Analyzad	Value	0/ Dosavon	LINUTC	OC Limits
Batch	Init	QC Type	Parameter Front Half (Nitric) Cadmium (Cd)	Date Analyzed 2022/06/30	Value ND,	% Recovery	UNITS	QC Limits
			Front Hair (Nitrie) Cadmium (Cd)	2022/00/30	RDL=0.18		ug	
			Front Half (Nitric) Chromium (Cr)	2022/06/30	ND,		ug	
			Trone train (Werle) emornium (er)	2022/00/30	RDL=3.0		чь	
			Front Half (Nitric) Cobalt (Co)	2022/06/30	ND,		ug	
					RDL=0.18		6	
			Front Half (Nitric) Copper (Cu)	2022/06/30	ND,		ug	
			, , , , ,		RDL=1.8		J	
			Front Half (Nitric) Lead (Pb)	2022/06/30	ND,		ug	
					RDL=0.60			
			Front Half (Nitric) Manganese (Mn)	2022/06/30	ND,		ug	
					RDL=1.2			
			Front Half (Nitric) Molybdenum (Mo)	2022/06/30	ND,		ug	
					RDL=1.0			
			Front Half (Nitric) Nickel (Ni)	2022/06/30	ND,		ug	
			5	2022/05/20	RDL=1.0			
			Front Half (Nitric) Phosphorus (P)	2022/06/30	ND, RDL=90		ug	
			Front Half (Nitric) Selenium (Se)	2022/06/30	ND,		~	
			Front Hair (Nitric) Selemum (Se)	2022/00/30	RDL=2.0		ug	
			Front Half (Nitric) Silver (Ag)	2022/06/30	ND,		ug	
			Troncinal (Mency Silver (118)	2022/00/00	RDL=0.24		~ь	
			Front Half (Nitric) Strontium (Sr)	2022/06/30	ND,		ug	
			, , , , ,		RDL=0.90		Ü	
			Front Half (Nitric) Tin (Sn)	2022/06/30	ND,		ug	
					RDL=1.2			
			Front Half (Nitric) Titanium (Ti)	2022/06/30	ND,		ug	
					RDL=3.0			
			Front Half (Nitric) Vanadium (V)	2022/06/30	ND,		ug	
					RDL=0.60			
			Front Half (Nitric) Zinc (Zn)	2022/06/30	ND,		ug	
0003554	N. D	DDD Campula/Campula Dun	Front Holf (Nitrio) Antino and (Ch.)	2022/06/20	RDL=10		0/	20
8082554	N_R	RPD - Sample/Sample Dup	Front Half (Nitric) Antimony (Sb)	2022/06/30	NC		%	20
			Front Half (Nitric) Arsenic (As) Front Half (Nitric) Barium (Ba)	2022/06/30 2022/06/30	NC 1.6		% %	20 20
			Front Half (Nitric) Beryllium (Be)	2022/06/30	NC		%	20
			Front Half (Nitric) Boron (B)	2022/06/30	NC		%	20
			Front Half (Nitric) Cadmium (Cd)	2022/06/30	2.2		%	20
			Front Half (Nitric) Chromium (Cr)	2022/06/30	0.19		%	20
			Front Half (Nitric) Cobalt (Co)	2022/06/30	NC		%	20
			Front Half (Nitric) Copper (Cu)	2022/06/30	0.79		%	20
			Front Half (Nitric) Lead (Pb)	2022/06/30	0.67		%	20
			Front Half (Nitric) Manganese (Mn)	2022/06/30	1.3		%	20
			Front Half (Nitric) Molybdenum (Mo)	2022/06/30	0.39		%	20
			Front Half (Nitric) Nickel (Ni)	2022/06/30	3.8		%	20
			Front Half (Nitric) Phosphorus (P)	2022/06/30	NC		%	20
			Front Half (Nitric) Selenium (Se)	2022/06/30	NC		%	20
			Front Half (Nitric) Silver (Ag)	2022/06/30	0.44		%	20
			Front Half (Nitric) Strontium (Sr)	2022/06/30	1.6		%	20
			Front Half (Nitric) Tin (Sn)	2022/06/30	1.0		%	20
			Front Half (Nitric) Titanium (Ti)	2022/06/30	NC		%	20

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Front Half (Nitric) Vanadium (V)	2022/06/30	NC		%	20
			Front Half (Nitric) Zinc (Zn)	2022/06/30	0.28		%	20
8084197	JWK	Reagent Blank	1B (HF) Mercury (Hg)	2022/07/04	ND, RDL=0.03		ug	
8084197	JWK	Matrix Spike(SYG285)	1B (HF) Mercury (Hg)	2022/07/04		91	%	75 - 125
8084197	JWK	MS/MSD RPD	1B (HF) Mercury (Hg)	2022/07/04	3.7		%	20
8084197	JWK	Spiked Blank	1B (HF) Mercury (Hg)	2022/07/04		98	%	90 - 110
8084197	JWK	RPD	1B (HF) Mercury (Hg)	2022/07/04	0.72		%	20
8084197	JWK	Method Blank	1B (HF) Mercury (Hg)	2022/07/04	ND, RDL=0.03		ug	
8084197	JWK	RPD - Sample/Sample Dup	1B (HF) Mercury (Hg)	2022/07/04	0.63		%	20
8084198	SUK	Matrix Spike(SYG283)	Front Half (HF) Aluminum (AI)	2022/07/06		91	%	80 - 120
			Front Half (HF) Calcium (Ca)	2022/07/06		91	%	80 - 120
			Front Half (HF) Iron (Fe)	2022/07/06		95	%	80 - 120
			Front Half (HF) Lithium (Li)	2022/07/06		97	%	N/A
			Front Half (HF) Magnesium (Mg)	2022/07/06		89	%	80 - 120
			Front Half (HF) Sodium (Na)	2022/07/06		96	%	80 - 120
8084198	SUK	Spiked Blank	Front Half (HF) Aluminum (AI)	2022/07/06		92	%	90 - 110
			Front Half (HF) Calcium (Ca)	2022/07/06		93	%	90 - 110
			Front Half (HF) Iron (Fe)	2022/07/06		101	%	90 - 110
			Front Half (HF) Lithium (Li)	2022/07/06		102	%	90 - 110
			Front Half (HF) Magnesium (Mg)	2022/07/06		91	%	90 - 110
			Front Half (HF) Sodium (Na)	2022/07/06		99	%	90 - 110
8084198	SUK	RPD	Front Half (HF) Aluminum (AI)	2022/07/06	2.2		%	20
			Front Half (HF) Calcium (Ca)	2022/07/06	0		%	20
			Front Half (HF) Iron (Fe)	2022/07/06	4.9		%	20
			Front Half (HF) Lithium (Li)	2022/07/06	4.0		%	20
			Front Half (HF) Magnesium (Mg)	2022/07/06	1.8		%	20
			Front Half (HF) Sodium (Na)	2022/07/06	1.9		%	20
8084198	SUK	Method Blank	Front Half (HF) Aluminum (AI)	2022/07/06	ND, RDL=30		ug	
			Front Half (HF) Calcium (Ca)	2022/07/06	ND, RDL=120		ug	
			Front Half (HF) Iron (Fe)	2022/07/06	ND, RDL=12		ug	
			Front Half (HF) Lithium (Li)	2022/07/06	ND, RDL=6.0		ug	
			Front Half (HF) Magnesium (Mg)	2022/07/06	ND, RDL=40		ug	
			Front Half (HF) Sodium (Na)	2022/07/06	ND, RDL=60		ug	
8084198	SUK	RPD - Sample/Sample Dup	Front Half (HF) Aluminum (Al)	2022/07/06	0.31		%	20
	-	1 /	Front Half (HF) Calcium (Ca)	2022/07/06	NC		%	20
			Front Half (HF) Iron (Fe)	2022/07/06	9.6		%	20
			Front Half (HF) Lithium (Li)	2022/07/06	NC		%	20
			Front Half (HF) Magnesium (Mg)	2022/07/06	NC		%	20
			Front Half (HF) Sodium (Na)	2022/07/06	2.3		%	20
8084207	N R	Matrix Spike(SYG283)	Front Half (HF) Antimony (Sb)	2022/06/30		103	%	75 - 125
	-"	11	Front Half (HF) Arsenic (As)	2022/06/30		96	%	75 - 12 5
			Front Half (HF) Barium (Ba)	2022/06/30		100	%	75 - 125

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

			QUALITY ASSURANCE R	21 0111 (00111 0)				
QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Front Half (HF) Beryllium (Be)	2022/06/30		104	%	75 - 125
			Front Half (HF) Boron (B)	2022/06/30		98	%	75 - 125
			Front Half (HF) Cadmium (Cd)	2022/06/30		98	%	75 - 125
			Front Half (HF) Chromium (Cr)	2022/06/30		96	%	75 - 125
			Front Half (HF) Cobalt (Co)	2022/06/30		98	%	75 - 125
			Front Half (HF) Copper (Cu)	2022/06/30		97	%	75 - 125
			Front Half (HF) Lead (Pb)	2022/06/30		94	%	75 - 125
			Front Half (HF) Manganese (Mn)	2022/06/30		98	%	75 - 125
			Front Half (HF) Molybdenum (Mo)	2022/06/30		101	%	75 - 125
			Front Half (HF) Nickel (Ni)	2022/06/30		97	%	75 - 125
			Front Half (HF) Phosphorus (P)	2022/06/30		93	%	75 - 125
			Front Half (HF) Selenium (Se)	2022/06/30		94	%	75 - 125
			Front Half (HF) Silver (Ag)	2022/06/30		101	%	75 - 125
			Front Half (HF) Strontium (Sr)	2022/06/30		99	%	75 - 125
			Front Half (HF) Tin (Sn)	2022/06/30		102	%	75 - 125
			Front Half (HF) Titanium (Ti)	2022/06/30		92	%	75 - 125
			Front Half (HF) Vanadium (V)	2022/06/30		97	%	75 - 125
			Front Half (HF) Zinc (Zn)	2022/06/30		95	%	75 - 125
8084207	N_R	MS/MSD RPD	Front Half (HF) Antimony (Sb)	2022/06/30	1.2		%	20
			Front Half (HF) Arsenic (As)	2022/06/30	1.5		%	20
			Front Half (HF) Barium (Ba)	2022/06/30	0.080		%	20
			Front Half (HF) Beryllium (Be)	2022/06/30	0.64		%	20
			Front Half (HF) Boron (B)	2022/06/30	1.6		%	20
			Front Half (HF) Cadmium (Cd)	2022/06/30	0.11		%	20
			Front Half (HF) Chromium (Cr)	2022/06/30	1.2		%	20
			Front Half (HF) Cobalt (Co)	2022/06/30	1.6		%	20
			Front Half (HF) Copper (Cu)	2022/06/30	0.48		%	20
			Front Half (HF) Lead (Pb)	2022/06/30	1.9		%	20
			Front Half (HF) Manganese (Mn)	2022/06/30	1.4		%	20
			Front Half (HF) Molybdenum (Mo)	2022/06/30	0.56		%	20
			Front Half (HF) Nickel (Ni)	2022/06/30	0.59		%	20
			Front Half (HF) Phosphorus (P)	2022/06/30	0.19		%	20
			Front Half (HF) Selenium (Se)	2022/06/30	1.0		%	20
			Front Half (HF) Silver (Ag)	2022/06/30	0.069		%	20
			Front Half (HF) Strontium (Sr)	2022/06/30	1.4		%	20
			Front Half (HF) Tin (Sn)	2022/06/30	1.3		%	20
			Front Half (HF) Titanium (Ti)	2022/06/30	1.8		%	20
			Front Half (HF) Vanadium (V)	2022/06/30	0.74		%	20
			Front Half (HF) Zinc (Zn)	2022/06/30	1.2		%	20
8084207	N_R	Spiked Blank	Front Half (HF) Antimony (Sb)	2022/06/30		102	%	85 - 115
			Front Half (HF) Arsenic (As)	2022/06/30		97	%	85 - 115
			Front Half (HF) Barium (Ba)	2022/06/30		100	%	85 - 115
			Front Half (HF) Beryllium (Be)	2022/06/30		105	%	85 - 115
			Front Half (HF) Boron (B)	2022/06/30		103	%	85 - 115
			Front Half (HF) Cadmium (Cd)	2022/06/30		98	%	85 - 115
			Front Half (HF) Chromium (Cr)	2022/06/30		97	%	85 - 115
			Front Half (HF) Cobalt (Co)	2022/06/30		99	%	85 - 115
			Front Half (HF) Copper (Cu)	2022/06/30		99	%	85 - 115
			Front Half (HF) Lead (Pb)	2022/06/30		95	%	85 - 115
			Front Half (HF) Manganese (Mn)	2022/06/30		99	%	85 - 115

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Front Half (HF) Molybdenum (Mo)	2022/06/30	<u></u>	101	%	85 - 115
			Front Half (HF) Nickel (Ni)	2022/06/30		97	%	85 - 115
			Front Half (HF) Phosphorus (P)	2022/06/30		99	%	85 - 115
			Front Half (HF) Selenium (Se)	2022/06/30		96	%	85 - 115
			Front Half (HF) Silver (Ag)	2022/06/30		100	%	85 - 115
			Front Half (HF) Strontium (Sr)	2022/06/30		100	%	85 - 115
			Front Half (HF) Tin (Sn)	2022/06/30		101	%	85 - 115
			Front Half (HF) Titanium (Ti)	2022/06/30		94	%	85 - 115
			Front Half (HF) Vanadium (V)	2022/06/30		99	%	85 - 115
			Front Half (HF) Zinc (Zn)	2022/06/30		97	%	85 - 115
3084207	N_R	RPD	Front Half (HF) Antimony (Sb)	2022/06/30	0.27		%	20
			Front Half (HF) Arsenic (As)	2022/06/30	0.33		%	20
			Front Half (HF) Barium (Ba)	2022/06/30	0.35		%	20
			Front Half (HF) Beryllium (Be)	2022/06/30	0.60		%	20
			Front Half (HF) Boron (B)	2022/06/30	2.4		%	20
			Front Half (HF) Cadmium (Cd)	2022/06/30	0.42		%	20
			Front Half (HF) Chromium (Cr)	2022/06/30	0.24		%	20
			Front Half (HF) Cobalt (Co)	2022/06/30	1.4		%	20
			Front Half (HF) Copper (Cu)	2022/06/30	0.73		%	20
			Front Half (HF) Lead (Pb)	2022/06/30	1.4		%	20
			Front Half (HF) Manganese (Mn)	2022/06/30	0.16		%	20
			Front Half (HF) Molybdenum (Mo)	2022/06/30	0.46		%	20
			Front Half (HF) Nickel (Ni)	2022/06/30	0.38		%	20
			Front Half (HF) Phosphorus (P)	2022/06/30	0.40		%	20
			Front Half (HF) Selenium (Se)	2022/06/30	2.1		%	20
			Front Half (HF) Silver (Ag)	2022/06/30	1.4		%	20
			Front Half (HF) Strontium (Sr)	2022/06/30	0.77		%	20
			Front Half (HF) Tin (Sn)	2022/06/30	0.50		%	20
			Front Half (HF) Titanium (Ti)	2022/06/30	1.6		%	20
			Front Half (HF) Vanadium (V)	2022/06/30	0.60		%	20
			Front Half (HF) Zinc (Zn)	2022/06/30	0.41		%	20
8084207	N R	Method Blank	Front Half (HF) Antimony (Sb)	2022/06/30	ND,		ug	
.00 .20 .		memod Blank		2022/00/00	RDL=6.0		~6	
			Front Half (HF) Arsenic (As)	2022/06/30	ND,		ug	
			remerian (myraseme (ray	2022/00/00	RDL=1.6		~6	
			Front Half (HF) Barium (Ba)	2022/06/30	ND,		ug	
			, , , ,		RDL=2.4		Ü	
			Front Half (HF) Beryllium (Be)	2022/06/30	ND, RDL=0.36		ug	
			Front Half (HF) Boron (B)	2022/06/30	ND, RDL=60		ug	
			Front Half (HF) Cadmium (Cd)	2022/06/30	ND, RDL=0.36		ug	
			Front Half (HF) Chromium (Cr)	2022/06/30	ND, RDL=6.0		ug	
			Front Half (HF) Cobalt (Co)	2022/06/30	ND, RDL=0.36		ug	
			Front Half (HF) Copper (Cu)	2022/06/30	ND,		ug	
			Front Half (HF) Lead (Pb)	2022/06/30	RDL=3.6 ND, RDL=1.2		ug	

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QA/QC	1 14	OC T	Damagaatag	Data Anaharad	Malica	0/ D	LINUTC	001::
Batch	Init	QC Type	Parameter Front Half (HF) Manganese (Mn)	Date Analyzed 2022/06/30	Value ND,	% Recovery	UNITS	QC Limits
			Front Hair (HF) Manganese (Min)	2022/00/30	RDL=2.4		ug	
			Front Half (HF) Molybdenum (Mo)	2022/06/30	ND,		пα	
			Tront trail (iii) Wolybuenum (Wo)	2022/00/30	RDL=2.0		ug	
			Front Half (HF) Nickel (Ni)	2022/06/30	ND,		ug	
			Trone rian (in) theker (in)	2022/00/30	RDL=2.0		ω _В	
			Front Half (HF) Phosphorus (P)	2022/06/30	ND,		ug	
			(,	//	RDL=180		0	
			Front Half (HF) Selenium (Se)	2022/06/30	ND,		ug	
			, , , , , ,	, ,	RDL=4.0		Ü	
			Front Half (HF) Silver (Ag)	2022/06/30	ND,		ug	
			, , , ,		RDL=0.48		Ü	
			Front Half (HF) Strontium (Sr)	2022/06/30	ND,		ug	
					RDL=1.8		_	
			Front Half (HF) Tin (Sn)	2022/06/30	ND,		ug	
					RDL=2.4			
			Front Half (HF) Titanium (Ti)	2022/06/30	ND,		ug	
					RDL=6.0			
			Front Half (HF) Vanadium (V)	2022/06/30	ND,		ug	
					RDL=1.2			
			Front Half (HF) Zinc (Zn)	2022/06/30	ND,		ug	
					RDL=20			
8084207	N_R	RPD - Sample/Sample Dup	Front Half (HF) Antimony (Sb)	2022/06/30	NC		%	20
			Front Half (HF) Arsenic (As)	2022/06/30	NC		%	20
			Front Half (HF) Barium (Ba)	2022/06/30	0.83		%	20
			Front Half (HF) Beryllium (Be)	2022/06/30	NC		%	20
			Front Half (HF) Boron (B)	2022/06/30	NC		%	20
			Front Half (HF) Cadmium (Cd)	2022/06/30	NC		%	20
			Front Half (HF) Chromium (Cr)	2022/06/30	NC		%	20
			Front Half (HF) Cobalt (Co)	2022/06/30	NC		%	20
			Front Half (HF) Copper (Cu)	2022/06/30	NC		%	20
			Front Half (HF) Lead (Pb)	2022/06/30	NC		%	20
			Front Half (HF) Manganese (Mn)	2022/06/30	NC		%	20
			Front Half (HF) Molybdenum (Mo)	2022/06/30	0.041		%	20
			Front Half (HF) Nickel (Ni)	2022/06/30	4.3		%	20
			Front Half (HF) Phosphorus (P)	2022/06/30	NC		%	20
			Front Half (HF) Selenium (Se)	2022/06/30	NC		%	20
			Front Half (HF) Silver (Ag)	2022/06/30	2.9		%	20
			Front Half (HF) Strontium (Sr)	2022/06/30	NC		%	20
			Front Half (HF) Tin (Sn)	2022/06/30	5.9		%	20
			Front Half (HF) Titanium (Ti)	2022/06/30	6.7		%	20
			Front Half (HF) Vanadium (V)	2022/06/30	NC		%	20

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Front Half (HF) Zinc (Zn)	2022/06/30	1.1		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Reagent Blank: A blank matrix containing all reagents used in the analytical procedure. Used to determine any analytical contamination.

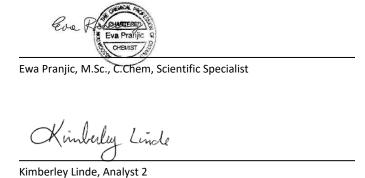
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Acrolein Recovery in the Spke was low due to nature of this analyte. This may represent a low bias for this analyte.
- (2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865 Sampler Initials: JDF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREAU

	CAPTATORE			neAl	R													37	311	
	6740 Campobello Rd	Toll	Free: 1-800-6	68-0639									E	CAM FC	D-0130	02 /3	F	Page	of	-
BUREAU VERITAS	Mississauga Ontario, L5N 2L www.bvlabs.com	8 F	Phone: (905) 8 Fax: (905) 8						<u> </u>				<u>පු</u>	ANALYS	SIS REC	UESTE	D ,		- 1	
	Company Name:	RWDI				·					9		$\frac{1}{2}$							
CLIENT NFORMATIC		kirk	East	2 ~				29	5	12	26	mobilited	0030							
	e-mail:	Kirk.e	souther	26.16M	$\frac{\mathcal{O}(r)}{c}$	(-1)	elph	usepa Nethod	0	A M	po	5/190							į	
SECTION	Address	900	9000	ARC E		<u> </u>	otpin	Ho	3	ļ	Method	جح	Method						ļ	
								Me	کے	25		430	مح	ŀ						
	Phone Sampled by	519-	400-5	221				4	7	Enr Grada	uspea		4	İ						
	Phone	1000	00	. Fax.	-			Tr.	5.50	5	2	CARB	usepa							
	Sampled by	:MO5/						3	3	17	3	2	Ě							
			Total Volume		Colle		Sample Collection													
- 0 1	ample ID	(2	Sampled	invirano 23	Da Ob/IS	_	Time													\neg
Storiago			/_/_	7	Q0/ 19		-+-	1/	V		-			_						
Stericy	cle M29 Dlank							_		1										
stericy cu	2 9060 71-21		 	18						1										
Stericyc	le suos Blanks	<u> </u>		6				<u> </u>		10						-		-		
Steri Cycl	e 11>13			6						<u> </u>	V	<u> </u>								
11	" - Blanks			3					ļ		V		ļ							
Stericyc	- C. C. C. C 1	>13		3								V				ļ				
11	" Bla	nka		1								1								
Steriosch		3	1 1	3									V							
ul	1 Blant	-		1		, –							/							
	10 17.		1 (1	1	5													

FAT Requirement
STD 10 Business day Rush 5 Business day * Rush 2 Business day * * need approval from Bureau
Veritas

PROJECT INFORMATION	
Project #: 2202865	
Name: 5teritole PO#: 2202865	
BV Quote #:	
BV Contact:	

REPORTING REQUIR	EMENTS
Summary Report only EDD	
Regulation	

Notes
Please note if these samples are "Industrial Hygiene" samples
If submitting dustfall samples, please indicate the diameter of the
jar opening in cm.

PROJECT SPECIFIC COMMENTS

M 26 - Ammonia, HCI, HF

send results also to Mosprudi. com

Client Signature: Affiliation:

COC-1031 (11/2019)

"III HOU	wew	
LOW		
Cition	77 20	

Received by: Affiliation:

150	X	10.	PIKT	151	NOH
UT.	ă	bS			
	57	a. []	7	,	CC

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Bureau Veritas Laboratories' standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms available at http://www.bvlabs.com/terms-and-conditions

12.4/12.2/14.8

Your P.O. #: 2202865 Your Project #: 2202865 Site Location: STERICYCLE

Your C.O.C. #: 34346

Attention: Kirk Easto

RWDI Air Inc 600 Southgate Drive Guelph, ON CANADA N1G 4P6

Report Date: 2022/08/05

Report #: R7241858 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C2G9416 Received: 2022/06/17, 17:55

Sample Matrix: Stack Sampling Train

Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chlorobenzenes in MM5 Trains (EPA M0010) (1)	4	2022/07/06	2022/07/28	BRL SOP-00202	In house (M0010)
Chlorophenols in MM5 Trains (EPA M0010) (2)	4	2022/07/06	2022/07/15	BRL SOP-00204	In house (M0010)
Dioxins/Furans in Air (Method 23)	4	2022/07/06	2022/07/26	BRL SOP-00404	EPA M23/23A m
PCBs in a Sampling Train (1668Amod) (3)	4	2022/07/28	2022/07/27	BRL SOP-00408	EPA 1668A m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Analysis was conducted according to Bureau Veritas method BRL SOP-00202 and modified where applicable based on the sample matrix. This test is not Standards Council of Canada accredited for this matrix.
- (2) Analysis was conducted according to Bureau Veritas method BRL SOP-00204 and modified where applicable based on the sample matrix. This test is not Standards Council of Canada accredited for this matrix.
- (3) Analysis was conducted according to Bureau Veritas method BRL SOP-00408 and modified where applicable based on the sample matrix. This test is not Standards Council of Canada accredited for this matrix.

Your P.O. #: 2202865 Your Project #: 2202865 Site Location: STERICYCLE

Your C.O.C. #: 34346

Attention: Kirk Easto

RWDI Air Inc 600 Southgate Drive Guelph, ON CANADA N1G 4P6

Report Date: 2022/08/05

Report #: R7241858 Version: 1 - Partial

CERTIFICATE OF ANALYSIS – PARTIAL RESULTS

BUREAU VERITAS JOB #: C2G9416 Received: 2022/06/17, 17:55

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Clayton Johnson, CET LEAD-Air Toxics, Source Evaluation

Email: Clayton.Johnson@bureauveritas.com

Phone# (905)817-5769

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports.

For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQUIVALENCY		# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
NDMA/D/F/MIB/GEO								
33'44'-TetraCB-(77)	ng	ND	0.066	0.60	0.00010	0.0000066		8135911
344'5-TetraCB-(81)	ng	ND	0.062	0.60	0.00030	0.000019		8135911
233'44'-PentaCB-(105)	ng	ND	0.024	0.60	0.000030	0.00000072		8135911
2344'5-PentaCB-(114)	ng	ND	0.024	0.60	0.000030	0.00000072		8135911
23'44'5-PentaCB-(118)	ng	0.13	0.024	0.60	0.000030	0.0000039		8135911
23'44'5'-PentaCB-(123)	ng	ND	0.026	0.60	0.000030	0.00000078		8135911
33'44'5-PentaCB-(126)	ng	ND	0.023	0.60	0.10	0.0023		8135911
HexaCB-(156)+(157)	ng	ND	0.036	1.2	0.000030	0.0000011		8135911
23'44'55'-HexaCB-(167)	ng	ND	0.035	0.60	0.000030	0.0000011		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.036	0.60	0.030	0.0011		8135911
233'44'55'-HeptaCB-(189)	ng	ND	0.048	0.60	0.000030	0.0000014		8135911
Monochlorobiphenyl	ng	ND	0.019	N/A			0	8135911
Dichlorobiphenyl	ng	ND	0.031	N/A			0	8135911
Trichlorobiphenyl	ng	ND	0.075	N/A			0	8135911
Tetrachlorobiphenyl	ng	0.12	0.076	N/A			1	8135911
Pentachlorobiphenyl	ng	0.24	0.036	N/A			2	8135911
Hexachlorobiphenyl	ng	0.40	0.086	N/A			2	8135911
Heptachlorobiphenyl	ng	ND	0.052	N/A			0	8135911
Octachlorobiphenyl	ng	ND	0.062	N/A			0	8135911
Nonachlorobiphenyl	ng	ND	0.063	N/A			0	8135911
Decachlorobiphenyl	ng	ND	0.056	N/A			0	8135911
Total PCB	ng	0.76	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.0034		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	81						8135911
C13-233'44'5-HexaCB-(156)	%	82						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

eau Veritas Job #: C2G9416 RWDI A

RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IIVALENCY	# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'5'-HexaCB-(157)	%	82						8135911
C13-233'44'-PentaCB-(105)	%	75						8135911
C13-23'44'55'-HexaCB-(167)	%	81						8135911
C13-2344'5-PentaCB-(114)	%	65						8135911
C13-23'44'5-PentaCB-(118)	%	71						8135911
C13-2'344'5-PentaCB-(123)	%	71						8135911
C13-33'44'55'-HexaCB-(169)	%	72						8135911
C13-33'44'5-PentaCB-(126)	%	70						8135911
C13-33'44'-TetraCB-(77)	%	63						8135911
C13-344'5-TetraCB-(81)	%	58						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
NDMA/D/F/MIB/GEO								
33'44'-TetraCB-(77)	ng	6.4	0.070	0.60	0.00010	0.00064		8135911
344'5-TetraCB-(81)	ng	ND (1)	0.16	0.60	0.00030	0.000048		8135911
233'44'-PentaCB-(105)	ng	15	0.037	0.60	0.000030	0.00045		8135911
2344'5-PentaCB-(114)	ng	0.94	0.037	0.60	0.000030	0.000028		8135911
23'44'5-PentaCB-(118)	ng	40	0.036	0.60	0.000030	0.0012		8135911
23'44'5'-PentaCB-(123)	ng	0.47	0.040	0.60	0.000030	0.000014		8135911
33'44'5-PentaCB-(126)	ng	0.57	0.036	0.60	0.10	0.057		8135911
HexaCB-(156)+(157)	ng	3.2	0.041	1.2	0.000030	0.000096		8135911
23'44'55'-HexaCB-(167)	ng	1.3	0.040	0.60	0.000030	0.000039		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.041	0.60	0.030	0.0012		8135911
233'44'55'-HeptaCB-(189)	ng	ND	0.076	0.60	0.000030	0.0000023		8135911
Monochlorobiphenyl	ng	0.51	0.028	N/A			2	8135911
Dichlorobiphenyl	ng	1.2	0.031	N/A			2	8135911
Trichlorobiphenyl	ng	1.9	0.064	N/A			7	8135911
Tetrachlorobiphenyl	ng	22	0.12	N/A			12	8135911
Pentachlorobiphenyl	ng	180	0.085	N/A			19	8135911
Hexachlorobiphenyl	ng	150	0.14	N/A			21	8135911
Heptachlorobiphenyl	ng	12	0.081	N/A			12	8135911
Octachlorobiphenyl	ng	0.35	0.086	N/A			1	8135911
Nonachlorobiphenyl	ng	ND	0.10	N/A			0	8135911
Decachlorobiphenyl	ng	ND	0.14	N/A			0	8135911
Total PCB	ng	370	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.061		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	89						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'5-HexaCB-(156)	%	69						8135911
C13-233'44'5'-HexaCB-(157)	%	69						8135911
C13-233'44'-PentaCB-(105)	%	69						8135911
C13-23'44'55'-HexaCB-(167)	%	72						8135911
C13-2344'5-PentaCB-(114)	%	64						8135911
C13-23'44'5-PentaCB-(118)	%	73						8135911
C13-2'344'5-PentaCB-(123)	%	73						8135911
C13-33'44'55'-HexaCB-(169)	%	54						8135911
C13-33'44'5-PentaCB-(126)	%	61						8135911
C13-33'44'-TetraCB-(77)	%	64						8135911
C13-344'5-TetraCB-(81)	%	64						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG392						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
NDMA/D/F/MIB/GEO								
33'44'-TetraCB-(77)	ng	75	0.062	0.60	0.00010	0.0075		8135911
344'5-TetraCB-(81)	ng	3.2	0.058	0.60	0.00030	0.00096		8135911
233'44'-PentaCB-(105)	ng	150	0.059	0.60	0.000030	0.0045		8135911
2344'5-PentaCB-(114)	ng	9.6	0.060	0.60	0.000030	0.00029		8135911
23'44'5-PentaCB-(118)	ng	440	0.058	0.60	0.000030	0.013		8135911
23'44'5'-PentaCB-(123)	ng	6.0	0.065	0.60	0.000030	0.00018		8135911
33'44'5-PentaCB-(126)	ng	3.3	0.058	0.60	0.10	0.33		8135911
HexaCB-(156)+(157)	ng	29	0.058	1.2	0.000030	0.00087		8135911
23'44'55'-HexaCB-(167)	ng	12	0.057	0.60	0.000030	0.00036		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.058	0.60	0.030	0.0017		8135911
233'44'55'-HeptaCB-(189)	ng	0.39	0.053	0.60	0.000030	0.000012		8135911
Monochlorobiphenyl	ng	1.8	0.018	N/A			3	8135911
Dichlorobiphenyl	ng	22	0.058	N/A			3	8135911
Trichlorobiphenyl	ng	23	0.060	N/A			12	8135911
Tetrachlorobiphenyl	ng	330	0.083	N/A			20	8135911
Pentachlorobiphenyl	ng	2300	0.065	N/A			24	8135911
Hexachlorobiphenyl	ng	1500	0.54	N/A			24	8135911
Heptachlorobiphenyl	ng	110	0.056	N/A			18	8135911
Octachlorobiphenyl	ng	9.6	0.061	N/A			9	8135911
Nonachlorobiphenyl	ng	1.7	0.064	N/A			3	8135911
Decachlorobiphenyl	ng	0.25	0.061	N/A			1	8135911
Total PCB	ng	4300	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.36		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	85						8135911
C13-233'44'5-HexaCB-(156)	%	84						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

eau Veritas Job #: C2G9416 RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG392						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'5'-HexaCB-(157)	%	84						8135911
C13-233'44'-PentaCB-(105)	%	92						8135911
C13-23'44'55'-HexaCB-(167)	%	92						8135911
C13-2344'5-PentaCB-(114)	%	86						8135911
C13-23'44'5-PentaCB-(118)	%	97						8135911
C13-2'344'5-PentaCB-(123)	%	96						8135911
C13-33'44'55'-HexaCB-(169)	%	75						8135911
C13-33'44'5-PentaCB-(126)	%	86						8135911
C13-33'44'-TetraCB-(77)	%	82						8135911
C13-344'5-TetraCB-(81)	%	83						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
NDMA/D/F/MIB/GEO								
33'44'-TetraCB-(77)	ng	74	0.038	0.60	0.00010	0.0074		8135911
344'5-TetraCB-(81)	ng	3.4	0.036	0.60	0.00030	0.0010		8135911
233'44'-PentaCB-(105)	ng	150	0.092	0.60	0.000030	0.0045		8135911
2344'5-PentaCB-(114)	ng	9.2	0.094	0.60	0.000030	0.00028		8135911
23'44'5-PentaCB-(118)	ng	430	0.091	0.60	0.000030	0.013		8135911
23'44'5'-PentaCB-(123)	ng	9.3	0.10	0.60	0.000030	0.00028		8135911
33'44'5-PentaCB-(126)	ng	3.6	0.090	0.60	0.10	0.36		8135911
HexaCB-(156)+(157)	ng	29	0.059	1.2	0.000030	0.00087		8135911
23'44'55'-HexaCB-(167)	ng	12	0.059	0.60	0.000030	0.00036		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.060	0.60	0.030	0.0018		8135911
233'44'55'-HeptaCB-(189)	ng	0.33	0.051	0.60	0.000030	0.0000099		8135911
Monochlorobiphenyl	ng	3.7	0.021	N/A			3	8135911
Dichlorobiphenyl	ng	24	0.054	N/A			5	8135911
Trichlorobiphenyl	ng	26	0.072	N/A			15	8135911
Tetrachlorobiphenyl	ng	350	0.085	N/A			24	8135911
Pentachlorobiphenyl	ng	2300	0.10	N/A			25	8135911
Hexachlorobiphenyl	ng	1600	0.28	N/A			27	8135911
Heptachlorobiphenyl	ng	110	0.070	N/A			18	8135911
Octachlorobiphenyl	ng	9.6	0.092	N/A			9	8135911
Nonachlorobiphenyl	ng	2.0	0.077	N/A			3	8135911
Decachlorobiphenyl	ng	0.24	0.074	N/A			1	8135911
Total PCB	ng	4400	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.39		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	91						8135911
C13-233'44'5-HexaCB-(156)	%	82						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'5'-HexaCB-(157)	%	82						8135911
C13-233'44'-PentaCB-(105)	%	89						8135911
C13-23'44'55'-HexaCB-(167)	%	88						8135911
C13-2344'5-PentaCB-(114)	%	88						8135911
C13-23'44'5-PentaCB-(118)	%	95						8135911
C13-2'344'5-PentaCB-(123)	%	94						8135911
C13-33'44'55'-HexaCB-(169)	%	62						8135911
C13-33'44'5-PentaCB-(126)	%	79						8135911
C13-33'44'-TetraCB-(77)	%	74						8135911
C13-344'5-TetraCB-(81)	%	78						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390	SYG391	SYG392	SYG393		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	UNITS	SVOC- BLANK	SVOC- TEST 1	SVOC- TEST 2	SVOC- TEST 3	RDL	QC Batch
Chlorobenzenes							
1,2,3,4-Tetrachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2,3,5+1,2,4,5-Tetrachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2,3-Trichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2,4-Trichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2-Dichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,3,5-Trichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,3-Dichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,4-Dichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
Hexachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
Pentachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
Phenolics				l .	I .		I
2,3,4,5-Tetrachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,4,6-Tetrachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,4-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,5,6-Tetrachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,5-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,6-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,4 + 2,5-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,4,5-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,4,6-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,6-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2-Chlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3,4,5-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3,4-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3,5-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3-Chlorophenol	ug	ND	ND	ND	ND	0.30	8093102
4-Chlorophenol	ug	ND	ND	ND	ND	0.30	8093102
Pentachlorophenol	ug	ND	ND	ND	ND		8093102
Surrogate Recovery (%)						•	
13C6-Hexachlorobenzene	%	89	83	84	85		8093092
2H3-1,2,3-Trichlorobenzene (FS)	%	88	83	80	79		8093092
2H3-1,2,4-Trichlorobenzene	%	76	68	68	67		8093092
PDI - Papartable Detection Limit		1	1	1	1	<u> </u>	ı

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390	SYG391	SYG392	SYG393		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	UNITS	SVOC- BLANK	SVOC- TEST 1	SVOC- TEST 2	SVOC- TEST 3	RDL	QC Batch
2H4-1,3-Dichlorobenzene	%	70	58	57	58		8093092
2H4-1,4-Dichlorobenzene (FS)	%	84	72	70	58		8093092
D3-2,4-Dichlorophenol	%	77	95	88	100		8093102
D6-Pentachlorophenol	%	78	105	93	108		8093102

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	JIVALENCY	# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg	ND	8.6	60	1.00	8.60		8112252
1,2,3,7,8-Penta CDD *	pg	ND	10	60	1.00	10.0		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	8.2	60	0.100	0.820		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	7.1	60	0.100	0.710		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	7.6	60	0.100	0.760		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	7.5	60	0.0100	0.0750		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	ND	8.8	600	0.000300	0.00264		8112252
Total Tetra CDD *	pg	ND	8.6	60			0	8112252
Total Penta CDD *	pg	ND	10	60			0	8112252
Total Hexa CDD *	pg	ND	7.6	60			0	8112252
Total Hepta CDD *	pg	ND	7.5	60			0	8112252
2,3,7,8-Tetra CDF **	pg	ND	9.7	60	0.100	0.970		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.1	60	0.0300	0.273		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.0	60	0.300	2.70		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	7.1	60	0.100	0.710		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	6.5	60	0.100	0.650		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	7.4	60	0.100	0.740		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	8.1	60	0.100	0.810		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	6.5	60	0.0100	0.0650		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	8.2	60	0.0100	0.0820		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	8.4	600	0.000300	0.00252		8112252
Total Tetra CDF **	pg	ND	9.7	60			0	8112252
Total Penta CDF **	pg	ND	9.0	60			0	8112252
Total Hexa CDF **	pg	ND	7.2	60			0	8112252
Total Hepta CDF **	pg	ND	7.3	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					28.0		
		•						

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

	1	ı			Т			
Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQUI	VALENCY	# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)	•	<u> </u>	-		•			
C13-1234678 HeptaCDD *	%	96						8112252
C13-1234678 HeptaCDF **	%	84						8112252
C13-123478 HexaCDD *	%	107						8112252
C13-123478 HexaCDF **	%	112						8112252
C13-1234789 HeptaCDF **	%	102						8112252
C13-123678 HexaCDD *	%	103						8112252
C13-123678 HexaCDF **	%	70						8112252
C13-12378 PentaCDD *	%	105						8112252
C13-12378 PentaCDF **	%	91						8112252
C13-123789 HexaCDF **	%	90						8112252
C13-23478 PentaCDF **	%	106						8112252
C13-2378 TetraCDD *	%	109						8112252
C13-2378 TetraCDF **	%	94						8112252
C13-Octachlorodibenzo-p-Dioxin	%	77						8112252
Cl37-2378 TetraCDD *	%	89						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg	ND	11	60	1.00	11.0		8112252
1,2,3,7,8-Penta CDD *	pg	ND	9.1	60	1.00	9.10		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	7.7	60	0.100	0.770		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	6.8	60	0.100	0.680		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	7.2	60	0.100	0.720		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	9.0	60	0.0100	0.0900		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	ND	12	600	0.000300	0.00360		8112252
Total Tetra CDD *	pg	ND	11	60			0	8112252
Total Penta CDD *	pg	ND	9.1	60			0	8112252
Total Hexa CDD *	pg	ND	7.2	60			0	8112252
Total Hepta CDD *	pg	ND	9.0	60			0	8112252
2,3,7,8-Tetra CDF **	pg	ND	9.7	60	0.100	0.970		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.7	60	0.0300	0.291		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.6	60	0.300	2.88		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	6.8	60	0.100	0.680		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	6.2	60	0.100	0.620		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	7.1	60	0.100	0.710		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	7.8	60	0.100	0.780		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	9.2	60	0.0100	0.0920		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	12	60	0.0100	0.120		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	12	600	0.000300	0.00360		8112252
Total Tetra CDF **	pg	ND	9.7	60			0	8112252
Total Penta CDF **	pg	ND	9.6	60			0	8112252
Total Hexa CDF **	pg	ND	6.9	60			0	8112252
Total Hepta CDF **	pg	ND	10	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					29.5		

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)								
C13-1234678 HeptaCDD *	%	88						8112252
C13-1234678 HeptaCDF **	%	75						8112252
C13-123478 HexaCDD *	%	105						8112252
C13-123478 HexaCDF **	%	115						8112252
C13-1234789 HeptaCDF **	%	98						8112252
C13-123678 HexaCDD *	%	103						8112252
C13-123678 HexaCDF **	%	67						8112252
C13-12378 PentaCDD *	%	100						8112252
C13-12378 PentaCDF **	%	89						8112252
C13-123789 HexaCDF **	%	92						8112252
C13-23478 PentaCDF **	%	103						8112252
C13-2378 TetraCDD *	%	106						8112252
C13-2378 TetraCDF **	%	89						8112252
C13-Octachlorodibenzo-p-Dioxin	%	59						8112252
Cl37-2378 TetraCDD *	%	91						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Sampling Date 2022/06/17	
UNITS SVOC- TEST EDL RDL TEF (2005 WHO) TEQ(DL) Isomers	1
Dioxins & Furans 2 EDL RDL TEF (2005 WHO) TEQ(DL) Isomers	
2,3,7,8-Tetra CDD * pg ND 11 60 1.00 11.0 1,2,3,7,8-Penta CDD * pg ND 8.2 60 1.00 8.20 1,2,3,4,7,8-Hexa CDD * pg ND 8.6 60 0.100 0.860 1,2,3,6,7,8-Hexa CDD * pg ND 7.5 60 0.100 0.750 1,2,3,7,8,9-Hexa CDD * pg ND 8.0 60 0.100 0.800 1,2,3,4,6,7,8-Hepta CDD * pg ND 6.9 60 0.0100 0.0690	QC Batch
1,2,3,7,8-Penta CDD * pg ND 8.2 60 1.00 8.20 1,2,3,4,7,8-Hexa CDD * pg ND 8.6 60 0.100 0.860 1,2,3,6,7,8-Hexa CDD * pg ND 7.5 60 0.100 0.750 1,2,3,7,8,9-Hexa CDD * pg ND 8.0 60 0.100 0.800 1,2,3,4,6,7,8-Hepta CDD * pg ND 6.9 60 0.0100 0.0690	
1,2,3,4,7,8-Hexa CDD * pg ND 8.6 60 0.100 0.860 1,2,3,6,7,8-Hexa CDD * pg ND 7.5 60 0.100 0.750 1,2,3,7,8,9-Hexa CDD * pg ND 8.0 60 0.100 0.800 1,2,3,4,6,7,8-Hepta CDD * pg ND 6.9 60 0.0100 0.0690	8112252
1,2,3,6,7,8-Hexa CDD * pg ND 7.5 60 0.100 0.750 1,2,3,7,8,9-Hexa CDD * pg ND 8.0 60 0.100 0.800 1,2,3,4,6,7,8-Hepta CDD * pg ND 6.9 60 0.0100 0.0690	8112252
1,2,3,7,8,9-Hexa CDD * pg ND 8.0 60 0.100 0.800 1,2,3,4,6,7,8-Hepta CDD * pg ND 6.9 60 0.0100 0.0690	8112252
1,2,3,4,6,7,8-Hepta CDD * pg ND 6.9 60 0.0100 0.0690	8112252
	8112252
1,2,3,4,6,7,8,9-Octa CDD * pg 22 10 600 0.000300 0.00660	8112252
	8112252
Total Tetra CDD * pg 60 11 60 2	8112252
Total Penta CDD * pg ND (1) 27 60 0	8112252
Total Hexa CDD * pg 20.7 8.0 60 1	8112252
Total Hepta CDD * pg ND (2) 12 60 0	8112252
2,3,7,8-Tetra CDF ** pg 17 11 60 0.100 1.70	8112252
1,2,3,7,8-Penta CDF ** pg ND 9.9 60 0.0300 0.297	8112252
2,3,4,7,8-Penta CDF ** pg ND 9.9 60 0.300 2.97	8112252
1,2,3,4,7,8-Hexa CDF ** pg ND 11 60 0.100 1.10	8112252
1,2,3,6,7,8-Hexa CDF ** pg ND 9.7 60 0.100 0.970	8112252
2,3,4,6,7,8-Hexa CDF ** pg ND 11 60 0.100 1.10	8112252
1,2,3,7,8,9-Hexa CDF ** pg ND 12 60 0.100 1.20	8112252
1,2,3,4,6,7,8-Hepta CDF ** pg ND 8.8 60 0.0100 0.0880	8112252
1,2,3,4,7,8,9-Hepta CDF ** pg ND 11 60 0.0100 0.110	8112252
1,2,3,4,6,7,8,9-Octa CDF ** pg ND 12 600 0.000300 0.00360	

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

(2) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Bureau Veritas Job #: C2G9416 RWDI Air Inc Report Date: 2022/08/05 Client Project

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG392						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Tetra CDF **	pg	37	11	60			2	8112252
Total Penta CDF **	pg	ND (1)	17	60			0	8112252
Total Hexa CDF **	pg	ND	11	60			0	8112252
Total Hepta CDF **	pg	ND	9.8	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					31.2		
Surrogate Recovery (%)								
C13-1234678 HeptaCDD *	%	66						8112252
C13-1234678 HeptaCDF **	%	57						8112252
C13-123478 HexaCDD *	%	117						8112252
C13-123478 HexaCDF **	%	117						8112252
C13-1234789 HeptaCDF **	%	94						8112252
C13-123678 HexaCDD *	%	79						8112252
C13-123678 HexaCDF **	%	55						8112252
C13-12378 PentaCDD *	%	86						8112252
C13-12378 PentaCDF **	%	72						8112252
C13-123789 HexaCDF **	%	75						8112252
C13-23478 PentaCDF **	%	107						8112252
C13-2378 TetraCDD *	%	86						8112252
C13-2378 TetraCDF **	%	71						8112252
C13-Octachlorodibenzo-p-Dioxin	%	42						8112252
Cl37-2378 TetraCDD *	%	88						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

* CDD = Chloro Dibenzo-p-Dioxin

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	005 WHO) TEQ(DL)		QC Batch
Dioxins & Furans								
2,3,7,8-Tetra CDD *	pg	ND	9.4	60	1.00	9.40		8112252
1,2,3,7,8-Penta CDD *	pg	ND	16	60	1.00	16.0		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	15	60	0.100	1.50		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	13	60	0.100	1.30		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	13	60	0.100	1.30		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	10	60	0.0100	0.100		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	ND	18	600	0.000300	0.00540		8112252
Total Tetra CDD *	pg	68.3	9.4	60			2	8112252
Total Penta CDD *	pg	ND (1)	35	60			0	8112252
Total Hexa CDD *	pg	ND	14	60			0	8112252
Total Hepta CDD *	pg	ND	10	60			0	8112252
2,3,7,8-Tetra CDF **	pg	ND	8.3	60	0.100	0.830		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.8	60	0.0300	0.294		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.7	60	0.300	2.91		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	12	60	0.100	1.20		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	11	60	0.100	1.10		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	13	60	0.100	1.30		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	14	60	0.100	1.40		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	7.6	60	0.0100	0.0760		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	9.5	60	0.0100	0.0950		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	19	600	0.000300	0.00570		8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

t: C2G9416 RWDI Air Inc

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Tetra CDF **	pg	ND	8.3	60			0	8112252
Total Penta CDF **	pg	ND	9.8	60			0	8112252
Total Hexa CDF **	pg	ND	13	60			0	8112252
Total Hepta CDF **	pg	ND	8.5	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					38.8		
Surrogate Recovery (%)							•	
C13-1234678 HeptaCDD *	%	55						8112252
C13-1234678 HeptaCDF **	%	49						8112252
C13-123478 HexaCDD *	%	102						8112252
C13-123478 HexaCDF **	%	117						8112252
C13-1234789 HeptaCDF **	%	85						8112252
C13-123678 HexaCDD *	%	87						8112252
C13-123678 HexaCDF **	%	51						8112252
C13-12378 PentaCDD *	%	70						8112252
C13-12378 PentaCDF **	%	55						8112252
C13-123789 HexaCDF **	%	71						8112252
C13-23478 PentaCDF **	%	117						8112252
C13-2378 TetraCDD *	%	83						8112252
C13-2378 TetraCDF **	%	70						8112252
C13-Octachlorodibenzo-p-Dioxin	%	31						8112252
Cl37-2378 TetraCDD *	%	86						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

* CDD = Chloro Dibenzo-p-Dioxin

Client Project #: 2202865 Site Location: STERICYCLE Your P.O. #: 2202865

GENERAL COMMENTS

Results relate only to the items tested	

QUALITY ASSURANCE REPORT

RWDI Air Inc

Client Project #: 2202865

Site Location: STERICYCLE

Your P.O. #: 2202865

			SPIKED	Method B	lank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8093092	13C6-Hexachlorobenzene	2022/07/28	86	30 - 130	88	%		
8093092	2H3-1,2,4-Trichlorobenzene	2022/07/28	64	30 - 130	69	%		
8093092	2H4-1,3-Dichlorobenzene	2022/07/28	67	30 - 130	67	%		
8093102	D3-2,4-Dichlorophenol	2022/07/15	96	20 - 130	125	%		
8112252	C13-1234678 HeptaCDD	2022/07/20	80	25 - 130	77	%		
8112252	C13-1234678 HeptaCDF	2022/07/20	76	25 - 130	71	%		
8112252	C13-123678 HexaCDD	2022/07/20	104	40 - 130	106	%		
8112252	C13-123678 HexaCDF	2022/07/20	80	40 - 130	74	%		
8112252	C13-12378 PentaCDD	2022/07/20	101	40 - 130	91	%		
8112252	C13-12378 PentaCDF	2022/07/20	81	40 - 130	74	%		
8112252	C13-123789 HexaCDF	2022/07/20	75	40 - 130	81	%		
8112252	C13-2378 TetraCDD	2022/07/20	104	40 - 130	99	%		
8112252	C13-2378 TetraCDF	2022/07/20	90	40 - 130	82	%		
8112252	C13-Octachlorodibenzo-p-Dioxin	2022/07/20	44	25 - 130	43	%		
8135911	C13-233'44'55'-HeptaCB-(189)	2022/07/27	86	30 - 140	90	%		
8135911	C13-233'44'5-HexaCB-(156)	2022/07/27	77	30 - 140	81	%		
8135911	C13-233'44'5'-HexaCB-(157)	2022/07/27	77	30 - 140	81	%		
8135911	C13-233'44'-PentaCB-(105)	2022/07/27	74	30 - 140	76	%		
8135911	C13-23'44'55'-HexaCB-(167)	2022/07/27	78	30 - 140	82	%		
8135911	C13-2344'5-PentaCB-(114)	2022/07/27	60	30 - 140	64	%		
8135911	C13-23'44'5-PentaCB-(118)	2022/07/27	70	30 - 140	72	%		
8135911	C13-2'344'5-PentaCB-(123)	2022/07/27	71	30 - 140	68	%		
8135911	C13-33'44'55'-HexaCB-(169)	2022/07/27	63	30 - 140	72	%		
8135911	C13-33'44'5-PentaCB-(126)	2022/07/27	69	30 - 140	67	%		
8135911	C13-33'44'-TetraCB-(77)	2022/07/27	61	30 - 140	60	%		
8135911	C13-344'5-TetraCB-(81)	2022/07/27	58	30 - 140	56	%		
8093092	1,2,3,4-Tetrachlorobenzene	2022/07/28	81	50 - 150	ND, RDL=0.30	ug	3.1	50
8093092	1,2,3,5+1,2,4,5-Tetrachlorobenzene	2022/07/28	78	50 - 150	ND, RDL=0.30	ug	5.2	50
8093092	1,2,3-Trichlorobenzene	2022/07/28	77	50 - 150	ND, RDL=0.30	ug	3.9	50
8093092	1,2,4-Trichlorobenzene	2022/07/28	65	50 - 150	ND, RDL=0.30	ug	2.4	50
8093092	1,2-Dichlorobenzene	2022/07/28	70	50 - 150	ND, RDL=0.30	ug	1.8	50

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Air Inc

Client Project #: 2202865

Site Location: STERICYCLE

Your P.O. #: 2202865

			SPIKED	BLANK	Method Bl	lank	RPI)	
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8093092	1,3,5-Trichlorobenzene	2022/07/28	71	50 - 150	ND, RDL=0.30	ug	3.1	50	
8093092	1,3-Dichlorobenzene	2022/07/28	67	50 - 150	ND, RDL=0.30	ug	6.2	50	
8093092	1,4-Dichlorobenzene	2022/07/28	93	50 - 150	ND, RDL=0.30	ug	0.36	50	
8093092	Hexachlorobenzene	2022/07/28	77	50 - 150	ND, RDL=0.30	ug	2.4	50	
8093092	Pentachlorobenzene	2022/07/28	79	50 - 150	ND, RDL=0.30	ug	6.7	50	
8093102	2,3,4,5-Tetrachlorophenol	2022/07/15	107	22 - 134	ND, RDL=0.30	ug	5.5	50	
8093102	2,3,4,6-Tetrachlorophenol	2022/07/15	114	22 - 134	ND, RDL=0.30	ug	7.7	50	
8093102	2,3,4-Trichlorophenol	2022/07/15	115	22 - 134	ND, RDL=0.30	ug	8.6	50	
8093102	2,3,5,6-Tetrachlorophenol	2022/07/15	125	22 - 134	ND, RDL=0.30	ug	8.1	50	
8093102	2,3,5-Trichlorophenol	2022/07/15	107	22 - 134	ND, RDL=0.30	ug	8.9	50	
8093102	2,3,6-Trichlorophenol	2022/07/15	108	22 - 134	ND, RDL=0.30	ug	8.5	50	
8093102	2,3-Dichlorophenol	2022/07/15	102	22 - 134	ND, RDL=0.30	ug	9.2	50	
8093102	2,4 + 2,5-Dichlorophenol	2022/07/15	102	22 - 134	ND, RDL=0.30	ug	9.9	50	
8093102	2,4,5-Trichlorophenol	2022/07/15	112	22 - 134	ND, RDL=0.30	ug	9.3	50	
8093102	2,4,6-Trichlorophenol	2022/07/15	110	22 - 134	ND, RDL=0.30	ug	10	50	
8093102	2,6-Dichlorophenol	2022/07/15	105	22 - 134	ND, RDL=0.30	ug	9.9	50	
8093102	2-Chlorophenol	2022/07/15	89	22 - 134	ND, RDL=0.30	ug	12	50	
8093102	3,4,5-Trichlorophenol	2022/07/15	115	22 - 134	ND, RDL=0.30	ug	7.7	50	
8093102	3,4-Dichlorophenol	2022/07/15	104	22 - 134	ND, RDL=0.30	ug	9.0	50	
8093102	3,5-Dichlorophenol	2022/07/15	114	22 - 134	ND, RDL=0.30	ug	9.2	50	
8093102	3-Chlorophenol	2022/07/15	82	22 - 134	ND, RDL=0.30	ug	8.7	50	
8093102	4-Chlorophenol	2022/07/15	109	22 - 134	ND, RDL=0.30	ug	8.5	50	
8093102	Pentachlorophenol	2022/07/15	138 (1)	22 - 134	ND, RDL=0.30	ug	6.7	50	
8112252	1,2,3,4,6,7,8,9-Octa CDD	2022/07/20	104	80 - 140	ND, EDL=8.8	pg	0	20	
8112252	1,2,3,4,6,7,8,9-Octa CDF	2022/07/20	100	80 - 140	ND, EDL=9.4	pg	0	20	
8112252	1,2,3,4,6,7,8-Hepta CDD	2022/07/20	95	80 - 140	ND, EDL=11	pg	2.1	20	
8112252	1,2,3,4,6,7,8-Hepta CDF	2022/07/20	101	80 - 140	ND, EDL=11	pg	13	20	
8112252	1,2,3,4,7,8,9-Hepta CDF	2022/07/20	86	80 - 140	ND, EDL=13	pg	13	20	
8112252	1,2,3,4,7,8-Hexa CDD	2022/07/20	100	80 - 140	ND, EDL=9.5	pg	2.0	20	
8112252	1,2,3,4,7,8-Hexa CDF	2022/07/20	109	80 - 140	ND, EDL=8.5	pg	2.8	20	
8112252	1,2,3,6,7,8-Hexa CDD	2022/07/20	119	80 - 140	ND, EDL=8.3	pg	2.6	20	

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Air Inc

Client Project #: 2202865

Site Location: STERICYCLE

Your P.O. #: 2202865

			SPIKED	BLANK	Method B	lank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
8112252	1,2,3,6,7,8-Hexa CDF	2022/07/20	119	80 - 140	ND, EDL=7.8	pg	6.1	20	
8112252	1,2,3,7,8,9-Hexa CDD	2022/07/20	119	80 - 140	ND, EDL=8.8	pg	8.8	20	
8112252	1,2,3,7,8,9-Hexa CDF	2022/07/20	116	80 - 140	ND, EDL=9.7	pg	1.7	20	
8112252	1,2,3,7,8-Penta CDD	2022/07/20	101	80 - 140	ND, EDL=8.2	pg	4.8	20	
8112252	1,2,3,7,8-Penta CDF	2022/07/20	107	80 - 140	ND, EDL=8.9	pg	0.93	20	
8112252	2,3,4,6,7,8-Hexa CDF	2022/07/20	91	80 - 140	ND, EDL=8.9	pg	10	20	
8112252	2,3,4,7,8-Penta CDF	2022/07/20	103	80 - 140	ND, EDL=8.8	pg	3.0	20	
8112252	2,3,7,8-Tetra CDD	2022/07/20	96	80 - 140	ND, EDL=6.8	pg	1.0	20	
8112252	2,3,7,8-Tetra CDF	2022/07/20	99	80 - 140	ND, EDL=9.1	pg	0	20	
8112252	Total Hepta CDD	2022/07/20			ND, EDL=11	pg			
8112252	Total Hepta CDF	2022/07/20			ND, EDL=12	pg			
8112252	Total Hexa CDD	2022/07/20			ND, EDL=8.8	pg			
8112252	Total Hexa CDF	2022/07/20			ND, EDL=8.7	pg			
8112252	Total Penta CDD	2022/07/20			ND, EDL=8.2	pg			
8112252	Total Penta CDF	2022/07/20			ND, EDL=8.8	pg			
8112252	Total Tetra CDD	2022/07/20			ND, EDL=6.8	pg			
8112252	Total Tetra CDF	2022/07/20			ND, EDL=9.1	pg			
8135911	233'44'55'-HeptaCB-(189)	2022/07/27	98	50 - 150	ND, RDL=0.60	ng	0	30	
8135911	233'44'-PentaCB-(105)	2022/07/27	106	50 - 150	ND, RDL=0.60	ng	1.9	30	
8135911	23'44'55'-HexaCB-(167)	2022/07/27	103	50 - 150	ND, RDL=0.60	ng	1.9	30	
8135911	2344'5-PentaCB-(114)	2022/07/27	108	50 - 150	ND, RDL=0.60	ng	0.93	30	
8135911	23'44'5-PentaCB-(118)	2022/07/27	109	50 - 150	ND, RDL=0.60	ng	3.7	30	
8135911	23'44'5'-PentaCB-(123)	2022/07/27	105	50 - 150	ND, RDL=0.60	ng	0.96	30	
8135911	33'44'55'-HexaCB-(169)	2022/07/27	99	50 - 150	ND, RDL=0.60	ng	3.0	30	
8135911	33'44'5-PentaCB-(126)	2022/07/27	98	50 - 150	ND, RDL=0.60	ng	6.9	30	
8135911	33'44'-TetraCB-(77)	2022/07/27	103	50 - 150	ND, RDL=0.60	ng	2.9	30	
8135911	344'5-TetraCB-(81)	2022/07/27	102	50 - 150	ND, RDL=0.60	ng	0.98	30	
8135911	Decachlorobiphenyl	2022/07/27			ND	ng			
8135911	Dichlorobiphenyl	2022/07/27			ND	ng			
8135911	Heptachlorobiphenyl	2022/07/27			ND	ng			
8135911	HexaCB-(156)+(157)	2022/07/27	104	N/A	ND, RDL=1.2	ng	0	30	

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Air Inc

Client Project #: 2202865

Site Location: STERICYCLE

Your P.O. #: 2202865

*				SPIKED	BLANK	Method	Blank	RPI)
ľ	QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
	8135911	Hexachlorobiphenyl	2022/07/27			ND	ng		
C	8135911	Monochlorobiphenyl	2022/07/27			ND	ng		
iń.	8135911	Nonachlorobiphenyl	2022/07/27			ND	ng		
W	8135911	Octachlorobiphenyl	2022/07/27			ND	ng		
2	8135911	Pentachlorobiphenyl	2022/07/27			ND	ng		
Ý	8135911	Tetrachlorobiphenyl	2022/07/27			ND	ng		
Ī	8135911	Total PCB	2022/07/27			0	ng		
	8135911	Trichlorobiphenyl	2022/07/27			ND	ng		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

(1) Spike recovery of pentachlorophenol was above spike criteria. Samples were ND for pentachlorophenol.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS

Melissa DiGrazia, Operations Manager, HRMS Department

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREAU

	CARTAGORO			neAl	R													37	311	
	6740 Campobello Rd	Toll	Free: 1-800-6	68-0639									E	CAM FC	D-0130	02 /3	F	Page	of	-
BUREAU VERITAS	Mississauga Ontario, L5N 2L www.bvlabs.com	8 F	Phone: (905) 8 Fax: (905) 8						<u> </u>				<u>පු</u>	ANALYS	SIS REC	UESTE	D ,		- 1	
	Company Name:	RWDI				·					9		$\frac{1}{2}$							
CLIENT NFORMATIC		kirk	East	2 ~				29	5	12	26	mobilited	0030							
	e-mail:	Kirk.e	souther	26.16M	$\frac{\mathcal{O}(r)}{c}$	(-1)	elph	usepa Nethod	0	A M	po	5/190							į	
SECTION	Address	900	9000	ARC E		<u> </u>	otpin	Ho	3	ļ	Method	جح	Method						ļ	
								Me	کے	25		430	مح	ŀ						
	Phone Sampled by	519-	400-5	221				4	7	Enr Grada	uspea		4	İ						
	Phone	1000	00	. Fax.	-			Tr.	5.50	5	2	CARB	usepa							
	Sampled by	:MO5/						3	3	17	3	2	Ě							
			Total Volume		Colle		Sample Collection													
- 0 1	ample ID	(2	Sampled	invirano 23	Da Ob/IS	_	Time													\neg
Storiago			/_/_	7	Q0/ 19		-+-	1/	V		-			_						
Stericy	cle M29 Dlank							_		1										
stericy cu	2 9060 71-21		 	18						1										
Stericyc	le suos Blanks	<u> </u>		6				<u> </u>		10						-		-		
Steri Cycl	e 11>13			6						<u> </u>	V									
11	" - Blanks			3					ļ		V		ļ							
Stericyc	- C. C. C. C 1	>13		3								V				ļ				
11	" Bla	nka		1								1								
Steriosch		3	1 1	3									V							
ul	1 Blant	-		1		, –							/							
	10 17.		1 (1	1	5													

FAT Requirement
STD 10 Business day Rush 5 Business day * Rush 2 Business day * * need approval from Bureau
Veritas

PROJECT INFORMATION	
Project #: 2202865	
Name: 5teritole PO#: 2202865	
BV Quote #:	
BV Contact:	

REPORTING REQUIR	EMENTS
Summary Report only EDD	
Regulation	

Notes
Please note if these samples are "Industrial Hygiene" samples
If submitting dustfall samples, please indicate the diameter of the
jar opening in cm.

PROJECT SPECIFIC COMMENTS

M 26 - Ammonia, HCI, HF

send results also to Mosprudi. com

Client Signature: Affiliation:

COC-1031 (11/2019)

"III HOU	wew	
LOW		
Cition	77 20	

Received by: Affiliation:

	K	10.	PIKT	151	NOH
U I	ă	bS			
	57	a. []	Ţ	,	CC

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Bureau Veritas Laboratories' standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms available at http://www.bvlabs.com/terms-and-conditions

12.4/12.2/14.8

Your P.O. #: 2202865 Your Project #: 2202865 Site Location: STERICYCLE

Your C.O.C. #: 34346

Attention: Kirk Easto

RWDI Air Inc 600 Southgate Drive Guelph, ON CANADA N1G 4P6

Report Date: 2022/08/10

Report #: R7246748 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2G9416 Received: 2022/06/17, 17:55

Sample Matrix: Stack Sampling Train

Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chlorobenzenes in MM5 Trains (EPA M0010) (1)	4	2022/07/06	2022/07/28	BRL SOP-00202	In house (M0010)
Chlorophenols in MM5 Trains (EPA M0010) (2)	4	2022/07/06	2022/07/15	BRL SOP-00204	In house (M0010)
Dioxins/Furans in Air (Method 23)	4	2022/07/06	2022/07/26	BRL SOP-00404	EPA M23/23A m
PAH's in MM5 SamplingTrains (CARB429mod) (3)	4	2022/07/06	2022/07/28	BRL SOP-00201	CARB429(ARBM1,M2)mod
PCBs in a Sampling Train (1668Amod) (4)	4	2022/07/28	2022/07/27	BRL SOP-00408	EPA 1668A m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Analysis was conducted according to Bureau Veritas method BRL SOP-00202 and modified where applicable based on the sample matrix. This test is not Standards Council of Canada accredited for this matrix.
- (2) Analysis was conducted according to Bureau Veritas method BRL SOP-00204 and modified where applicable based on the sample matrix. This test is not Standards Council of Canada accredited for this matrix.
- (3) Analysis was conducted according to Bureau Veritas' method BRL SOP-00201 and modified where applicable based on the sample matrix. Only the following parameters are accredited: Napthalene, 2-Methylnapthalene, Acenapthylene, Acenapthene, Anthracene, Benzo (a) anthracene, Dibenzo (a,h) anthracene, Fluorene, Benzo (e) pyrene, Benzo (a) pyrene, Benzo (k) fluoranthene, Benzo (b) fluoranthene, Benzo (g,h,i) perylene, Chrysene, Fluoranthene, Indeno (1,2,3 cd) pyrene. Additional parameters are not Standards

Your P.O. #: 2202865 Your Project #: 2202865 Site Location: STERICYCLE

Your C.O.C. #: 34346

Attention: Kirk Easto

RWDI Air Inc 600 Southgate Drive Guelph, ON CANADA N1G 4P6

Report Date: 2022/08/10

Report #: R7246748 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2G9416

Received: 2022/06/17, 17:55

Council of Canada accredited for this matrix.

(4) Analysis was conducted according to Bureau Veritas method BRL SOP-00408 and modified where applicable based on the sample matrix. This test is not Standards Council of Canada accredited for this matrix.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, CET LEAD-Air Toxics, Source Evaluation Email: Clayton.Johnson@bureauveritas.com

Phone# (905)817-5769

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Sampling Date COC Number 33'44'-TetraCB-(77) 344'5-TetraCB-(81) 233'44'-PentaCB-(105)	units ng ng ng ng	2022/06/17 34346 SVOC- BLANK ND ND	EDL 0.066 0.062	RDL 0.60	TOXIC EQU TEF (2005 WHO)	IVALENCY TEQ(DL)	# of	QC Batch
33'44'-TetraCB-(77) 344'5-TetraCB-(81)	ng ng ng	ND ND	0.066		-			OC Batch
344'5-TetraCB-(81)	ng ng ng	ND ND	0.066		TEF (2005 WHO)	TEQ(DL)	Isomers	OC Batch
344'5-TetraCB-(81)	ng ng	ND		0.60				QC Datti
` '	ng		0.062		0.00010	0.0000066		8135911
233'44'-PentaCB-(105)		ND	0.002	0.60	0.00030	0.000019		8135911
	ng		0.024	0.60	0.000030	0.00000072		8135911
2344'5-PentaCB-(114)		ND	0.024	0.60	0.000030	0.00000072		8135911
23'44'5-PentaCB-(118)	ng	0.13	0.024	0.60	0.000030	0.0000039		8135911
23'44'5'-PentaCB-(123)	ng	ND	0.026	0.60	0.000030	0.00000078		8135911
33'44'5-PentaCB-(126)	ng	ND	0.023	0.60	0.10	0.0023		8135911
HexaCB-(156)+(157)	ng	ND	0.036	1.2	0.000030	0.0000011		8135911
23'44'55'-HexaCB-(167)	ng	ND	0.035	0.60	0.000030	0.0000011		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.036	0.60	0.030	0.0011		8135911
233'44'55'-HeptaCB-(189)	ng	ND	0.048	0.60	0.000030	0.0000014		8135911
Monochlorobiphenyl	ng	ND	0.019	N/A			0	8135911
Dichlorobiphenyl	ng	ND	0.031	N/A			0	8135911
Trichlorobiphenyl	ng	ND	0.075	N/A			0	8135911
Tetrachlorobiphenyl	ng	0.12	0.076	N/A			1	8135911
Pentachlorobiphenyl	ng	0.24	0.036	N/A			2	8135911
Hexachlorobiphenyl	ng	0.40	0.086	N/A			2	8135911
Heptachlorobiphenyl	ng	ND	0.052	N/A			0	8135911
Octachlorobiphenyl	ng	ND	0.062	N/A			0	8135911
Nonachlorobiphenyl	ng	ND	0.063	N/A			0	8135911
Decachlorobiphenyl	ng	ND	0.056	N/A			0	8135911
Total PCB	ng	0.76	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.0034		
Surrogate Recovery (%)							-	
C13-233'44'55'-HeptaCB-(189)	%	81						8135911
C13-233'44'5-HexaCB-(156)	%	82						8135911
C13-233'44'5'-HexaCB-(157)	%	82						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQUIVALENCY		# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'-PentaCB-(105)	%	75						8135911
C13-23'44'55'-HexaCB-(167)	%	81						8135911
C13-2344'5-PentaCB-(114)	%	65						8135911
C13-23'44'5-PentaCB-(118)	%	71						8135911
C13-2'344'5-PentaCB-(123)	%	71						8135911
C13-33'44'55'-HexaCB-(169)	%	72						8135911
C13-33'44'5-PentaCB-(126)	%	70						8135911
C13-33'44'-TetraCB-(77)	%	63						8135911
C13-344'5-TetraCB-(81)	%	58						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'44'-TetraCB-(77)	ng	6.4	0.070	0.60	0.00010	0.00064		8135911
344'5-TetraCB-(81)	ng	ND (1)	0.16	0.60	0.00030	0.000048		8135911
233'44'-PentaCB-(105)	ng	15	0.037	0.60	0.000030	0.00045		8135911
2344'5-PentaCB-(114)	ng	0.94	0.037	0.60	0.000030	0.000028		8135911
23'44'5-PentaCB-(118)	ng	40	0.036	0.60	0.000030	0.0012		8135911
23'44'5'-PentaCB-(123)	ng	0.47	0.040	0.60	0.000030	0.000014		8135911
33'44'5-PentaCB-(126)	ng	0.57	0.036	0.60	0.10	0.057		8135911
HexaCB-(156)+(157)	ng	3.2	0.041	1.2	0.000030	0.000096		8135911
23'44'55'-HexaCB-(167)	ng	1.3	0.040	0.60	0.000030	0.000039		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.041	0.60	0.030	0.0012		8135911
233'44'55'-HeptaCB-(189)	ng	ND	0.076	0.60	0.000030	0.0000023		8135911
Monochlorobiphenyl	ng	0.51	0.028	N/A			2	8135911
Dichlorobiphenyl	ng	1.2	0.031	N/A			2	8135911
Trichlorobiphenyl	ng	1.9	0.064	N/A			7	8135911
Tetrachlorobiphenyl	ng	22	0.12	N/A			12	8135911
Pentachlorobiphenyl	ng	180	0.085	N/A			19	8135911
Hexachlorobiphenyl	ng	150	0.14	N/A			21	8135911
Heptachlorobiphenyl	ng	12	0.081	N/A			12	8135911
Octachlorobiphenyl	ng	0.35	0.086	N/A			1	8135911
Nonachlorobiphenyl	ng	ND	0.10	N/A			0	8135911
Decachlorobiphenyl	ng	ND	0.14	N/A			0	8135911
Total PCB	ng	370	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.061		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	89						8135911
C13-233'44'5-HexaCB-(156)	%	69						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQUIVALENCY		# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'5'-HexaCB-(157)	%	69						8135911
C13-233'44'-PentaCB-(105)	%	69						8135911
C13-23'44'55'-HexaCB-(167)	%	72						8135911
C13-2344'5-PentaCB-(114)	%	64						8135911
C13-23'44'5-PentaCB-(118)	%	73						8135911
C13-2'344'5-PentaCB-(123)	%	73						8135911
C13-33'44'55'-HexaCB-(169)	%	54						8135911
C13-33'44'5-PentaCB-(126)	%	61						8135911
C13-33'44'-TetraCB-(77)	%	64						8135911
C13-344'5-TetraCB-(81)	%	64						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG392						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IIVALENCY	# of	
	UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'44'-TetraCB-(77)	ng	75	0.062	0.60	0.00010	0.0075		8135911
344'5-TetraCB-(81)	ng	3.2	0.058	0.60	0.00030	0.00096		8135911
233'44'-PentaCB-(105)	ng	150	0.059	0.60	0.000030	0.0045		8135911
2344'5-PentaCB-(114)	ng	9.6	0.060	0.60	0.000030	0.00029		8135911
23'44'5-PentaCB-(118)	ng	440	0.058	0.60	0.000030	0.013		8135911
23'44'5'-PentaCB-(123)	ng	6.0	0.065	0.60	0.000030	0.00018		8135911
33'44'5-PentaCB-(126)	ng	3.3	0.058	0.60	0.10	0.33		8135911
HexaCB-(156)+(157)	ng	29	0.058	1.2	0.000030	0.00087		8135911
23'44'55'-HexaCB-(167)	ng	12	0.057	0.60	0.000030	0.00036		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.058	0.60	0.030	0.0017		8135911
233'44'55'-HeptaCB-(189)	ng	0.39	0.053	0.60	0.000030	0.000012		8135911
Monochlorobiphenyl	ng	1.8	0.018	N/A			3	8135911
Dichlorobiphenyl	ng	22	0.058	N/A			3	8135911
Trichlorobiphenyl	ng	23	0.060	N/A			12	8135911
Tetrachlorobiphenyl	ng	330	0.083	N/A			20	8135911
Pentachlorobiphenyl	ng	2300	0.065	N/A			24	8135911
Hexachlorobiphenyl	ng	1500	0.54	N/A			24	8135911
Heptachlorobiphenyl	ng	110	0.056	N/A			18	8135911
Octachlorobiphenyl	ng	9.6	0.061	N/A			9	8135911
Nonachlorobiphenyl	ng	1.7	0.064	N/A			3	8135911
Decachlorobiphenyl	ng	0.25	0.061	N/A			1	8135911
Total PCB	ng	4300	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.36		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	85						8135911
C13-233'44'5-HexaCB-(156)	%	84						8135911
C13-233'44'5'-HexaCB-(157)	%	84						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG392						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IIVALENCY	# of	
	UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'-PentaCB-(105)	%	92						8135911
C13-23'44'55'-HexaCB-(167)	%	92						8135911
C13-2344'5-PentaCB-(114)	%	86						8135911
C13-23'44'5-PentaCB-(118)	%	97						8135911
C13-2'344'5-PentaCB-(123)	%	96						8135911
C13-33'44'55'-HexaCB-(169)	%	75						8135911
C13-33'44'5-PentaCB-(126)	%	86						8135911
C13-33'44'-TetraCB-(77)	%	82						8135911
C13-344'5-TetraCB-(81)	%	83						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'44'-TetraCB-(77)	ng	74	0.038	0.60	0.00010	0.0074		8135911
344'5-TetraCB-(81)	ng	3.4	0.036	0.60	0.00030	0.0010		8135911
233'44'-PentaCB-(105)	ng	150	0.092	0.60	0.000030	0.0045		8135911
2344'5-PentaCB-(114)	ng	9.2	0.094	0.60	0.000030	0.00028		8135911
23'44'5-PentaCB-(118)	ng	430	0.091	0.60	0.000030	0.013		8135911
23'44'5'-PentaCB-(123)	ng	9.3	0.10	0.60	0.000030	0.00028		8135911
33'44'5-PentaCB-(126)	ng	3.6	0.090	0.60	0.10	0.36		8135911
HexaCB-(156)+(157)	ng	29	0.059	1.2	0.000030	0.00087		8135911
23'44'55'-HexaCB-(167)	ng	12	0.059	0.60	0.000030	0.00036		8135911
33'44'55'-HexaCB-(169)	ng	ND	0.060	0.60	0.030	0.0018		8135911
233'44'55'-HeptaCB-(189)	ng	0.33	0.051	0.60	0.000030	0.0000099		8135911
Monochlorobiphenyl	ng	3.7	0.021	N/A			3	8135911
Dichlorobiphenyl	ng	24	0.054	N/A			5	8135911
Trichlorobiphenyl	ng	26	0.072	N/A			15	8135911
Tetrachlorobiphenyl	ng	350	0.085	N/A			24	8135911
Pentachlorobiphenyl	ng	2300	0.10	N/A			25	8135911
Hexachlorobiphenyl	ng	1600	0.28	N/A			27	8135911
Heptachlorobiphenyl	ng	110	0.070	N/A			18	8135911
Octachlorobiphenyl	ng	9.6	0.092	N/A			9	8135911
Nonachlorobiphenyl	ng	2.0	0.077	N/A			3	8135911
Decachlorobiphenyl	ng	0.24	0.074	N/A			1	8135911
Total PCB	ng	4400	N/A	N/A				8135911
TOTAL TOXIC EQUIVALENCY	ng					0.39		
Surrogate Recovery (%)								
C13-233'44'55'-HeptaCB-(189)	%	91						8135911
C13-233'44'5-HexaCB-(156)	%	82						8135911
C13-233'44'5'-HexaCB-(157)	%	82						8135911
			_					

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

N/A = Not Applicable

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IIVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'-PentaCB-(105)	%	89						8135911
C13-23'44'55'-HexaCB-(167)	%	88						8135911
C13-2344'5-PentaCB-(114)	%	88						8135911
C13-23'44'5-PentaCB-(118)	%	95						8135911
C13-2'344'5-PentaCB-(123)	%	94						8135911
C13-33'44'55'-HexaCB-(169)	%	62						8135911
C13-33'44'5-PentaCB-(126)	%	79						8135911
C13-33'44'-TetraCB-(77)	%	74						8135911
C13-344'5-TetraCB-(81)	%	78						8135911

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

1-Methylnaphthalene	Bureau Veritas ID		SYG390	SYG391	SYG392	SYG393		
COC Number	Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
1-Methylnaphthalene			34346	34346	34346	34346		
1-Methylphenanthrene		UNITS	SVOC- BLANK				RDL	QC Batch
2-Chloronaphthalene	1-Methylnaphthalene	ug	ND	ND	ND	0.30	0.30	8093063
2-Methylanthracene ug ND ND ND ND 0.30 8093063 2-Methylcholanthrene ug ND ND ND ND 0.36 0.30 8093063 3-Methylcholanthrene ug ND ND ND ND ND ND 1.2 8093063 9-flo-Dimethylanthracene ug ND ND ND ND ND ND 1.2 8093063 9-flo-Dimethylanthracene ug ND ND ND ND ND ND ND 0.30 8093063 9-flo-Dimethylanthracene ug ND ND ND ND ND ND ND 0.30 8093063 Acenaphthene ug ND ND <td< td=""><td>1-Methylphenanthrene</td><td>ug</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.30</td><td>8093063</td></td<>	1-Methylphenanthrene	ug	ND	ND	ND	ND	0.30	8093063
2-Methylnaphthalene ug ND ND ND 0.36 0.30 8093063 3-Methylcholanthrene ug ND ND ND ND ND 0.30 8093063 7,12-Dimethylchenzo(a)anthracene ug ND ND </td <td>2-Chloronaphthalene</td> <td>ug</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.30</td> <td>8093063</td>	2-Chloronaphthalene	ug	ND	ND	ND	ND	0.30	8093063
3-Methylcholanthrene ug ND ND ND ND 0.30 8093063 7,12-Dimethylbenzo(a)anthracene ug ND ND ND ND ND 1.2 8093063 9,10-Dimethylphenzo(a)anthracene ug ND ND ND ND ND 0.30 8093063 9-Methylphenanthrene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND 0.30 8093063 Anthracene ug ND ND ND ND ND 0.30 8093063 Anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)fluorene ug ND ND ND ND ND ND 0.30 8093063 Benzo(a)fluorene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)Anthracene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)Huoranthene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND 0.30 8093063 Benzo(a,b)anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Biphenyl ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)aphyrene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)aphyrene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)aphyrene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)aphyrene ug ND ND ND ND 0.30 8093063 Dibenzo(a,c)aphyrene ug ND ND ND ND 0.30 8093063 Naghthalene ug ND ND ND ND 0.30 8093063 Naghthalene u	2-Methylanthracene	ug	ND	ND	ND	ND	0.30	8093063
7,12-Dimethylbenzo(a)anthracene ug ND ND ND ND 1.2 8093063 9,10-Dimethylanthracene ug ND ND ND ND ND 0.30 8093063 9-Methylphenanthrene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND ND 0.30 8093063 Benzo(a)fuere ug ND ND ND ND ND <td< td=""><td>2-Methylnaphthalene</td><td>ug</td><td>ND</td><td>ND</td><td>ND</td><td>0.36</td><td>0.30</td><td>8093063</td></td<>	2-Methylnaphthalene	ug	ND	ND	ND	0.36	0.30	8093063
9,10-Dimethylanthracene	3-Methylcholanthrene	ug	ND	ND	ND	ND	0.30	8093063
9-Methylphenanthrene	7,12-Dimethylbenzo(a)anthracene	ug	ND	ND	ND	ND	1.2	8093063
Acenaphthene ug ND ND ND ND 0.30 8093063 Acenaphthylene ug ND ND ND ND ND 0.30 8093063 Anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)pyrene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND ND 0.30 8093063 </td <td>9,10-Dimethylanthracene</td> <td>ug</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.30</td> <td>8093063</td>	9,10-Dimethylanthracene	ug	ND	ND	ND	ND	0.30	8093063
Acenaphthylene ug ND ND ND ND 0.30 8093063 Anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(a)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(b)Anthracene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)fluorente ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND ND 0.30 8093063	9-Methylphenanthrene	ug	ND	ND	ND	ND	0.30	8093063
Anthracene ug ND ND ND ND 0.30 8093063 Benzo(a)anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(a)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(a)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(b)Anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(e)byrene ug ND ND ND ND ND ND 0.30 8093063 Benzo(e)byrene ug ND ND ND ND ND ND 0.30 8093063 Benzo(e)byrene ug ND ND ND ND ND 0.30 8093063 Benzo(e)byrene <	Acenaphthene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(a)anthracene	Acenaphthylene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(a)fluorene ug ND ND ND ND 0.30 8093063 Benzo(a)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(b)Anthracene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND	Anthracene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(a)pyrene	Benzo(a)anthracene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(b)Anthracene ug ND ND ND 0.30 8093063 Benzo(b)fluoranthene ug ND ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(g,h,i)perylene ug ND ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND 0.30 8093063 Biphenyl ug ND ND ND ND 0.72 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND	Benzo(a)fluorene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(b)fluoranthene ug ND ND ND 0.30 8093063 Benzo(b)fluorene ug ND ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(g,h,i)perylene ug ND ND ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,b)anthracene ug N	Benzo(a)pyrene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(b)fluorene ug ND ND ND ND 0.30 8093063 Benzo(e)pyrene ug ND ND ND ND ND 0.30 8093063 Benzo(g,h,i)perylene ug ND ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND ND 0.30 8093063 Biphenyl ug ND ND ND ND ND 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Fluoranthene ug ND <td< td=""><td>Benzo(b)Anthracene</td><td>ug</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.30</td><td>8093063</td></td<>	Benzo(b)Anthracene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(e)pyrene ug ND ND ND ND 0.30 8093063 Benzo(g,h,i)perylene ug ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND ND 0.30 8093063 Biphenyl ug ND ND ND ND 0.72 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND ND 0.30 8093063 Fluorene ug <td>Benzo(b)fluoranthene</td> <td>ug</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.30</td> <td>8093063</td>	Benzo(b)fluoranthene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(g,h,i)perylene ug ND ND ND ND 0.30 8093063 Benzo(k)fluoranthene ug ND ND ND ND ND 0.30 8093063 Biphenyl ug ND ND ND ND 0.72 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND ND 0.30 8093063 Fluorene ug ND ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene <	Benzo(b)fluorene	ug	ND	ND	ND	ND	0.30	8093063
Benzo(k)fluoranthene ug ND ND ND ND 0.30 8093063 Biphenyl ug ND ND ND ND 0.72 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,e)pyrene ug ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND 0.30 8093063 Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND <td< td=""><td>Benzo(e)pyrene</td><td>ug</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.30</td><td>8093063</td></td<>	Benzo(e)pyrene	ug	ND	ND	ND	ND	0.30	8093063
Biphenyl ug ND ND ND 0.72 0.30 8093063 Chrysene ug ND ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,e)pyrene ug ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND 0.30 8093063 Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND 0.30 <td>Benzo(g,h,i)perylene</td> <td>ug</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.30</td> <td>8093063</td>	Benzo(g,h,i)perylene	ug	ND	ND	ND	ND	0.30	8093063
Chrysene ug ND ND ND ND 0.30 8093063 Coronene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,e)pyrene ug ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND 0.30 8093063 Fluorene ug ND ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 Maphthalene ug ND ND ND ND 0.30 8093063 O-Terphenyl ug ND ND ND ND 0.30 <td>Benzo(k)fluoranthene</td> <td>ug</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>0.30</td> <td>8093063</td>	Benzo(k)fluoranthene	ug	ND	ND	ND	ND	0.30	8093063
Coronene ug ND ND ND ND 0.30 8093063 Dibenzo(a,h)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,e)pyrene ug ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND 0.30 8093063 Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND 0.30 8093063 Naphthalene ug ND ND ND ND 0.30 8093063	Biphenyl	ug	ND	ND	ND	0.72	0.30	8093063
Dibenzo(a,h)anthracene ug ND ND ND ND 0.30 8093063 Dibenzo(a,c)anthracene ug ND ND ND ND ND 0.30 8093063 Dibenzo(a,e)pyrene ug ND ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND ND ND 0.30 8093063 Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND ND 0.30 8093063 Naphthalene ug ND ND ND ND ND 0.30 8093063	Chrysene	ug	ND	ND	ND	ND	0.30	8093063
Dibenzo(a,c)anthracene ug ND ND ND ND 0.30 8093063 Dibenzo(a,e)pyrene ug ND ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND 0.30 ND 0.30 8093063 Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND 0.30 8093063 Naphthalene ug ND ND ND ND ND 0.30 8093063	Coronene	ug	ND	ND	ND	ND	0.30	8093063
Dibenzo(a,e)pyrene ug ND ND ND ND 0.30 8093063 Fluoranthene ug ND ND 0.30 ND 0.30 8093063 Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND 0.30 8093063 Naphthalene ug ND ND ND ND 0.30 8093063 o-Terphenyl ug ND ND ND ND 0.30 8093063	Dibenzo(a,h)anthracene	ug	ND	ND	ND	ND	0.30	8093063
Fluoranthene ug ND ND 0.30 ND 0.30 8093063 Fluorene ug ND ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND 0.30 8093063 Naphthalene ug ND 1.02 5.58 10.4 0.30 8093063 o-Terphenyl ug ND ND ND ND ND 0.30 8093063	Dibenzo(a,c)anthracene	ug	ND	ND	ND	ND	0.30	8093063
Fluorene ug ND ND ND ND 0.30 8093063 Indeno(1,2,3-cd)pyrene ug ND ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND ND 0.30 8093063 Naphthalene ug ND 1.02 5.58 10.4 0.30 8093063 o-Terphenyl ug ND ND ND ND 0.30 8093063	Dibenzo(a,e)pyrene	ug	ND	ND	ND	ND	0.30	8093063
Indeno(1,2,3-cd)pyrene ug ND ND ND ND 0.30 8093063 m-Terphenyl ug ND ND ND ND 0.30 8093063 Naphthalene ug ND 1.02 5.58 10.4 0.30 8093063 o-Terphenyl ug ND ND ND ND 0.30 8093063	Fluoranthene	ug	ND	ND	0.30	ND	0.30	8093063
m-Terphenyl ug ND ND ND ND 0.30 8093063 Naphthalene ug ND 1.02 5.58 10.4 0.30 8093063 o-Terphenyl ug ND ND ND ND 0.30 8093063	Fluorene	ug	ND	ND	ND	ND	0.30	8093063
Naphthalene ug ND 1.02 5.58 10.4 0.30 8093063 o-Terphenyl ug ND ND ND ND 0.30 8093063	Indeno(1,2,3-cd)pyrene	ug	ND	ND	ND	ND	0.30	8093063
o-Terphenyl ug ND ND ND ND 0.30 8093063	m-Terphenyl	ug	ND	ND	ND	ND	0.30	8093063
	Naphthalene	ug	ND	1.02	5.58	10.4	0.30	8093063
Perylene ug ND ND ND ND 0.30 8093063	o-Terphenyl	ug	ND	ND	ND	ND	0.30	8093063
	Perylene	ug	ND	ND	ND	ND	0.30	8093063

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390	SYG391	SYG392	SYG393		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	LIMITS	SVOC- BLANK	SVOC- TEST	SVOC- TEST	SVOC- TEST	RDL	QC Batch
	UNITS	SVOC- BLANK	1	2	3	NDL	QC Battii
Phenanthrene	ug	ND	ND	0.96	1.08	0.30	8093063
Picene	ug	ND	ND	ND	ND	0.30	8093063
p-Terphenyl	ug	ND	ND	ND	ND	0.30	8093063
Pyrene	ug	ND	ND	ND	ND	0.30	8093063
Quinoline	ug	ND	ND	ND	ND	0.30	8093063
Tetralin	ug	ND	ND	ND	ND	0.30	8093063
Triphenylene	ug	ND	ND	ND	ND	0.30	8093063
1,2,3,4-Tetrachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2,3,5+1,2,4,5-Tetrachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2,3-Trichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2,4-Trichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,2-Dichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,3,5-Trichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,3-Dichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
1,4-Dichlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
Hexachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
Pentachlorobenzene	ug	ND	ND	ND	ND	0.30	8093092
2,3,4,5-Tetrachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,4,6-Tetrachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,4-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,5,6-Tetrachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,5-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3,6-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,3-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,4 + 2,5-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,4,5-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,4,6-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2,6-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
2-Chlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3,4,5-Trichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3,4-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3,5-Dichlorophenol	ug	ND	ND	ND	ND	0.30	8093102
3-Chlorophenol	ug	ND	ND	ND	ND	0.30	
4-Chlorophenol	ug	ND	ND	ND	ND	0.30	8093102
1	•	•		•		•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390	SYG391	SYG392	SYG393		
Sampling Date		2022/06/17	2022/06/17	2022/06/17	2022/06/17		
COC Number		34346	34346	34346	34346		
	UNITS	SVOC- BLANK	SVOC- TEST 1	SVOC- TEST 2	SVOC- TEST 3	RDL	QC Batch
Pentachlorophenol	ug	ND	ND	ND	ND	0.30	8093102
Surrogate Recovery (%)	•					•	
13C6-Hexachlorobenzene	%	89	83	84	85		8093092
2H3-1,2,3-Trichlorobenzene (FS)	%	88	83	80	79		8093092
2H3-1,2,4-Trichlorobenzene	%	76	68	68	67		8093092
2H4-1,3-Dichlorobenzene	%	70	58	57	58		8093092
2H4-1,4-Dichlorobenzene (FS)	%	84	72	70	58		8093092
D3-2,4-Dichlorophenol	%	77	95	88	100		8093102
D6-Pentachlorophenol	%	78	105	93	108		8093102
D10-2-Methylnaphthalene	%	90	84	86	88		8093063
D10-Anthracene	%	82	88	84	82		8093063
D10-Fluoranthene	%	84	82	84	80		8093063
D10-Fluorene (FS)	%	86	82	86	88		8093063
D10-Phenanthrene	%	88	84	86	88		8093063
D12-Benzo(a)anthracene	%	88	78	72	58		8093063
D12-Benzo(a)pyrene	%	72	40 (1)	30 (1)	18 (1)		8093063
D12-Benzo(b)fluoranthene	%	80	68	50	32 (1)		8093063
D12-Benzo(ghi)perylene	%	88	36 (1)	18 (1)	8.0 (1)		8093063
D12-Benzo(k)fluoranthene	%	90	70	54	28 (1)		8093063
D12-Chrysene	%	92	84	74	60		8093063
D12-Indeno(1,2,3-cd)pyrene	%	84	38 (1)	18 (1)	8.0 (1)		8093063
D12-Perylene	%	82	56	40 (1)	24 (1)		8093063
D14-Dibenzo(a,h)anthracene	%	80	40 (1)	20 (1)	8.0 (1)		8093063
D14-Terphenyl (FS)	%	80	78	82	80		8093063
D8-Acenaphthylene	%	92	80	86	86		8093063
D8-Naphthalene	%	88	80	84	86		8093063

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

⁽¹⁾ Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg	ND	8.6	60	1.00	8.60		8112252
1,2,3,7,8-Penta CDD *	pg	ND	10	60	1.00	10.0		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	8.2	60	0.100	0.820		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	7.1	60	0.100	0.710		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	7.6	60	0.100	0.760		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	7.5	60	0.0100	0.0750		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	ND	8.8	600	0.000300	0.00264		8112252
Total Tetra CDD *	pg	ND	8.6	60			0	8112252
Total Penta CDD *	pg	ND	10	60			0	8112252
Total Hexa CDD *	pg	ND	7.6	60			0	8112252
Total Hepta CDD *	pg	ND	7.5	60			0	8112252
2,3,7,8-Tetra CDF **	pg	ND	9.7	60	0.100	0.970		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.1	60	0.0300	0.273		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.0	60	0.300	2.70		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	7.1	60	0.100	0.710		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	6.5	60	0.100	0.650		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	7.4	60	0.100	0.740		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	8.1	60	0.100	0.810		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	6.5	60	0.0100	0.0650		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	8.2	60	0.0100	0.0820		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	8.4	600	0.000300	0.00252		8112252
Total Tetra CDF **	pg	ND	9.7	60			0	8112252
Total Penta CDF **	pg	ND	9.0	60			0	8112252
Total Hexa CDF **	pg	ND	7.2	60			0	8112252
Total Hepta CDF **	pg	ND	7.3	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					28.0		

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxinlike Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG390						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	JIVALENCY	# of	
	UNITS	SVOC- BLANK	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)	•	<u> </u>	-	•	•		•	-
C13-1234678 HeptaCDD *	%	96						8112252
C13-1234678 HeptaCDF **	%	84						8112252
C13-123478 HexaCDD *	%	107						8112252
C13-123478 HexaCDF **	%	112						8112252
C13-1234789 HeptaCDF **	%	102						8112252
C13-123678 HexaCDD *	%	103						8112252
C13-123678 HexaCDF **	%	70						8112252
C13-12378 PentaCDD *	%	105						8112252
C13-12378 PentaCDF **	%	91						8112252
C13-123789 HexaCDF **	%	90						8112252
C13-23478 PentaCDF **	%	106						8112252
C13-2378 TetraCDD *	%	109						8112252
C13-2378 TetraCDF **	%	94						8112252
C13-Octachlorodibenzo-p-Dioxin	%	77						8112252
Cl37-2378 TetraCDD *	%	89						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg	ND	11	60	1.00	11.0		8112252
1,2,3,7,8-Penta CDD *	pg	ND	9.1	60	1.00	9.10		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	7.7	60	0.100	0.770		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	6.8	60	0.100	0.680		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	7.2	60	0.100	0.720		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	9.0	60	0.0100	0.0900		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	ND	12	600	0.000300	0.00360		8112252
Total Tetra CDD *	pg	ND	11	60			0	8112252
Total Penta CDD *	pg	ND	9.1	60			0	8112252
Total Hexa CDD *	pg	ND	7.2	60			0	8112252
Total Hepta CDD *	pg	ND	9.0	60			0	8112252
2,3,7,8-Tetra CDF **	pg	ND	9.7	60	0.100	0.970		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.7	60	0.0300	0.291		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.6	60	0.300	2.88		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	6.8	60	0.100	0.680		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	6.2	60	0.100	0.620		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	7.1	60	0.100	0.710		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	7.8	60	0.100	0.780		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	9.2	60	0.0100	0.0920		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	12	60	0.0100	0.120		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	12	600	0.000300	0.00360		8112252
Total Tetra CDF **	pg	ND	9.7	60			0	8112252
Total Penta CDF **	pg	ND	9.6	60			0	8112252
Total Hexa CDF **	pg	ND	6.9	60			0	8112252
Total Hepta CDF **	pg	ND	10	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					29.5		

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG391						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 1	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)							•	
C13-1234678 HeptaCDD *	%	88						8112252
C13-1234678 HeptaCDF **	%	75						8112252
C13-123478 HexaCDD *	%	105						8112252
C13-123478 HexaCDF **	%	115						8112252
C13-1234789 HeptaCDF **	%	98						8112252
C13-123678 HexaCDD *	%	103						8112252
C13-123678 HexaCDF **	%	67						8112252
C13-12378 PentaCDD *	%	100						8112252
C13-12378 PentaCDF **	%	89						8112252
C13-123789 HexaCDF **	%	92						8112252
C13-23478 PentaCDF **	%	103						8112252
C13-2378 TetraCDD *	%	106						8112252
C13-2378 TetraCDF **	%	89						8112252
C13-Octachlorodibenzo-p-Dioxin	%	59						8112252
Cl37-2378 TetraCDD *	%	91						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG392						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg	ND	11	60	1.00	11.0		8112252
1,2,3,7,8-Penta CDD *	pg	ND	8.2	60	1.00	8.20		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	8.6	60	0.100	0.860		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	7.5	60	0.100	0.750		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	8.0	60	0.100	0.800		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	6.9	60	0.0100	0.0690		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	22	10	600	0.000300	0.00660		8112252
Total Tetra CDD *	pg	60	11	60			2	8112252
Total Penta CDD *	pg	ND (1)	27	60			0	8112252
Total Hexa CDD *	pg	20.7	8.0	60			1	8112252
Total Hepta CDD *	pg	ND (2)	12	60			0	8112252
2,3,7,8-Tetra CDF **	pg	17	11	60	0.100	1.70		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.9	60	0.0300	0.297		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.9	60	0.300	2.97		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	11	60	0.100	1.10		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	9.7	60	0.100	0.970		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	11	60	0.100	1.10		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	12	60	0.100	1.20		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	8.8	60	0.0100	0.0880		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	11	60	0.0100	0.110		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	12	600	0.000300	0.00360		8112252
Total Tetra CDF **	pg	37	11	60			2	8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

(2) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

	CVC202					1	
	34346			TOXIC EQU	IVALENCY	# of	
UNITS	SVOC- TEST 2	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
pg	ND (1)	17	60			0	8112252
pg	ND	11	60			0	8112252
pg	ND	9.8	60			0	8112252
pg					31.2		
%	66						8112252
%	57						8112252
%	117						8112252
%	117						8112252
%	94						8112252
%	79						8112252
%	55						8112252
%	86						8112252
%	72						8112252
%	75						8112252
%	107						8112252
%	86						8112252
%	71						8112252
%	42						8112252
%	88						8112252
	Pg pg pg pg % % % % % % % % % % % % % % %	UNITS SVOC-TEST 2 pg ND (1) pg ND pg ND pg ND pg ND pg ND pg ND % 66 % 57 % 117 % 94 % 79 % 55 % 86 % 72 % 107 % 86 % 71 % 42	2022/06/17 34346 UNITS	2022/06/17 34346	2022/06/17 34346 TOXIC EQU	2022/06/17 34346 TOXIC EQUIVALENCY	2022/06/17 34346 TOXIC EQUIVALENCY # of

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

* CDD = Chloro Dibenzo-p-Dioxin

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg	ND	9.4	60	1.00	9.40		8112252
1,2,3,7,8-Penta CDD *	pg	ND	16	60	1.00	16.0		8112252
1,2,3,4,7,8-Hexa CDD *	pg	ND	15	60	0.100	1.50		8112252
1,2,3,6,7,8-Hexa CDD *	pg	ND	13	60	0.100	1.30		8112252
1,2,3,7,8,9-Hexa CDD *	pg	ND	13	60	0.100	1.30		8112252
1,2,3,4,6,7,8-Hepta CDD *	pg	ND	10	60	0.0100	0.100		8112252
1,2,3,4,6,7,8,9-Octa CDD *	pg	ND	18	600	0.000300	0.00540		8112252
Total Tetra CDD *	pg	68.3	9.4	60			2	8112252
Total Penta CDD *	pg	ND (1)	35	60			0	8112252
Total Hexa CDD *	pg	ND	14	60			0	8112252
Total Hepta CDD *	pg	ND	10	60			0	8112252
2,3,7,8-Tetra CDF **	pg	ND	8.3	60	0.100	0.830		8112252
1,2,3,7,8-Penta CDF **	pg	ND	9.8	60	0.0300	0.294		8112252
2,3,4,7,8-Penta CDF **	pg	ND	9.7	60	0.300	2.91		8112252
1,2,3,4,7,8-Hexa CDF **	pg	ND	12	60	0.100	1.20		8112252
1,2,3,6,7,8-Hexa CDF **	pg	ND	11	60	0.100	1.10		8112252
2,3,4,6,7,8-Hexa CDF **	pg	ND	13	60	0.100	1.30		8112252
1,2,3,7,8,9-Hexa CDF **	pg	ND	14	60	0.100	1.40		8112252
1,2,3,4,6,7,8-Hepta CDF **	pg	ND	7.6	60	0.0100	0.0760		8112252
1,2,3,4,7,8,9-Hepta CDF **	pg	ND	9.5	60	0.0100	0.0950		8112252
1,2,3,4,6,7,8,9-Octa CDF **	pg	ND	19	600	0.000300	0.00570		8112252
Total Tetra CDF **	pg	ND	8.3	60			0	8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

DIOXINS AND FURANS BY HRMS (STACK SAMPLING TRAIN)

Bureau Veritas ID		SYG393						
Sampling Date		2022/06/17						
COC Number		34346			TOXIC EQU	IVALENCY	# of	
	UNITS	SVOC- TEST 3	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total Penta CDF **	pg	ND	9.8	60			0	8112252
Total Hexa CDF **	pg	ND	13	60			0	8112252
Total Hepta CDF **	pg	ND	8.5	60			0	8112252
TOTAL TOXIC EQUIVALENCY	pg					38.8		
Surrogate Recovery (%)								
C13-1234678 HeptaCDD *	%	55						8112252
C13-1234678 HeptaCDF **	%	49						8112252
C13-123478 HexaCDD *	%	102						8112252
C13-123478 HexaCDF **	%	117						8112252
C13-1234789 HeptaCDF **	%	85						8112252
C13-123678 HexaCDD *	%	87						8112252
C13-123678 HexaCDF **	%	51						8112252
C13-12378 PentaCDD *	%	70						8112252
C13-12378 PentaCDF **	%	55						8112252
C13-123789 HexaCDF **	%	71						8112252
C13-23478 PentaCDF **	%	117						8112252
C13-2378 TetraCDD *	%	83						8112252
C13-2378 TetraCDF **	%	70						8112252
C13-Octachlorodibenzo-p-Dioxin	%	31						8112252
Cl37-2378 TetraCDD *	%	86						8112252

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

* CDD = Chloro Dibenzo-p-Dioxin

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

TEST SUMMARY

Bureau Veritas ID: SYG390

Sample ID: SVOC- BLANK

Collected:

2022/06/17

Matrix: Stack Sampling Train

Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chlorobenzenes in MM5 Trains (EPA M0010)	GC/MS	8093092	2022/07/06	2022/07/28	Wenhui (Susie) Shi
Chlorophenols in MM5 Trains (EPA M0010)	GC/MS	8093102	2022/07/06	2022/07/15	Wenhui (Susie) Shi
Dioxins/Furans in Air (Method 23)	HRMS/MS	8112252	2022/07/06	2022/07/26	Angel Guerrero
PAH's in MM5 SamplingTrains (CARB429mod)	GC/MS	8093063	2022/07/06	2022/07/28	Chau Ting (Ruth) Chan
PCBs in a Sampling Train (1668Amod)	HRMS/MS	8135911	2022/07/28	2022/07/27	Nishat Tasnim

Bureau Veritas ID: SYG391

Sample ID:

SVOC-TEST 1

Collected: Shipped:

2022/06/17

Matrix: Stack Sampling Train

2022/06/17 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chlorobenzenes in MM5 Trains (EPA M0010)	GC/MS	8093092	2022/07/06	2022/07/28	Wenhui (Susie) Shi
Chlorophenols in MM5 Trains (EPA M0010)	GC/MS	8093102	2022/07/06	2022/07/15	Wenhui (Susie) Shi
Dioxins/Furans in Air (Method 23)	HRMS/MS	8112252	2022/07/06	2022/07/26	Angel Guerrero
PAH's in MM5 SamplingTrains (CARB429mod)	GC/MS	8093063	2022/07/06	2022/07/28	Chau Ting (Ruth) Chan
PCBs in a Sampling Train (1668Amod)	HRMS/MS	8135911	2022/07/28	2022/07/27	Nishat Tasnim

Bureau Veritas ID: SYG392

Sample ID: SVOC- TEST 2

Matrix: Stack Sampling Train

Collected:

2022/06/17

Shipped:

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chlorobenzenes in MM5 Trains (EPA M0010)	GC/MS	8093092	2022/07/06	2022/07/28	Wenhui (Susie) Shi
Chlorophenols in MM5 Trains (EPA M0010)	GC/MS	8093102	2022/07/06	2022/07/15	Wenhui (Susie) Shi
Dioxins/Furans in Air (Method 23)	HRMS/MS	8112252	2022/07/06	2022/07/26	Angel Guerrero
PAH's in MM5 SamplingTrains (CARB429mod)	GC/MS	8093063	2022/07/06	2022/07/28	Chau Ting (Ruth) Chan
PCBs in a Sampling Train (1668Amod)	HRMS/MS	8135911	2022/07/28	2022/07/27	Nishat Tasnim

Bureau Veritas ID: SYG393

Sample ID: SVOC-TEST 3

Matrix: Stack Sampling Train

Collected: Shipped:

2022/06/17

Received: 2022/06/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chlorobenzenes in MM5 Trains (EPA M0010)	GC/MS	8093092	2022/07/06	2022/07/28	Wenhui (Susie) Shi
Chlorophenols in MM5 Trains (EPA M0010)	GC/MS	8093102	2022/07/06	2022/07/15	Wenhui (Susie) Shi
Dioxins/Furans in Air (Method 23)	HRMS/MS	8112252	2022/07/06	2022/07/26	Angel Guerrero
PAH's in MM5 SamplingTrains (CARB429mod)	GC/MS	8093063	2022/07/06	2022/07/28	Chau Ting (Ruth) Chan
PCBs in a Sampling Train (1668Amod)	HRMS/MS	8135911	2022/07/28	2022/07/27	Nishat Tasnim

Client Project #: 2202865 Site Location: STERICYCLE Your P.O. #: 2202865

GENERAL COMMENTS

Sample SYG391 [SVOC- TEST 1]: PAHMM5-TR Analysis: D12-Benzo(a)pyrene, D12-Benzo(ghi)perylene, D12-Indeno(1,2,3-cd)pyrene and D12-Dibenzo (a,h)anthracene were below surrogate criteria. Archive cleanup generated similar results. Please view results with caution.

Sample SYG392 [SVOC-TEST 2]: PAHMM5-TR Analysis: D12-Benzo(a)pyrene, D12-Benzo(ghi)perylene, D12-Indeno(1,2,3-cd)pyrene, D12-perylene and D12-Dibenzo(a,h)anthracene were below surrogate criteria. Archive cleanup generated similar results. Please view results with caution.

Sample SYG393 [SVOC- TEST 3]: PAHMM5-TR Analysis: D12-Benzo(a)pyrene, D12-Benzo(b)fluoranthene, D12-Benzo(ghi)perylene, D12-Benzo(k) fluoranthene, D12-Indeno(1,2,3-cd)pyrene, D12-perylene and D12-Dibenzo(a,h)anthracene were below surrogate criteria. Archive cleanup generated similar results. Please view results with caution.

SEMI-VOLATILE ORGANICS BY GC-MS (STACK SAMPLING TRAIN)

PAH's in MM5 SamplingTrains (CARB429mod): Benzo(b)fluoranthene and Benzo(j)fluoranthene coelute, data reported is the total of the two compounds if both are present.

Triphenylene co-elutes with Chrysene and Dibenzo(a,c)anthracene co-elutes with Dibenz(a,h)anthracene. The data reported is the total of the 2 compounds if both are present.

Results relate only to the items tested.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8093063	CTC	Spiked Blank	D10-2-Methylnaphthalene	2022/07/28		90	%	50 - 150
			D10-Fluoranthene	2022/07/28		86	%	50 - 150
			D10-Phenanthrene	2022/07/28		88	%	50 - 150
			D12-Benzo(a)anthracene	2022/07/28		94	%	50 - 150
			D12-Benzo(a)pyrene	2022/07/28		88	%	50 - 150
			D12-Benzo(b)fluoranthene	2022/07/28		82	%	50 - 150
			D12-Benzo(ghi)perylene	2022/07/28		92	%	50 - 150
			D12-Benzo(k)fluoranthene	2022/07/28		92	%	50 - 150
			D12-Chrysene	2022/07/28		94	%	50 - 150
			D12-Indeno(1,2,3-cd)pyrene	2022/07/28		90	%	50 - 150
		D12-Perylene	2022/07/28		90	%	50 - 150	
			D14-Dibenzo(a,h)anthracene	2022/07/28		86	%	50 - 150
			D8-Acenaphthylene	2022/07/28		90	%	50 - 150
			D8-Naphthalene	2022/07/28		86	%	50 - 150
			1-Methylnaphthalene	2022/07/28		98	%	50 - 150
			1-Methylphenanthrene	2022/07/28		93	%	50 - 150
			2-Chloronaphthalene	2022/07/28		125	%	50 - 150
			2-Methylanthracene	2022/07/28		83	%	50 - 150
			2-Methylnaphthalene	2022/07/28		93	%	50 - 150
			3-Methylcholanthrene	2022/07/28		58	%	50 - 150
			7,12-Dimethylbenzo(a)anthracene	2022/07/28		68	%	50 - 150
			9,10-Dimethylanthracene	2022/07/28		50	%	50 - 200
			9-Methylphenanthrene	2022/07/28		95	%	N/A
			Acenaphthene	2022/07/28		93	%	50 - 150
			Acenaphthylene	2022/07/28		90	%	50 - 150
			Anthracene	2022/07/28		85	%	50 - 150
			Benzo(a)anthracene	2022/07/28		93	%	50 - 150
			Benzo(a)fluorene	2022/07/28		93	%	50 - 150
			Benzo(a)pyrene	2022/07/28		90	% %	50 - 150
			Benzo(b)fluoranthene	2022/07/28		98	% %	50 - 150
			Benzo(b)fluorene	2022/07/28		93	% %	50 - 150
			• •	2022/07/28		93 103	% %	50 - 150
			Benzo(e)pyrene					
			Benzo(g,h,i)perylene	2022/07/28		100	%	50 - 150
			Benzo(k)fluoranthene	2022/07/28		95 or	%	50 - 150
			Biphenyl	2022/07/28		95	%	50 - 150
			Chrysene	2022/07/28		98	%	50 - 150
			Coronene	2022/07/28		85	%	50 - 150
			Dibenzo(a,h)anthracene	2022/07/28		93	%	50 - 150
			Dibenzo(a,e)pyrene	2022/07/28		93	%	50 - 150
			Fluoranthene	2022/07/28		90	%	50 - 150
			Fluorene	2022/07/28		95	%	50 - 150
			Indeno(1,2,3-cd)pyrene	2022/07/28		93	%	50 - 150
			m-Terphenyl	2022/07/28		93	%	50 - 150
			Naphthalene	2022/07/28		93	%	50 - 150
			o-Terphenyl	2022/07/28		93	%	50 - 150
			Perylene	2022/07/28		98	%	50 - 150
			Phenanthrene	2022/07/28		93	%	50 - 150
		p-Terphenyl	2022/07/28		90	%	50 - 150	
			Pyrene	2022/07/28		93	%	50 - 150
			Quinoline	2022/07/28		10 (2)	%	50 - 150
			Tetralin	2022/07/28		105	%	50 - 150

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC			QUALITY ASSUMANCE IN					
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8093063	CTC	RPD	1-Methylnaphthalene	2022/07/28	2.6		%	50
			1-Methylphenanthrene	2022/07/28	2.7		%	50
			2-Chloronaphthalene	2022/07/28	0		%	50
			2-Methylanthracene	2022/07/28	6.3		%	50
			2-Methylnaphthalene	2022/07/28	2.7		%	50
			3-Methylcholanthrene	2022/07/28	30 (1)		%	50
			7,12-Dimethylbenzo(a)anthracene	2022/07/28	7.7		%	50
			9,10-Dimethylanthracene	2022/07/28	16 (1)		%	50
			9-Methylphenanthrene	2022/07/28	2.7		%	50
			Acenaphthene	2022/07/28	2.7		%	50
			Acenaphthylene	2022/07/28	0		%	50
			Anthracene	2022/07/28	6.1		%	50
			Benzo(a)anthracene	2022/07/28	5.6		%	50
			Benzo(a)fluorene	2022/07/28	5.6		%	50
			Benzo(a)pyrene	2022/07/28	5.7		%	50
			Benzo(b)fluoranthene	2022/07/28	2.6		%	50
			Benzo(b)fluorene	2022/07/28	5.6		%	50
			Benzo(e)pyrene	2022/07/28	5.0		%	50
			Benzo(g,h,i)perylene	2022/07/28	5.1		%	50
			Benzo(k)fluoranthene	2022/07/28	5.4		%	50
			Biphenyl	2022/07/28	2.7		%	50
			Chrysene	2022/07/28	5.3		%	50
			Coronene	2022/07/28	3.0		%	50
			Dibenzo(a,h)anthracene	2022/07/28	5.6		%	50
			Dibenzo(a,e)pyrene	2022/07/28	5.6		% %	50
			Fluoranthene	2022/07/28	2.8		% %	50
			Fluorene	2022/07/28	2.7		% %	50
				• •				
			Indeno(1,2,3-cd)pyrene	2022/07/28	5.6 2.7		% %	50 50
			m-Terphenyl	2022/07/28				
			Naphthalene	2022/07/28	2.7		%	50
			o-Terphenyl	2022/07/28	2.7		%	50
			Perylene	2022/07/28	5.3		%	50
			Phenanthrene	2022/07/28	5.6		%	50
			p-Terphenyl	2022/07/28	5.7		%	50
			Pyrene	2022/07/28	2.7		%	50
			Quinoline	2022/07/28	77 (3)		%	50
			Tetralin	2022/07/28	4.9		%	50
8093063	CTC	Method Blank	D10-2-Methylnaphthalene	2022/07/28		82	%	50 - 150
			D10-Fluoranthene	2022/07/28		78	%	50 - 150
			D10-Phenanthrene	2022/07/28		82	%	50 - 150
			D12-Benzo(a)anthracene	2022/07/28		82	%	50 - 150
			D12-Benzo(a)pyrene	2022/07/28		80	%	50 - 150
			D12-Benzo(b)fluoranthene	2022/07/28		80	%	50 - 150
			D12-Benzo(ghi)perylene	2022/07/28		84	%	50 - 150
			D12-Benzo(k)fluoranthene	2022/07/28		86	%	50 - 150
			D12-Chrysene	2022/07/28		86	%	50 - 150
			D12-Indeno(1,2,3-cd)pyrene	2022/07/28		80	%	50 - 150
			D12-Perylene	2022/07/28		82	%	50 - 150
			D14-Dibenzo(a,h)anthracene	2022/07/28		76	%	50 - 150
			D8-Acenaphthylene	2022/07/28		84	%	50 - 150
			D8-Naphthalene	2022/07/28		80	%	50 - 150

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
	1-Methylnaphthalene	2022/07/28	ND, RDL=0.30	ug	
	1-Methylphenanthrene	2022/07/28	ND, RDL=0.30	ug	
	2-Chloronaphthalene	2022/07/28	ND, RDL=0.30	ug	
	2-Methylanthracene	2022/07/28	ND, RDL=0.30	ug	
	2-Methylnaphthalene	2022/07/28	ND, RDL=0.30	ug	
	3-Methylcholanthrene	2022/07/28	ND, RDL=0.30	ug	
	7,12-Dimethylbenzo(a)anthracene	2022/07/28	ND, RDL=1.2	ug	
	9,10-Dimethylanthracene	2022/07/28	ND, RDL=0.30	ug	
	9-Methylphenanthrene	2022/07/28	ND, RDL=0.30	ug	
	Acenaphthene	2022/07/28	ND, RDL=0.30	ug	
	Acenaphthylene	2022/07/28	ND, RDL=0.30	ug	
	Anthracene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(a)anthracene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(a)fluorene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(a)pyrene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(b)Anthracene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(b)fluoranthene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(b)fluorene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(e)pyrene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(g,h,i)perylene	2022/07/28	ND, RDL=0.30	ug	
	Benzo(k)fluoranthene	2022/07/28	ND, RDL=0.30	ug	
	Biphenyl	2022/07/28	ND, RDL=0.30	ug	
	Chrysene	2022/07/28	ND, RDL=0.30	ug	
	Coronene	2022/07/28	ND, RDL=0.30	ug	
	Dibenzo(a,h)anthracene	2022/07/28	ND, RDL=0.30	ug	
	Dibenzo(a,c)anthracene	2022/07/28	ND, RDL=0.30	ug	

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Dibenzo(a,e)pyrene	2022/07/28	ND,	•	ug	
					RDL=0.30			
			Fluoranthene	2022/07/28	ND,		ug	
					RDL=0.30			
			Fluorene	2022/07/28	ND,		ug	
				2022/07/20	RDL=0.30			
			Indeno(1,2,3-cd)pyrene	2022/07/28	ND, RDL=0.30		ug	
			m-Terphenyl	2022/07/28	ND,		uσ	
			in-respilenyi	2022/07/28	RDL=0.30		ug	
			Naphthalene	2022/07/28	ND,		ug	
					RDL=0.30		8	
			o-Terphenyl	2022/07/28	ND,		ug	
					RDL=0.30			
			Perylene	2022/07/28	ND,		ug	
					RDL=0.30			
			Phenanthrene	2022/07/28	ND,		ug	
					RDL=0.30			
			Picene	2022/07/28	ND, RDL=0.30		ug	
			p-Terphenyl	2022/07/28	ND,		ша	
			р-тегрпенуі	2022/07/28	RDL=0.30		ug	
			Pyrene	2022/07/28	ND,		ug	
			Tyrene	2022/07/20	RDL=0.30		~ь	
			Quinoline	2022/07/28	ND,		ug	
					RDL=0.30		J	
			Tetralin	2022/07/28	ND,		ug	
					RDL=0.30			
			Triphenylene	2022/07/28	ND,		ug	
					RDL=0.30			
8093092	WSS	Spiked Blank	1,2,3,4-Tetrachlorobenzene	2022/07/27		81	%	50 - 150
			1,2,3,5+1,2,4,5-Tetrachlorobenzene	2022/07/27		78 	%	50 - 150
			1,2,3-Trichlorobenzene	2022/07/27		77	%	50 - 150
			1,2,4-Trichlorobenzene	2022/07/27		65	%	50 - 150
			1,2-Dichlorobenzene	2022/07/27 2022/07/27		70 71	%	50 - 150
			1,3,5-Trichlorobenzene 1,3-Dichlorobenzene	2022/07/27		67	% %	50 - 150 50 - 150
			1,4-Dichlorobenzene	2022/07/27		93	%	50 - 150
			13C6-Hexachlorobenzene	2022/07/27		86	%	30 - 130
			2H3-1,2,4-Trichlorobenzene	2022/07/27		64	%	30 - 130
			2H4-1,3-Dichlorobenzene	2022/07/27		67	%	30 - 130
			Hexachlorobenzene	2022/07/27		77	%	50 - 150
			Pentachlorobenzene	2022/07/27		79	%	50 - 150
8093092	WSS	RPD	1,2,3,4-Tetrachlorobenzene	2022/07/27	3.1		%	50
			1,2,3,5+1,2,4,5-Tetrachlorobenzene	2022/07/27	5.2		%	50
			1,2,3-Trichlorobenzene	2022/07/27	3.9		%	50
			1,2,4-Trichlorobenzene	2022/07/27	2.4		%	50
			1,2-Dichlorobenzene	2022/07/27	1.8		%	50
			1,3,5-Trichlorobenzene	2022/07/27	3.1		%	50
			1,3-Dichlorobenzene	2022/07/27	6.2		%	50
			1,4-Dichlorobenzene	2022/07/27	0.36		%	50
			Hexachlorobenzene	2022/07/27	2.4		%	50

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC		007		D. A. I. I.		0/ P	LINUTS	001: ::
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
0000000	14/66		Pentachlorobenzene	2022/07/27	6.7		%	50
8093092	WSS	Method Blank	1,2,3,4-Tetrachlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,2,3,5+1,2,4,5-Tetrachlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,2,3-Trichlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,2,4-Trichlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,2-Dichlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,3,5-Trichlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,3-Dichlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			1,4-Dichlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			13C6-Hexachlorobenzene	2022/07/28		88	%	30 - 130
			2H3-1,2,4-Trichlorobenzene	2022/07/28		69	%	30 - 130
			2H4-1,3-Dichlorobenzene	2022/07/28		67	%	30 - 130
			Hexachlorobenzene	2022/07/28	ND, RDL=0.30		ug	
			Pentachlorobenzene	2022/07/28	ND, RDL=0.30		ug	
8093102	WSS	Spiked Blank	2,3,4,5-Tetrachlorophenol	2022/07/15		107	%	22 - 134
			2,3,4-Trichlorophenol	2022/07/15		115	%	22 - 134
			2,3,5-Trichlorophenol	2022/07/15		107	%	22 - 134
			2,4 + 2,5-Dichlorophenol	2022/07/15		102	%	22 - 134
			2,4,6-Trichlorophenol	2022/07/15		110	%	22 - 134
			2,6-Dichlorophenol	2022/07/15		105	%	22 - 134
			2-Chlorophenol	2022/07/15		89	%	22 - 134
			3,4,5-Trichlorophenol	2022/07/15		115	%	22 - 134
			3,4-Dichlorophenol	2022/07/15		104	%	22 - 134
			3,5-Dichlorophenol	2022/07/15		114	%	22 - 134
			4-Chlorophenol	2022/07/15		109	%	22 - 134
			D3-2,4-Dichlorophenol	2022/07/15		96	%	20 - 130
			D6-Pentachlorophenol	2022/07/15		99	%	20 - 130
			Pentachlorophenol	2022/07/15		138 (4)	%	22 - 134
			2,3,4,6-Tetrachlorophenol	2022/07/15		114	%	22 - 134
			2,3,5,6-Tetrachlorophenol	2022/07/15		125	%	22 - 134
			2,3,6-Trichlorophenol	2022/07/15		108	%	22 - 134
			2,3-Dichlorophenol	2022/07/15		102	%	22 - 134
			2,4,5-Trichlorophenol	2022/07/15		112	%	22 - 134
			3-Chlorophenol	2022/07/15		82	%	22 - 134
8093102	WSS	RPD	2,3,4,5-Tetrachlorophenol	2022/07/15	5.5		%	50
			2,3,4-Trichlorophenol	2022/07/15	8.6		%	50
			2,3,5-Trichlorophenol	2022/07/15	8.9		%	50
			2,4 + 2,5-Dichlorophenol	2022/07/15	9.9		%	50
			2,4,6-Trichlorophenol	2022/07/15	10		%	50
			2,6-Dichlorophenol	2022/07/15	9.9		%	50
			2-Chlorophenol	2022/07/15	12		%	50
			3,4,5-Trichlorophenol	2022/07/15	7.7		%	50

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			3,4-Dichlorophenol	2022/07/15	9.0		%	50
			3,5-Dichlorophenol	2022/07/15	9.2		%	50
			4-Chlorophenol	2022/07/15	8.5		%	50
			Pentachlorophenol	2022/07/15	6.7		%	50
			2,3,4,6-Tetrachlorophenol	2022/07/15	7.7		%	50
			2,3,5,6-Tetrachlorophenol	2022/07/15	8.1		%	50
			2,3,6-Trichlorophenol	2022/07/15	8.5		%	50
			2,3-Dichlorophenol	2022/07/15	9.2		%	50
			2,4,5-Trichlorophenol	2022/07/15	9.3		%	50
			3-Chlorophenol	2022/07/15	8.7		%	50
8093102	WSS	Method Blank	2,3,4,5-Tetrachlorophenol	2022/07/15	ND,		ug	
					RDL=0.30			
			2,3,4-Trichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,3,5-Trichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,4 + 2,5-Dichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,4,6-Trichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,6-Dichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2-Chlorophenol	2022/07/15	ND, RDL=0.30		ug	
			3,4,5-Trichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			3,4-Dichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			3,5-Dichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			4-Chlorophenol	2022/07/15	ND, RDL=0.30		ug	
			D3-2,4-Dichlorophenol	2022/07/15		125	%	20 - 130
			D6-Pentachlorophenol	2022/07/15		121	%	20 - 130
			Pentachlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,3,4,6-Tetrachlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,3,5,6-Tetrachlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,3,6-Trichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,3-Dichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			2,4,5-Trichlorophenol	2022/07/15	ND, RDL=0.30		ug	
			3-Chlorophenol	2022/07/15	ND, RDL=0.30		ug	
8112252	AGU	Spiked Blank	C13-1234678 HeptaCDD	2022/07/20		80	%	25 - 130
			C13-1234678 HeptaCDF	2022/07/20		76	%	25 - 130
			C13-123678 HexaCDD	2022/07/20		104	%	40 - 130
			C13-123678 HexaCDF	2022/07/20		80	%	40 - 130

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		71-	C13-12378 PentaCDD	2022/07/20		101	%	40 - 130
			C13-12378 PentaCDF	2022/07/20		81	%	40 - 130
			C13-123789 HexaCDF	2022/07/20		75	%	40 - 130
			C13-2378 TetraCDD	2022/07/20		104	%	40 - 130
			C13-2378 TetraCDF	2022/07/20		90	%	40 - 130
			C13-Octachlorodibenzo-p-Dioxin	2022/07/20		44	%	25 - 130
			2,3,7,8-Tetra CDD	2022/07/20		96	%	80 - 140
			1,2,3,7,8-Penta CDD	2022/07/20		101	%	80 - 140
			1,2,3,4,7,8-Hexa CDD	2022/07/20		100	%	80 - 140
			1,2,3,6,7,8-Hexa CDD	2022/07/20		119	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2022/07/20		119	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDD	2022/07/20		95	%	80 - 140
			1,2,3,4,6,7,8,9-Octa CDD	2022/07/20		104	%	80 - 140
			2,3,7,8-Tetra CDF	2022/07/20		99	%	80 - 140
			1,2,3,7,8-Penta CDF	2022/07/20		107	%	80 - 140
			2,3,4,7,8-Penta CDF	2022/07/20		103	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2022/07/20		109	%	80 - 140
			1,2,3,6,7,8-Hexa CDF	2022/07/20		119	%	80 - 140
			2,3,4,6,7,8-Hexa CDF	2022/07/20		91	%	80 - 140
			1,2,3,7,8,9-Hexa CDF	2022/07/20		116	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2022/07/20		101	%	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2022/07/20		86	%	80 - 140
			1,2,3,4,6,7,8,9-Octa CDF	2022/07/20		100	%	80 - 140
8112252	AGU	RPD	2,3,7,8-Tetra CDD	2022/07/20	1.0	100	%	20
0112232	AGO	M D	1,2,3,7,8-Penta CDD	2022/07/20	4.8		%	20
			1,2,3,4,7,8-Hexa CDD	2022/07/20	2.0		%	20
			1,2,3,6,7,8-Hexa CDD	2022/07/20	2.6		%	20
			1,2,3,7,8,9-Hexa CDD	2022/07/20	8.8		%	20
			1,2,3,4,6,7,8-Hepta CDD	2022/07/20	2.1		%	20
			1,2,3,4,6,7,8,9-Octa CDD	2022/07/20	0		%	20
			2,3,7,8-Tetra CDF	2022/07/20	0		%	20
			1,2,3,7,8-Penta CDF	2022/07/20	0.93		%	20
			2,3,4,7,8-Penta CDF	2022/07/20	3.0		%	20
			1,2,3,4,7,8-Hexa CDF	2022/07/20	2.8		%	20
			1,2,3,6,7,8-Hexa CDF	2022/07/20	6.1		%	20
			2,3,4,6,7,8-Hexa CDF	2022/07/20	10		%	20
			1,2,3,7,8,9-Hexa CDF	2022/07/20	1.7		%	20
			1,2,3,4,6,7,8-Hepta CDF	2022/07/20	1.7		% %	20
			1,2,3,4,7,8,9-Hepta CDF	2022/07/20	13		%	20
			1,2,3,4,6,7,8,9-Octa CDF	2022/07/20	0		%	20
8112252	AGU	Method Blank	C13-1234678 HeptaCDD	2022/07/20	U	77		
0117727	AUU	IVICUIOU DIGIIK	C13-1234678 HeptaCDD C13-1234678 HeptaCDF	2022/07/20		77 71	% %	25 - 130 25 - 130
			C13-1234078 HeptaCDI C13-123678 HexaCDD	2022/07/20		106	%	40 - 130
			C13-123678 HexaCDF	2022/07/20		74	% %	40 - 130
			C13-123678 HexaCDF C13-12378 PentaCDD	2022/07/20		74 91		40 - 130
				• •		91 74	%	
			C13-12378 PentaCDF	2022/07/20			%	40 - 130 40 - 130
			C13-123789 HexaCDF	2022/07/20		81	%	
			C13-2378 TetraCDD	2022/07/20		99	%	40 - 130
			C13-2378 TetraCDF	2022/07/20		82	%	40 - 130
			C13-Octachlorodibenzo-p-Dioxin	2022/07/20		43	%	25 - 130

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		2,3,7,8-Tetra CDD	2022/07/20	ND, EDL=6.8		pg	
		1,2,3,7,8-Penta CDD	2022/07/20	ND, EDL=8.2		pg	
		1,2,3,4,7,8-Hexa CDD	2022/07/20	ND, EDL=9.5		pg	
		1,2,3,6,7,8-Hexa CDD	2022/07/20	ND, EDL=8.3		pg	
		1,2,3,7,8,9-Hexa CDD	2022/07/20	ND, EDL=8.8		pg	
		1,2,3,4,6,7,8-Hepta CDD	2022/07/20	ND, EDL=11		pg	
		1,2,3,4,6,7,8,9-Octa CDD	2022/07/20	ND, EDL=8.8		pg	
		Total Tetra CDD	2022/07/20	ND, EDL=6.8		pg	
		Total Penta CDD	2022/07/20	ND, EDL=8.2		pg	
		Total Hexa CDD	2022/07/20	ND, EDL=8.8		pg	
		Total Hepta CDD	2022/07/20	ND, EDL=11		pg	
		2,3,7,8-Tetra CDF	2022/07/20	ND, EDL=9.1		pg	
		1,2,3,7,8-Penta CDF	2022/07/20	ND, EDL=8.9		pg	
		2,3,4,7,8-Penta CDF	2022/07/20	ND, EDL=8.8		pg	
		1,2,3,4,7,8-Hexa CDF	2022/07/20	ND, EDL=8.5		pg	
		1,2,3,6,7,8-Hexa CDF	2022/07/20	ND, EDL=7.8		pg	
		2,3,4,6,7,8-Hexa CDF	2022/07/20	ND, EDL=8.9		pg	
		1,2,3,7,8,9-Hexa CDF	2022/07/20	ND, EDL=9.7		pg	
		1,2,3,4,6,7,8-Hepta CDF	2022/07/20	ND, EDL=11		pg	
		1,2,3,4,7,8,9-Hepta CDF	2022/07/20	ND, EDL=13		pg	
		1,2,3,4,6,7,8,9-Octa CDF	2022/07/20	ND, EDL=9.4		pg	
		Total Tetra CDF	2022/07/20	ND, EDL=9.1		pg	
		Total Penta CDF	2022/07/20	ND, EDL=8.8		pg	
		Total Hexa CDF	2022/07/20	ND, EDL=8.7		pg	
		Total Hepta CDF	2022/07/20	ND, EDL=12		pg	
8135911	NTS Spiked Blank	C13-233'44'55'-HeptaCB-(189)	2022/07/27		86	%	30 - 140
		C13-233'44'5-HexaCB-(156)	2022/07/27		77	%	30 - 140

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QA/QC			_					
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-233'44'5'-HexaCB-(157)	2022/07/27		77	%	30 - 140
			C13-233'44'-PentaCB-(105)	2022/07/27		74	%	30 - 140
			C13-23'44'55'-HexaCB-(167)	2022/07/27		78	%	30 - 140
			C13-2344'5-PentaCB-(114)	2022/07/27		60	%	30 - 140
			C13-23'44'5-PentaCB-(118)	2022/07/27		70	%	30 - 140
			C13-2'344'5-PentaCB-(123)	2022/07/27		71	%	30 - 140
			C13-33'44'55'-HexaCB-(169)	2022/07/27		63	%	30 - 140
			C13-33'44'5-PentaCB-(126)	2022/07/27		69	%	30 - 140
			C13-33'44'-TetraCB-(77)	2022/07/27		61	%	30 - 140
			C13-344'5-TetraCB-(81)	2022/07/27		58	%	30 - 140
			33'44'-TetraCB-(77)	2022/07/27		103	%	50 - 150
			344'5-TetraCB-(81)	2022/07/27		102	%	50 - 150
			233'44'-PentaCB-(105)	2022/07/27		106	%	50 - 150
			2344'5-PentaCB-(114)	2022/07/27		108	%	50 - 150
			23'44'5-PentaCB-(118)	2022/07/27		109	%	50 - 150
			23'44'5'-PentaCB-(123)	2022/07/27		105	%	50 - 150
			33'44'5-PentaCB-(126)	2022/07/27		98	%	50 - 150
			HexaCB-(156)+(157)	2022/07/27		104	%	N/A
			23'44'55'-HexaCB-(167)	2022/07/27		103	%	50 - 150
			33'44'55'-HexaCB-(169)	2022/07/27		99	%	50 - 150
			233'44'55'-HeptaCB-(189)	2022/07/27		98	%	50 - 150
135911	NTS	RPD	33'44'-TetraCB-(77)	2022/07/27	2.9		%	30
			344'5-TetraCB-(81)	2022/07/27	0.98		%	30
			233'44'-PentaCB-(105)	2022/07/27	1.9		%	30
			2344'5-PentaCB-(114)	2022/07/27	0.93		%	30
			23'44'5-PentaCB-(118)	2022/07/27	3.7		%	30
			23'44'5'-PentaCB-(123)	2022/07/27	0.96		%	30
			33'44'5-PentaCB-(126)	2022/07/27	6.9		%	30
			HexaCB-(156)+(157)	2022/07/27	0		%	30
			23'44'55'-HexaCB-(167)	2022/07/27	1.9		%	30
			33'44'55'-HexaCB-(169)	2022/07/27	3.0		%	30
			233'44'55'-HeptaCB-(189)	2022/07/27	0		%	30
135911	NTS	Method Blank	C13-233'44'55'-HeptaCB-(189)	2022/07/27		90	%	30 - 140
			C13-233'44'5-HexaCB-(156)	2022/07/27		81	%	30 - 140
			C13-233'44'5'-HexaCB-(157)	2022/07/27		81	%	30 - 140
			C13-233'44'-PentaCB-(105)	2022/07/27		76	%	30 - 140
			C13-23'44'55'-HexaCB-(167)	2022/07/27		82	%	30 - 140
			C13-2344'5-PentaCB-(114)	2022/07/27		64	%	30 - 140
			C13-23'44'5-PentaCB-(118)	2022/07/27		72	%	30 - 140
			C13-2'344'5-PentaCB-(123)	2022/07/27		68	%	30 - 140
			C13-33'44'55'-HexaCB-(169)	2022/07/27		72	%	30 - 140
			C13-33'44'5-PentaCB-(126)	2022/07/27		67	%	30 - 140
			C13-33'44'-TetraCB-(77)	2022/07/27		60	%	30 - 140
			C13-344'5-TetraCB-(81)	2022/07/27		56	%	30 - 140
			33'44'-TetraCB-(77)	2022/07/27	ND, RDL=0.60		ng	
			344'5-TetraCB-(81)	2022/07/27	ND, RDL=0.60		ng	
			233'44'-PentaCB-(105)	2022/07/27	ND, RDL=0.60		ng	

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			2344'5-PentaCB-(114)	2022/07/27	ND, RDL=0.60		ng	
			23'44'5-PentaCB-(118)	2022/07/27	ND, RDL=0.60		ng	
			23'44'5'-PentaCB-(123)	2022/07/27	ND, RDL=0.60		ng	
			33'44'5-PentaCB-(126)	2022/07/27	ND, RDL=0.60		ng	
			HexaCB-(156)+(157)	2022/07/27	ND, RDL=1.2		ng	
			23'44'55'-HexaCB-(167)	2022/07/27	ND, RDL=0.60		ng	
			33'44'55'-HexaCB-(169)	2022/07/27	ND, RDL=0.60		ng	
			233'44'55'-HeptaCB-(189)	2022/07/27	ND, RDL=0.60		ng	
			Monochlorobiphenyl	2022/07/27	ND		ng	
			Dichlorobiphenyl	2022/07/27	ND		ng	
			Trichlorobiphenyl	2022/07/27	ND		ng	
			Tetrachlorobiphenyl	2022/07/27	ND		ng	
			Pentachlorobiphenyl	2022/07/27	ND		ng	
			Hexachlorobiphenyl	2022/07/27	ND		ng	
			Heptachlorobiphenyl	2022/07/27	ND		ng	
			Octachlorobiphenyl	2022/07/27	ND		ng	
			Nonachlorobiphenyl	2022/07/27	ND		ng	
			Decachlorobiphenyl	2022/07/27	ND		ng	
			Total PCB	2022/07/27	0		ng	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

- (1) Recovery below spike criteria. Archive clean up generated similar results. Please review results with caution.
- (2) Recoveries for Quinoline in SPIKE and SPIKE:D1 were below spike criteria. Archive cleanup generated similar results. Please view results with caution.
- (3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (4) Spike recovery of pentachlorophenol was above spike criteria. Samples were ND for pentachlorophenol.

Client Project #: 2202865 Site Location: STERICYCLE

Your P.O. #: 2202865

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Jugaren	
Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS	
M Di Grazia	
The BI Grazia	
Melissa DiGrazia, Operations Manager, HRMS Department	_

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREAU

	CAPTATORE			neAl	R													37	311	
	6740 Campobello Rd	Toll	Free: 1-800-6	68-0639									E	CAM FC	D-0130	02 /3	F	Page	of	-
BUREAU VERITAS	Mississauga Ontario, L5N 2L www.bvlabs.com	8 F	Phone: (905) 8 Fax: (905) 8										<u>පු</u>	ANALYS	SIS REC	UESTE	D ,		- 1	
	Company Name:	RWDI				·					9		$\frac{1}{2}$							
CLIENT NFORMATIC		kirk	East	2 ~				29	5	12	26	mobilited	0030							
	e-mail:	Kirk.e	souther	26.16M	$\frac{\mathcal{O}(r)}{c}$	(-1)	elph	usepa Nethod	0	A M	po	5/90							į	
SECTION	Address	900	9000	ARC E	<u>' </u>	<u> </u>	otpin	Ho	3	ļ	Method	جح	Method						ļ	
								Me	کے	25		430	مح	ŀ						
	Phone Sampled by	519-	400-5	221				4	7	Enr Grada	USECA		4	İ						
	Phone	1000	00	. Fax.	-			Tr.	5.50	5	2	CARB	usepa							
	Sampled by	:MO5/						3	3	17	3	2	Ě							
			Total Volume		Colle		Sample Collection													
- 0 1	ample ID	(2	Sampled	invirano 23	Da Ob/IS	_	Time													\neg
Storiago			/_/_	7	Q0/ 19		-+-	1/	V		-			_						
Stericy	cle M29 Dlank							_		1/										
stericy cu	2 9060 71-21		 	18						1										
Stericyc	le suos Blanks	<u> </u>		6				<u> </u>		10						-		-		
Steri Cycl	e 11>13			6						<u> </u>	V	<u> </u>								
11	" - Blanks			3					ļ		V		ļ							
Stericyc	C. C. C. C. C. C. C. C. C. C. C. C. C. C	>13		3								V				ļ				
11	" Bla	nka		1								1								
Steriosch		3	1 1	3									V							
ul	1 Blant	-		1		, –							/							
	10 17.		1 (1	1	5													

FAT Requirement
STD 10 Business day Rush 5 Business day * Rush 2 Business day * * need approval from Bureau
Veritas

PROJECT INFORMATION	
Project #: 2202865	
Name: 5teritole PO#: 2202865	
BV Quote #:	
BV Contact:	

REPORTING REQUIR	EMENTS
Summary Report only EDD	
Regulation	

Notes
Please note if these samples are "Industrial Hygiene" samples
If submitting dustfall samples, please indicate the diameter of the
jar opening in cm.

PROJECT SPECIFIC COMMENTS

M 26 - Ammonia, HCI, HF

send results also to Mosprudi. com

Client Signature: Affiliation:

COC-1031 (11/2019)

"III HOLL	wew	
LOW		
Cition	77 20	

Received by: Affiliation:

150	X	10.	PIKT	151	NOH
UT.	ă	bS			
	57	a. []	7	,	CC

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Bureau Veritas Laboratories' standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms available at http://www.bvlabs.com/terms-and-conditions

12.4/12.2/14.8

Bureau Veritas Job Number: C2B5882 Report Date: 2022/05/09

VOLATILE ORGANICS BY GC/MS (AIR SAMPLING MEDIA)

Bureau Veritas ID		SMQ710		
Sampling Date		2022/05/02 08:04		
	UNITS	VOST PROOF #1-6	RDL	QC Batch
Dichlorodifluoromethane (FREON 12)	ug	ND	0.050	7982576
Chloromethane	ug	ND	0.050	7982576
Vinyl Chloride	ug	ND	0.050	7982576
Bromomethane	ug	ND	0.050	7982576
Chloroethane	ug	ND	0.050	7982576
Trichlorofluoromethane (FREON 11)	ug	ND	0.050	7982576
Acetone (2-Propanone)	ug	ND	0.050	7982576
1,1-Dichloroethylene	ug	ND	0.050	7982576
Iodomethane	ug	ND	0.050	7982576
Carbon Disulfide	ug	ND	0.050	7982576
Methylene Chloride(Dichloromethane)	ug	ND	0.050	7982576
1,1-Dichloroethane	ug	ND	0.050	7982576
trans-1,2-Dichloroethylene	ug	ND	0.050	7982576
cis-1,2-Dichloroethylene	ug	ND	0.050	7982576
Chloroform	ug	ND	0.050	7982576
1,2-Dichloroethane	ug	ND	0.050	7982576
Methyl Ethyl Ketone (2-Butanone)	ug	ND	0.050	7982576
1,1,1-Trichloroethane	ug	ND	0.050	7982576
Carbon Tetrachloride	ug	ND	0.050	7982576
Benzene	ug	ND	0.050	7982576
1,1,2-Trichloroethane	ug	ND	0.050	7982576
1,2-Dichloropropane	ug	ND	0.050	7982576
Trichloroethylene	ug	ND	0.050	7982576
Dibromomethane	ug	ND	0.050	7982576
Bromodichloromethane	ug	ND	0.050	7982576
cis-1,3-Dichloropropene	ug	ND	0.050	7982576
trans-1,3-Dichloropropene	ug	ND	0.050	7982576
Dibromochloromethane	ug	ND	0.050	7982576
Methyl Isobutyl Ketone	ug	ND	0.050	7982576
Methyl Butyl Ketone (2-Hexanone)	ug	ND	0.050	7982576
Toluene	ug	ND	0.050	7982576
Ethylene Dibromide	ug	ND	0.050	7982576
Tetrachloroethylene	ug	ND	0.050	7982576
Chlorobenzene	ug	ND	0.050	7982576
1,1,1,2-Tetrachloroethane	ug	ND	0.050	7982576
Ethylbenzene	ug	ND	0.050	7982576
m / p-Xylene	ug	ND	0.10	7982576
Styrene	ug	ND	0.050	7982576
o-Xylene	ug	ND	0.050	7982576
Bromoform	ug	ND	0.050	7982576
1,1,2,2-Tetrachloroethane	ug	ND	0.050	7982576
1,2,3-Trichloropropane	ug	ND	0.050	7982576
1,3-Dichlorobenzene	ug	ND	0.050	7982576
1,4-Dichlorobenzene	ug	ND	0.050	7982576
1,2-Dichlorobenzene	ug	ND	0.050	7982576
Surrogate Recovery (%)				
Bromofluorobenzene	%	97		7982576
D10-Ethylbenzene (FS)	%	112		7982576
D4-1,2-Dichloroethane	%	101		7982576
D8-Toluene	%	100		7982576

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Results relate only to the items tested.

APPENDIX K

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-2411 PGVP ID: F12020

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG PARIS P/H 80271 41 CONSOLIDATED DR PARIS ON N3L 3G2 Certificate Issuance Date: 08/18/2020
Praxair Order Number: 22078024
Part Number: NI CD15O1E-AS
Customer PO Number: 71422796 Kitchener

Fill Date: 08/07/2020

Lot Number: 700010220D2

Cylinder Style & Outlet: AS CGA 590

Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

Expiration Date:	08/18/2028	NIST Traceable
Cylinder Number:	DT0025920	Expanded Uncertainty
15.0 %	Carbon dioxide	± 0.1 %
14.9 %	Oxygen	± 0.1 %
Ва	lance Nitrogen	

Certification Information:

Certification Date: 08/18/2020 Ter

Term: 96 Months Expir

Expiration Date: 08/18/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

O2 responses have been corrected for CO2 interference.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

1. Component: Carbon dioxide

Certified Concentration: 15.0 %
Instrument Used: MKS 2030
Analytical Method: FTIR

Requested Concentration: 15.0 %

Analytical Method: FTIR

Last Multipoint Calibration: 07/24/2020

First	Analysis	Data:				Date	08/18/2020	
Z:	0	R:	20.7	C:	15.3	Conc:	15	
R:	20.5	Z:	0	C:	15.2	Conc:	15	
Z:	0	C:	15.4	R:	20.5	Conc:	15.1	
l	- 0/						45 0/	

2. Component: Oxygen

Requested Concentration: 15.0 %
Certified Concentration: 14.9 %
Instrument Used: Servomex 575
Analytical Method: Paramagnetic
Last Multipoint Calibration: 07/22/2020

Firs	t Analysis	Date	08/18/	2020				
Z:	0	R:	22.49	C:	14.9	Conc:	14.9	
R:	22.49	Z:	0	C:	14.9	Conc:	14.9	
Z:	0	C:	14.9	R:	22.49	Conc:	14.9	
nov	1 : %			N	lean Test	Assay:	14.9	%

Reference Standard:

ndard: Type / Cylinder #: GMIS / CC110516

Concentration / Uncertainty: $20.23 \% \pm 0.05 \%$ Expiration Date: 01/13/2026

Traceable to: SRM # / Sample # / Cylinder #: PRM / 3222577.01 / FF27613

SRM Concentration / Uncertainty: 20.008% / ±0.028% SRM Expiration Date: 04/01/2020

Secon	d Ana	Date						
Z:	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	%			Me	an Tes	st Assay:		%

Reference Standard: Type / Cylinder #: GMIS / SGAL2224

Concentration / Uncertainty: 22.49 % ± 0.07 %

Expiration Date: 12/02/2027

Traceable to: SRM # / Sample # / Cylinder #: 2659a / 71-D-04 / CAL015785

SRM Concentration / Uncertainty: 20.72 / ±0.043% SRM Expiration Date: 08/23/2021

Secon	d Anal	ysis Data:	Date					
Z:	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	%			Me		%		

Mine Mount

Analyzed By

Mike Monnette

Certified By

Edward E Zucal

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154

Fax: 714-542-6689 **PGVP ID: F22022**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

LINDE PKG PARIS P H 80271 41 CONSOLIDATED DR PARIS ON N3L 3G2

Certificate Issuance Date: 06/08/2022 Linde Order Number: 63637000 Part Number: NI CD25CO7E-AS Customer PO Number: 71976885 KIT

Fill Date: 05/03/2022 Lot Number: 70086212303 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

		- · · · · · · · · · · · · · · · · · · ·	
Expiration Date:		06/06/2030	NIST Traceable
Cylinder Number:		ALM-030572	Expanded Uncertainty
24.85	%	Carbon dioxide	± 0.07 %
2031	ppm	Carbon monoxide	±7 ppm
20.85	%	Oxygen	± 0.03 %
	Balance	Nitrogen	

Certification Information:

Certification Date: 06/06/2022

Term: 96 Months

Reference Standard:

Z: 0

R:

7:

Z: 0

R:

7: 0

Reference Standard:

UOM:

Expiration Date: 06/06/2030

Date

Conc: 0

0

%

ppm

Conc:

Conc:

Date

Conc:

Conc: 0

Conc: 0

Type / Cylinder #: GMIS / DT0011171

C:

C:

C:

R: 0

0

Mean Test Assay:

Type / Cylinder #: GMIS / DT0017908

0

Mean Test Assay:

Concentration / Uncertainty: 25.01 % ±0.05 % Expiration Date: 11/09/2025

SRM Expiration Date: 05/15/2023

0

Concentration / Uncertainty: 2435 ppm ±7 ppm

SRM Concentration / Uncertainty: 2438.0 ppm / ±5.1 ppm

SRM Expiration Date: 07/07/2022

Expiration Date: 07/12/2029 SRM # / Sample # / Cylinder #: SRM 2637a / 56-F-51 / CAL017069

Traceable to: SRM # / Sample # / Cylinder #: RGM / N/A / CC193512 SRM Concentration / Uncertainty: 26.99% / ±0.05%

> R: 0

7: 0

Second Analysis Data

Second Analysis Data:

0

UOM: ppm

0

0

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

CO responses have been corrected for CO2 interference. CO responses have been corrected for O2 interference. CO2 responses have been corrected for Oxygen IR Broadening effect. O2 responses have been corrected for CO2 interference

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data:

Component: Carbon dioxide

> Requested Concentration: 25 % Certified Concentration: 24.85 %

Instrument Used: Horiba VIA-510 S/N 20C194WK

Analytical Method: **NDIR** Last Multipoint Calibration: 06/06/2022

First	t Analysis	Data:				Date	06/06/2022
Z:	0	R:	25.01	C:	24.86	Conc:	24.85
R:	25.03	Z:	0	C:	24.87	Conc:	24.86
Z:	0	C:	24.85	R:	25.02	Conc:	24.84
ا ا	4. 0/				loon Tool	A	24.05 0/

Component: Carbon monoxide

> Requested Concentration: 2000 ppm Certified Concentration: 2031 ppm

Instrument Used: Horiba VIA-510 S/N 576876015

Analytical Method: NDIR Last Multipoint Calibration: 06/06/2022

First	Analysis	Date	06/06/2022	-				
Z:	0	R:	2435	C:	2035	Conc:	2038	
R:	2434	Z:	0	C:	2030	Conc:	2033	
Z:	0	C:	2020	R:	2427	Conc:	2022	
UOM: ppm					lean Tes	t Assay:	2031 ppr	n

Component: Oxvaen

> Requested Concentration: 21 % Certified Concentration: 20.85 %

Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA1

Analytical Method: Paramagnetic Last Multipoint Calibration: 06/06/2022

	t Analysis		Date	06/06/2022	2			
Z:	0 20.91 0	R:	20.9	C:	20.85	Conc:	20.84	
R:	20.91	Z:	0	C:	20.87	Conc:	20.86	
Z:	0	C:	20.85	R:	20.91	Conc:	20.84	
1104	1. 0/.				loan Toe	Accour	20.85 %	

Type / Cylinder #: GMIS / ND29287 Concentration / Uncertainty: 20.90 % ±0.02 %

R: ٥

Z: 0

C: 0

Expiration Date: 09/01/2028

Traceable to: SRM # / Sample # / Cylinder #: SRM 2659a / 71-E-19 / FF22331

SRM Concentration / Uncertainty: 20.863% / ±0.021% SRM Expiration Date: 08/23/2021

Second Analysis Data: Date Z: 0 R: 0 C: Conc: R: 0 7: n C: 0 Conc: Ω Z: 0 C: 0 Mean Test Assay:

Analyzed By

Certified By

Linde Gas & Equipment Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-2411 PGVP ID: F12021

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

LINDE PKG PARIS P H 80271 41 CONSOLIDATED DR PARIS ON N3L 3G2 Certificate Issuance Date: 12/14/2021 Linde Order Number: 58252308 Part Number: NI ME87ME-AS Customer PO Number: 71899099 KIT

Fill Date: 12/07/2021

Lot Number: 700011341UD

Cylinder Style & Outlet: AS CGA 350

Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

	Certifica Concentiation			
Expiration Date:	12/14/2029	NIST Traceable		
Cylinder Number:	DT0032687	Expanded Uncertainty		
87.5 ppm	Methane	± 0.6 ppm		
Balance	Nitrogen			

Certification Information: Certification Date: 12/14/2021 Term: 96 Months Expiration Date: 12/14/2029

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

 1.
 Component:
 Methan
 Reference Standard:
 Type / Cylinder #:
 GMIS / EB0027439

 Requested Concentration:
 87.0 ppm
 Concentration / Uncertainty:
 101.4 ppm ±0.5 ppm

 Certified Concentration:
 87.5 ppm
 Expiration Date:
 05/25/2024

Instrument Used: MKS 2030
Analytical Method: FTIR
Last Multipoint Calibration: 11/29/2021

ſ	First	Analysis	Data:				Date	12/14/2	2021
I	Z:	0 94.4 0	R:	93.9	C:	81.5	Conc:	87.7	
ı	R:	94.4	Z:	0	C:	81.4	Conc:	87.6	
I	Z:	0	C:	81.2	R:	94.5	Conc:	87.3	
I	UOM	l: ppm			M	lean Tes	t Assay:	87.5	ppm

SRM Expiration Date: 06/01/2016 Second Analysis Data: Date R: Conc: R: Z: 0 C: 0 0 0 Conc: Z: 0 C: 0 0 Conc: UOM: Mean Test Assay: ppm

SRM # / Sample # / Cylinder #: 2751 / 212-C-04 / FF23181

SRM Concentration / Uncertainty: 98.28 ppm / ±0.52 ppm

Why Warred

Analyzed By Mike Monnette

Certified By

Traceable to:

Edward E Zuca

Linde Gas & Equipment Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-2411 PGVP ID: F12022

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

LINDE PKG PARIS P H 80271 41 CONSOLIDATED DR PARIS ON N3L 3G2 Certificate Issuance Date: 03/07/2022 Linde Order Number: 63637088 Part Number: NI NO2000S3E-AS Customer PO Number: 71977226 KIT Fill Date: 02/21/2022
Lot Number: 700012052WC
Cylinder Style & Outlet: AS CGA 660
Cylinder Pressure and Volume: 2000 psig 140 ft3

Expiration Date: 03/07/2030

Certified Concentration

	Certifica Concentitatio	110
Expiration Date:	03/07/2030	NIST Traceable
Cylinder Number:	CC139358	Expanded Uncertainty
1999 ppm	Nitric oxide	± 8 ppm
2014 ppm	Sulfur dioxide	± 4 ppm
Balance	Nitrogen	

For Reference Only:

NOx 2005 ppm

Certification Information:

Certification Date: 03/07/2022 Term: 96 Months

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

1. Component: Nitric oxide

Requested Concentration: 2000 ppm
Certified Concentration: 1999 ppm
Instrument Used: Thermo-42i HL
Analytical Method: Chemiluminescence

Last Multipoint Calibration: 02/21/2022

First	Analysis	Data:				Date	02/28/2	2022
Z:	0	R:	2910	C:	1996	Conc:	1995	
R:	2910	Z:	0	C:	2000	Conc:	1999	
Z:	0	C:	1998	R:	2910	Conc:	1997	
UON	l nnm			N	lean Tes	t Assav:	1997	nnm

2. Component: Sulfur dioxide

Analyzed By

Requested Concentration: 2000 ppm
Certified Concentration: 2014 ppm
Instrument Used: AMETEK 921
Analytical Method: UV Spectrometry
Last Multipoint Calibration: 03/01/2022

First	Analysis	Data:				Date	02/28/	2022
Z:	0	R:	3381	C:	2013	Conc:	2013	
R:	3381	Z:	0	C:	2016	Conc:	2016	
Z:	0	C:	2017	R:	3381	Conc:	2017	
LUON	l: ppm				lean Tes	t Assav:	2015	nnm

Kanykey Karabaeva Certii

Reference Standard: Type / Cylinder #: GMIS / CC109020

Concentration / Uncertainty: 2908 ppm ±8 ppm Expiration Date: 12/07/2027

Expiration Date: 12/07/2027

Traceable to: SRM # / Sample # / Cylinder #: 2361a / 47-G-12 / FF22193

SRM Concentration / Uncertainty: 2989 / ±6.5 ppm SRM Expiration Date: 02/20/2022

Seco	nd Analy	sis Dat	a:			Date	03/07/	2022
Z:	0	R:	2910	C:	2002	Conc:	2001	
R:	2910	Z:	0	C:	2002	Conc:	2001	
Z:	0	C:	2002	R:	2910	Conc:	2001	
UOM	l: ppm			N	Mean Test Assay:			ppm

Reference Standard: Type / Cylinder #: GMIS / EB0023342

Concentration / Uncertainty: 3381 ppm ±7 ppm

Expiration Date: 01/15/2027

Traceable to: SRM # / Sample # / Cylinder #: 1669a / 90-D-15 / CAL016298

SRM Concentration / Uncertainty: 3396 ppm / ±14 ppm

SRM Expiration Date: 01/05/2025

Seco	Second Analysis Data: Date 03/07/2022										
Z:	0	R:	2449	C:	1456	Conc:	2010				
R:	2449	Z:	0	C:	1456	Conc:	2010				
Z:	0	C:	1456	R:	2449	Conc:	2010				
UON	1: ppm			N	lean Test	Assay:	2010	ppm			

Certified By

Edward E Zucal

69 Industrial Park Rd E, Tolland CT 06084 https://www.environics.com/service-request (860) 872-1111 info@environics.com

SERVICE REPORT

ATTN: Erich Hildebrandt, RWDI Air Inc.

DATE OF SERVICE: 3/31/2022 MODEL NUMBER: 4040 SERIAL NUMBER: 9110

SERVICE TYPE: RECALIBRATION NEXT CALIBRATION DUE: 4/1/2023

CONDITIONS AS OBSERVED AND WORK PERFORMED:

- Unit powers up properly.
- Unit cleaned and Purged, data verified.
- All valves checked, ok.
- Checked for any software updates
- Voltages checked 5v, -15v, +15v, 24v.
- Battery voltage checked.
- Unit leak tested.
- Tested all MFC's with each port.
- Zeros on each MFC checked/adjusted.
- Spans checked/adjusted on all MFCs.
- As-found verification run for all MFCs.
- All MFCs recalibrated.
- Verified all MFCs @ 5 standard points, passed within 0.5%
- All cables and screw/nuts tightened, ok.

Six Service Technician

ENVIRONICS FLOW CONTROLLER CALIBRATION REPORT

Unit Sun	nmary	Std Cond	ditions	MFC	Summary
Model #:	S4040	Temp:	.32°F	MFC#:	1
Unit SN:	9110	Pressure:	29.92 in. Hg	MFC FS Flow:	10000
		Gas:	NITROGEN	MFC S/N:	0963707020

Flow Calibration Data is not performance data. This data is used by the system operating mode to improve the flow accuracy. The Flow Verification Data is performance data.

Flow Calibration Data

	Set Flow	True Flow
5%	500	510.775
10%	1000	1024.787
20%	2000	2057.788
30%	3000	3101.170
40%	4000	4139.185
50%	5000	5142.321
60%	6000	6188,481
70%	7000	7220.933
80%	8000	8206.634
90%	9000	9218.031
100%	10000	10237.355
	All values	in SCCM

Flow Verification Data

Set Flow	True Flow	% dev
9900	9908.610	0.09%
8500	8504.098	0.05%
5500	5519.099	0.35%
2500	2501.400	0.06%
1000	1003.675	0.37%
	9900 8500 5500 2500	9900 9908.610 8500 8504.098 5500 5519.099 2500 2501.400

All values in SCCM

This calibration complies with ISO 17025-2005 [non-accredited] and is traceable to the National Institute of Standards and Technology (NIST). Calibration and verification are accomplished exclusively by qualified personnel following controlled procedures under ISO 9001:2015. For questions or concerns, contact Customer Service via our website, email or by phone, weekdays from 8AM - 4PM.

Verified by: Outh, Atmul

Date: 3/3// 22

ENVIRONICS FLOW CONTROLLER CALIBRATION REPORT

32°F	MFC#:	2
29.92 in. Hg	MFC FS Flow:	10000 0963707021
		29.92 in. Hg MFC FS Flow:

Flow Calibration Data is not performance data. This data is used by the system operating mode to improve the flow accuracy. The Flow Verification Data is performance data.

Flow Calibration Data

	Set Flow	True Flow
5%	500	522.572
10%	1000	1067.074
20%	2000	2129.179
30%	3000	3175.969
40%	4000	4223.639
50%	5000	5225.616
60%	6000	6232.556
70%	7000	7283.087
80%	8000	8242.227
90%	9000	9235.964
100%	10000	10206.802
4-20-	All values	in SCCM

Flow Verification Data

	Set Flow	True Flow	% dev
99%	9900	9920.267	0.20%
85%	8500	8504.729	0.06%
55%	5500	5512.261	0.22%
25%	2500	2499.342	-0.03%
10%	1000	997.693	-0.23%

All values in SCCM

This calibration complies with ISO 17025-2005 [non-accredited] and is traceable to the National Institute of Standards and Technology (NIST). Calibration and verification are accomplished exclusively by qualified personnel following controlled procedures under ISO 9001:2015. For questions or concerns, contact Customer Service via our website, email or by phone, weekdays from 8AM - 4PM.

Verified by: Osh AMMUL Date: 3/31/23

ENVIRONICS FLOW CONTROLLER CALIBRATION REPORT

Unit Sum	nmary	Std Cond	ditions	MFC	Summary
Model #:	S4040	Temp:	32°F	MFC#:	3
Unit SN:	9110	Pressure:	29,92 in. Hg	MFC FS Flow:	1000
		Gas:	NITROGEN	MFC S/N:	0963709009

Flow Calibration Data is not performance data. This data is used by the system operating mode to improve the flow accuracy. The Flow Verification Data is performance data.

Flow Calibration Data

	Set Flow	True Flow
5%	50	48.332
10%	100	99.235
20%	200	202.785
30%	300	305.759
40%	400	408.110
50%	500	510.653
60%	600	613.373
70%	700	716.590
80%	800	822.814
90%	900	920.441
100%	1000	1027.899
	All values	in SCCM

Flow Verification Data

Set Flow	True Flow	% dev
990	987.387	-0.26%
850	851.654	0.19%
550	549.734	-0.05%
250	249.439	-0.22%
100	100.400	0.40%
	990 850 550 250	990 987.387 850 851.654 550 549.734 250 249.439

All values in SCCM

This calibration complies with ISO 17025-2005 [non-accredited] and is traceable to the National Institute of Standards and Technology (NIST). Calibration and verification are accomplished exclusively by qualified personnel following controlled procedures under ISO 9001:2015. For questions or concerns, contact Customer Service via our website, email or by phone, weekdays from 8AM - 4PM.

ENVIRONICS FLOW CONTROLLER CALIBRATION REPORT

Unit Sum	nmary	Std Con	ditions	MFC	Summary
Model #:	S4040	Temp:	32°F	MFC#:	4
Unit SN:	9110	Pressure:	29,92 in. Hg	MFC FS Flow:	100
		Gas:	NITROGEN	MFC S/N:	0963711002

Flow Calibration Data is not performance data. This data is used by the system operating mode to improve the flow accuracy. The Flow Verification Data is performance data.

Flow Calibration Data

	Set Flow	True Flow
5%	5	4.651
10%	10	9.820
20%	20	20.140
30%	30	30.385
40%	40	40.730
50%	50	50.868
60%	60	61.135
70%	70	71.499
80%	80	81.642
90%	90	92.380
100%	100	102.237
	All values	in SCCM

Flow Verification Data

	Set Flow	True Flow	% dev
99%	99	99.347	0.35%
85%	85	85.134	0.16%
55%	55	55.096	0.17%
25%	25	24.975	-0.10%
10%	10	9.956	-0.44%

All values in SCCM

This calibration complies with ISO 17025-2005 [non-accredited] and is traceable to the National Institute of Standards and Technology (NIST). Calibration and verification are accomplished exclusively by qualified personnel following controlled procedures under ISO 9001:2015: For questions or concerns, contact Customer Service via our website, email or by phone, weekdays from 8AM - 4PM.

verified by: ashtm & tungl

Date: 3/31/22

Dry Gas Meter Calibration Certificate

DGM Console ID: G DGM Serial #:

Calibration Date: 2022-02-16 Calibrated by KDR

aromo	etric Pressure	735.06	mmHg
aronic	and ressure	98.00	kPa
	Ambient T	22.4	°C
	%r.H	15.00%	
	W	0.0025054	lb/lb
B _{wo}		0.0040	ft³/ft³

LEAK CHECK	DGM (ft³)	WGM (L)
intial value	437.85	988.84
final value	437.94	991.81
time (1 min)	1	1
Pass/Fail	PASS	PASS

			Dr	y Gas Meter V	alues							Wet G	as Meter Value	s					OSTC
ΔН	ΔH	Initial Vol.	Final Vol.	Volume (Vd)	Temp inlet	Temp outlet	Temp Avg (td)	Time	ΔΜ	ΔM	Initial Vol.	Final Vol.	Volume (Vw)	Temp inlet	Temp outlet	Temp (tw)	Calibratio	n Factors	Tolerance
(in. H ₂ O)	(cm H ₂ O)	(ft³)	(ft³)	(m³)	(°F)	(°F)	(°C)	(min)	Pa	(cm H ₂ O)	(L)	(L)	(m³)	(°C)	(°C)	(°C)	Υ	ΔH _@	Y (<±2%)
0.25	0.635	437.94	443.82	0.167	74	74	23.3	20	20	0.20	991.81	1160.54	0.169	25	25.0	25.00	1.003	1.692	1.9%
0.25	0.635	443.82	449.73	0.167	74	74	23.3	20	20	0.20	160.54	330.11	0.170	25	25.0	25.00	1.003	1.675	1.9%
0.25	0.635	449.73	455.61	0.167	74	74	23.3	20	20	0.20	330.11	498.18	0.168	25	25.0	25.00	0.999	1.705	1.5%
0.5	1.270	455.61	463.94	0.236	74	74	23.3	20	20	0.20	498.18	734.94	0.237	24.0	24.0	24	0.996	1.709	1.2%
0.5	1.270	463.94	472.30	0.237	74	74	23.3	20	20	0.20	734.94	971.35	0.236	24	24.0	24	0.991	1.714	0.7%
0.5	1.270	472.30	480.65	0.236	75	75	23.9	20	20	0.20	971.35	1206.70	0.235	24	24.0	24	0.990	1.726	0.6%
1	2.540	480.65	489.51	0.251	75	75	23.9	15	40	0.41	206.70	454.62	0.248	23.5	23.5	23.5	0.983	1.748	-0.1%
1	2.540	489.51	498.35	0.250	75	75	23.9	15	40	0.41	454.62	701.32	0.247	23	23.0	23	0.982	1.759	-0.2%
1	2.540	498.35	507.26	0.252	76	76	24.4	15	40	0.41	701.32	949.16	0.248	23	23.0	23	0.981	1.740	-0.3%
											•		•	-				-	
2	5.080	507.26	517.14	0.280	77	77	25.0	12	60	0.61	949.16	1222.52	0.273	23	23.0	23	0.975	1.836	-0.9%
2	5.080	517.14	527.06	0.281	77	77	25.0	12	60	0.61	222.52	495.99	0.273	23	23.0	23	0.972	1.834	-1.3%
2	5.080	527.06	537.00	0.281	77	77	25.0	12	60	0.61	495.99	769.52	0.274	23	23.0	23	0.970	1.833	-1.4%
4	10.160	537.01	548.36	0.321	70	70	21.1	10	80	0.82	769.52	1089.92	0.320	23	23.0	23	0.977	1.899	-0.7%
4	10.160	548.36	559.75	0.323	71	71	21.7	10	80	0.82	89.92	408.82	0.319	23	23.0	23	0.971	1.913	-1.3%
4	10.160	559.75	571.11	0.322	72	72	22.2	10	80	0.82	408.82	725.56	0.317	23	23.0	23	0.969	1.936	-1.6%
Psychromet	tric Calculate	or													Α	VERAGE =	0.9843	1.7813	

http://www.sugartech.co.za/psychro/index.php

- How to use Pschrometic Calcutor

 1) Dry Buld Temp = Ambient Temp of room
- Select Relat. Humidity
 Enter Relat. Humidity value
- 4) Calculate
- 5) Select IP Unit 6) W= Humidity Ratio

Dry Gas Meter Calibration Certificate

DGM Console ID: H DGM Serial #:

Calibration Date: 2022-02-17 Calibrated by KDR

Barome	etric Pressure	728.31	mmHg
Dai Oille	and ressure	97.10	kPa
	Ambient T	22.7	°C
	%r.H	27.00%	
	W	0.00460814	lb/lb
B _{wo}		0.0074	ft³/ft³
		-	•

LEAK CHECK	DGM (ft³)	WGM (L)
intial value	0.00	725.56
final value	0.08	727.80
time (1 min)	1	1
Pass/Fail	PASS	PASS

			Dr	y Gas Meter V	alues							Wet G	as Meter Value	S					OSTC
ΔН	ΔН	Initial Vol.	Final Vol.	Volume (Vd)	Temp inlet	Temp outlet	Temp Avg (td)	Time	ΔΜ	ΔM	Initial Vol.	Final Vol.	Volume (Vw)	Temp inlet	Temp outlet	Temp (tw)	Calibratio	n Factors	Tolerance
(in. H ₂ O)	(cm H ₂ O)	(ft³)	(ft³)	(m³)	(°F)	(°F)	(°C)	(min)	Pa	(cm H ₂ O)	(L)	(L)	(m³)	(°C)	(°C)	(°C)	Υ	∆ H _@	Y (<±2%)
0.25	0.635	0.08	6.06	0.169	70	70	21.1	20	20	0.20	727.80	897.86	0.170	23	23.0	23.00	0.989	1.682	0.8%
0.25	0.635	6.06	12.02	0.169	72	72	22.2	20	20	0.20	897.86	1066.01	0.168	23	23.0	23.00	0.986	1.714	0.5%
0.25	0.635	12.02	18.05	0.171	72	72	22.2	20	20	0.20	66.01	235.47	0.169	23	23.0	23.00	0.983	1.688	0.1%
0.5	1.270	18.05	26.42	0.237	73	73	22.8	20	20	0.20	235.47	470.18	0.235	22.5	22.5	22.5	0.982	1.752	0.1%
0.5	1.270	26.42	34.79	0.237	72	72	22.2	20	20	0.20	470.18	706.34	0.236	23	23.0	23	0.985	1.740	0.4%
0.5	1.270	34.79	43.20	0.238	73	73	22.8	20	20	0.20	706.34	941.78	0.235	23	23.0	23	0.979	1.747	-0.2%
1	2.540	43.20	52.03	0.250	73	73	22.8	15	40	0.41	941.78	1189.07	0.247	23	23.0	23	0.979	1.786	-0.2%
1	2.540	52.03	60.85	0.250	74	74	23.3	15	40	0.41	189.07	435.53	0.246	22.5	22.5	22.5	0.981	1.788	-0.1%
1	2.540	60.85	69.66	0.250	74	74	23.3	15	40	0.41	435.53	681.74	0.246	22	22.0	22	0.982	1.786	0.0%
				-		•	•							•			,		
2	5.080	69.66	79.44	0.277	74	74	23.3	12	60	0.61	681.74	955.49	0.274	22	22.0	22	0.981	1.858	0.0%
2	5.080	79.44	89.26	0.278	74	74	23.3	12	60	0.61	955.49	1229.94	0.274	22	22.0	22	0.980	1.849	-0.2%
2	5.080	89.26	99.09	0.278	74	74	23.3	12	60	0.61	229.94	504.27	0.274	22	22.0	22	0.979	1.850	-0.3%
4	10.160	99.09	110.34	0.319	75	75	23.9	10	80	0.82	504.27	819.34	0.315	22	22.0	22	0.979	1.964	-0.3%
4	10.160	110.34	121.64	0.320	76	76	24.4	10	80	0.82	819.34	1135.04	0.316	22	22.0	22	0.978	1.952	-0.3%
4	10.160	121.64	132.94	0.320	77	77	25.0	10	80	0.82	135.04	450.20	0.315	22	22.0	22	0.978	1.955	-0.3%
Psychromet	tric Calculat	or		•						·	·		•		A	VERAGE =	0.9814	1.8074	

http://www.sugartech.co.za/psychro/index.php

- How to use Pschrometic Calcutor

 1) Dry Buld Temp = Ambient Temp of room
- Select Relat. Humidity
 Enter Relat. Humidity value

- 4) Calculate
 5) Select IP Unit
 6) W= Humidity Ratio

RWDI- EPA Method 205 Field Evaluation (as per Section 3.2)

High-Level Supply Gas Cylinder number: DT0025920

Concentration: 14.9

		Environics Condition #1										
·	Time Environics Concentration Analyzer Response Absolute Difference Percentage Difference ¹ Response											
1	7:00	10.00	9.98	0.02	-0.20%	0.00%						
2	7:06	10.00	9.97	0.03	-0.30%	-0.10%						
3	7:13	10.00	9.99	0.01	-0.10%	0.10%						
		Average	9.98	0.02	-0.20%							

¹Analyzer response can not average more than 2% from the Environics concentration:

Pass			
Pass			

	Environics Condition #2										
	Time Environics Concentration Analyzer Response Absolute Difference Percentage Difference Response Variat										
1	7:03	14.90	14.86	0.04	-0.27%	0.04%					
2	7:10	14.90	14.82	0.08	-0.54%	-0.22%					
3	7:16	14.90	14.88	0.02	-0.13%	0.18%					
		Average	14.85	0.05	-0.31%						

¹Analyzer response can not average more than 2% from the Environics concentration:

Pass Pass

Direct Gas Cylinder number: _____

Concentration: 10.0

Direct Gas Cylinder											
 Time Cylinder Concentration Analyzer Response Absolute Difference Percentage Difference ¹ Response Va											
7:20	10.00	9.97	0.03	-0.30%	-0.10%						
7:23	10.00	9.99	0.01	-0.10%	0.10%						
7:26	10.00	9.98	0.02	-0.20%	0.00%						
	Average	9.98	0.02	-0.20%							

¹Analyzer response can not average more than 2% from the Environics concentration:

Pass Pass

²No analyzer response can differ more than 2% from the average of the analyzer responses:

²No analyzer response can differ more than 2% from the average of the analyzer responses:

²No analyzer response can differ more than 2% from the average of the analyzer responses:

S-Type Pitot Tube Calibration

Pitot ID: RWDI 3' #2 (Calgary) Date: February 10, 2022

Calibrated By: KDR $C_{p (std)}$: 0.998

Temperature (°F): 73.6 Static Pressure ("H₂O): 0.55

Barometric Pressure ("Hg): 28.6 Average C_p: 0.836

Side A Side B

Fan Speed (Hz)	Velocity (FPM)	$\Delta P_{(std)}$	ΔP _(s)	C _{p(s)}	Devation C _{p(s)} - C _{p(avg)}	ΔP _(s)	C _{p(s)}	Devation C _{p(s)} - C _{p(avg)}
20	1328	0.11	0.16	0.827	-0.005	0.16	0.827	-0.003
33	2501	0.39	0.56	0.833	0.007	0.57	0.826	0.000
45	3468	0.75	1.05	0.843	0.011	1.05	0.843	0.013
60	4566	1.30	1.90	0.826	-0.007	1.90	0.826	-0.005
			Average	0.832		Average	0.830	

Difference between $C_{p(A)}$ and $C_{p(B)}$ = **0.0018**

PASS

Nozzle Diameter (in.)	Fan Speed (Hz)	Velocity (FPM)	$\Delta P_{(std)}$	$\Delta P_{(s)}$	$C_{p(s)}$	Average C _{P(s)}
.125"	52	3903	0.95	1.40	0.822	0.824
.125	60	4566	1.30	1.90	0.826	0.624
	33	2501	0.39	0.57	0.826	
.187"	45	3468	0.75	1.10	0.824	0.825
	60	4566	1.30	1.90	0.826	
	20	1266	0.10	0.14	0.843	
.250"	27	2193	0.30	0.41	0.854	0.849
	33	2533	0.40	0.55	0.851	
.375"	20	1328	0.11	0.15	0.855	0.849
.375	27	2002	0.25	0.35	0.843	0.849
.500"	16	1059	0.07	0.10	0.835	0.839
.500	20	1266	0.10	0.14	0.843	0.659

BY	S-Ty _l	pe Pito	t tube	calib	ation	
Pitot ID		RWDI 4' #4		Da	ite	2022-02-04
Calibrated By		KDR		C_p	(std)	0.998
Temperature F°		72.6		Sta		0.55
Barometric _{inHG}		29.06		A۱		0.828
Fan Speed (Htz)	FPM	Nozzle Size	ΔP _(STD)	ΔP _(S-Type)	C _{p (S-TYPE)}	Pitot Factor C _P
35	2686.233		0.45	0.63	0.843464	
42	3326.304		0.69	0.98	0.837418	
49	3882.41	-	0.94	1.35	0.832775	0.837
55	4386.6		1.2	1.7	0.838488	
60	4738.07		1.4	2	0.834987	
35	2686.233		0.45	0.63	0.843464	
42	3302.113		0.68	0.98	0.831327	
49	3861.704	.125"	0.93	1.35	0.828333	0.837
55	4294.241		1.15	1.6	0.846096	
60	4738.07		1.4	2	0.834987	
35	2715.916		0.46	0.65	0.839562	
42	3350.321		0.7	1	0.834987	
49	3903.006	.187"	0.95	1.35	0.837193	0.833
55	4386.6		1.2	1.75	0.826423	
60	4738.07		1.4	2.05	0.824741	
35	2803.080		0.49	0.69	0.841016	
42	3397.846		0.72	1.05	0.826423	
49	3943.877	.250"	0.97	1.4	0.830716	0.833
55	4386.600		1.2	1.75	0.826423	
60	4821.936		1.45	2.05	0.839339	
35	2686.233		0.45	0.64	0.836848	
42	3350.321		0.7	1.05	0.814864	
49	3903.006	.325"	0.95	1.4	0.822107	0.827
55	4477.055		1.25	1.8	0.831667	
60	4821.936		1.45	2.1	0.829287	
35	2686.233		0.45	0.64	0.836848	
42	3374.167		0.71	1.05	0.820663	
49	3903.006	.375"	0.95	1.4	0.822107	0.827
55	4386.6		1.2	1.75	0.826423	
60	4821.936		1.45	2.1	0.829287	
35	2686.233		0.45	0.65	0.830386	
42	3302.113		0.68	0.98	0.831327	
49	3903.006	0.435"	0.95	1.4	0.822107	0.822
55	4294.241		1.15	1.75	0.809022	
60	4738.07		1.4	2.1	0.814864	

35	2686.233		0.45	0.67	0.817898	
42	3277.743		0.67	0.98	0.825192	
49	3903.006	.500"	0.95	1.4	0.822107	0.820
55	4294.241		1.15	1.75	0.809022	
60	4738.07		1.4	2.05	0.824741	

VOST Calibration Certificate

Calibration Date: 18-Feb-22

DGM Console ID: RWDI - VOST - Clean Air DGM Serial #: RWDI NO. 1107 Barometric Pressure: 97.90 kPa W (lb/lb) 0.001835

B_{wo} (ft³/ft³) 0.0029 Ambient T 979 mbar 28 C

VOST WGM leak check intial value 600.50 final value 609.85 time (1 min) Pass/Fail 1 min PASS 1 min PASS

Calibration Done By: KDR

				Dry G	as Meter Va	alues								We	t Gas Meter	Values			Calib	ration	US E	PA
	Rotameter		Volume (Vd)					Tempe	erature		Time	ΔM		Volume (Vw)			Temp (t _w)		Factor	Tolerance	Tolerance A	Tolerance B
ΔН	(Middle of Ball)	Initial	Final	Total	inlet	outlet	inlet	outlet	Avg	j (t _d)			Initial	Final	Total	inlet	outlet	Avg (t _w)				
(" H ₂ O)	(L/min)	(L)	(L)	(L)	©	©	(°F)	(°F)	(°F)	(°C)	(min)	(hPa H ₂ O)	(L)	(L)	(L)	(°C)	(°C)	(°C)	Y	± 2%	Y (>0.95, <1.05)	Y (0.03)
0.7	0.5	6.679	18.79	12.11	24.00	23.00	75.2	73.4	74.3	23.5	20	5	609.85	622.28	12.430	22	22	22	1.032	0.4%	VALID	VALID
0.7	0.5	18.789	31.09	12.30	26.00	25.00	78.8	77	77.9	25.5	20	5	622.28	634.76	12.48	22	22	22	1.027	-0.1%	VALID	VALID
0.7	0.5	31.092	43.37	12.28	27.00	26.00	80.6	78.8	79.7	26.5	20	5	634.76	647.08	12.32	22	22	22	1.019	-0.9%	VALID	VALID
Average				12.23					77.3						12.41			22.0	1.026			
1.2	1.0	54.414	65.10	10.69	28.00	27.00	82.4	80.6	81.5	27.5	10	10	658.22	668.94	10.72	22.5	23	22.5	1.024	-0.3%	VALID	VALID
1.2	1.0	65.101	75.78	10.68	29.00	28.00	84.2	82.4	83.3	28.5	10	10	668.94	679.60	10.66	22.5	23	22.5	1.023	-0.5%	VALID	VALID
1.2	1.0	75.778	86.61	10.83	29.00	28.00	84.2	82.4	83.3	28.5	10	10	679.60	690.38	10.78	22.5	23	22.5	1.020	-0.8%	VALID	VALID
Average				10.73					82.7						10.72			22.5	1.022			
2.2	1.9	86.609	106.615	20.01	29.00	28.00	84.2	82.4	83.3	28.5	10	20	690.38	710.35	19.97	22.5	23	22.5	1.030	0.2%	VALID	VALID
2.2	1.9	106.615	126.775	20.16	29.00	28.00	84.2	82.4	83.3	28.5	10	20	710.35	730.45	20.1	22.5	23	22.5	1.029	0.1%	VALID	VALID
2.2	1.9	126.775	147.026	20.25	30.00	28.00	86	82.4	84.2	29.0	10	20	730.45	750.79	20.34	22.5	23	22.5	1.038	1.0%	VALID	VALID
Average				20.14					83.6						20.14			22.5	1.032			
3	2.4	147.026	162.366	15.60	30.00	29.00	86	84.2	85.1	29.5	6	40	750.79	765.98	15.19	23	23	23	1.024	-0.4%	VALID	VALID
3	2.4	162.366	177.690	15.32	25.00	24.00	77	75.2	76.1	24.5	6	40	765.98	781.30	15.32	23	23	23	1.034	0.6%	VALID	VALID
3	2.4	177.690	192.964	15.27	25.00	24.00	77	75.2	76.1	24.5	6	40	781.30	796.56	15.26	23	23	23	1.033	0.6%	VALID	VALID
Average				15.40		·	·		79.1		·				15.25667		·	23.0	1.031			
					·	·				·							А	VERAGE =	1.028	,		

%r.H 11.00%

For Calculating W(lb/lb)
http://www.sugartech.co.za/psychro/index.php

How to use Pschrometic Calcutor
1) Dry Buld Temp = Ambient Temp of room
2) Select Relat. Humidity
3) Enter Relat. Humidity value

4) Calculate
5) Select IP Unit
6) W= Humidity Ratio

APPENDIX L

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/15/2022 9:18	12.01	1.03	39.42	1024.3	1065.1	6.76	32.2	54.4	22.2	47.7	7.98	7.47	7.26	39.78	40.05823	0.00 NORMAL
6/15/2022 9:19	11.90	1.20	41.40	1024.2	1066.7	6.76	32.2	54.4	22.2	47.7	7.98	7.47	7.26	39.78	40.05939	0.00 NORMAL
6/15/2022 9:20	11.74	0.39	49.01	1024.0	1067.8	6.76	32.2	54.4	22.2	47.7	7.98	7.47	7.27	39.78	40.06356	0.00 NORMAL
6/15/2022 9:21	11.95	0.25	48.55	1023.9	1067.5	6.76	32.2	54.4	22.2	47.7	7.99	7.47	7.27	39.79	40.06451	0.00 NORMAL
6/15/2022 9:22	11.99	0.53	36.16	1023.8	1068.2	6.76	32.2	54.4	22.2	47.7	7.99	7.46	7.26	39.79	40.06678	0.00 NORMAL
6/15/2022 9:23	11.86	0.21	46.53	1023.7	1069.6	6.77	32.3	54.4	22.2	47.7	7.99	7.46	7.26	39.79	40.06839	0.00 NORMAL
6/15/2022 9:24	11.75	0.53	44.07	1023.5	1068.7	6.77	32.3	54.4	22.2	47.7	7.99	7.46	7.26	39.79	40.07333	0.00 NORMAL
6/15/2022 9:25	11.90	0.36	40.87	1023.4	1064.6	6.77	32.3	54.4	22.2	47.7	7.99	7.46	7.26	39.79	40.0765	0.00 NORMAL
6/15/2022 9:26	12.22	0.24	38.26	1023.2	1063.3	6.77	32.3	54.4	22.2	47.7	7.99	7.46	7.26	39.79	40.07828	0.00 NORMAL
6/15/2022 9:27	12.04	0.33	39.84	1023.1	1065.0	6.77	32.3	54.4	22.2	47.7	7.99	7.46	7.26	39.79	40.07973	0.00 NORMAL
6/15/2022 9:28	11.90	0.29	40.07	1023.0	1067.0	6.77	32.3	54.4	22.2	47.7	7.99	7.47	7.26	39.79	40.08189	0.00 NORMAL
6/15/2022 9:29 6/15/2022 9:30	11.93 12.18	0.22 0.76	50.21 44.11	1022.8 1022.7	1067.2 1066.9	6.77 6.77	32.3 32.3	54.4 54.4	22.2 22.1	47.7 47.7	7.99 7.98	7.48 7.49	7.26 7.26	39.79 39.79	40.08395 40.08623	0.00 NORMAL 0.00 NORMAL
6/15/2022 9:31	12.18	0.76	39.65	1022.7	1066.7	6.77	32.3	54.4	22.1	47.7	7.97	7.49	7.26	39.79	40.08906	0.00 NORMAL
6/15/2022 9:32	12.08	0.55	37.10	1022.4	1066.2	6.77	32.3	54.4	22.1	47.7	7.96	7.43	7.26	39.79	40.08300	0.00 NORMAL
6/15/2022 9:33	12.10	0.45	39.71	1022.2	1064.2	6.77	32.3	54.4	22.1	47.7	7.96	7.50	7.26	39.79	40.08818	0.00 NORMAL
6/15/2022 9:34	12.32	0.34	39.40	1022.0	1064.2	6.78	32.3	54.4	22.1	47.7	7.96	7.50	7.26	39.79	40.0904	0.00 NORMAL
6/15/2022 9:35	12.41	0.35	37.93	1021.9	1066.3	6.78	32.3	54.4	22.1	47.7	7.96	7.50	7.26	39.79	40.09351	0.00 NORMAL
6/15/2022 9:36	12.42	0.64	38.07	1021.8	1066.5	6.78	32.3	54.4	22.1	47.8	7.96	7.50	7.26	39.79	40.0939	0.00 NORMAL
6/15/2022 9:37	12.39	0.36	36.51	1021.6	1064.8	6.78	32.3	54.4	22.1	47.8	7.97	7.50	7.26	39.79	40.09562	0.00 NORMAL
6/15/2022 9:38	12.46	0.35	36.22	1021.5	1062.7	6.78	32.3	54.4	22.1	47.8	7.97	7.50	7.25	39.79	40.09679	0.00 NORMAL
6/15/2022 9:39	12.52	0.12	38.36	1021.4	1060.6	6.78	32.3	54.4	22.1	47.8	7.97	7.50	7.25	39.79	40.09795	0.00 NORMAL
6/15/2022 9:40	12.58	0.82	36.09	1021.2	1059.6	6.78	32.3	54.4	22.1	47.8	7.97	7.50	7.25	39.79	40.09768	0.00 NORMAL
6/15/2022 9:41	12.47	0.54	33.97	1021.1	1061.5	6.78	32.4	54.4	22.1	47.8	7.97	7.51	7.26	39.79	40.09557	0.00 NORMAL
6/15/2022 9:42	12.24	0.32	42.89	1021.0	1064.1	6.78	32.4	54.4	22.0	47.8	7.98	7.51	7.26	39.79	40.09328	0.00 NORMAL
6/15/2022 9:43	12.17	0.46	38.84	1020.9	1066.0	6.78	32.4	54.4	22.0	47.8	7.98	7.50	7.26	39.79	40.09196	0.00 NORMAL
6/15/2022 9:44	12.15	0.57	39.14	1020.7	1068.0	6.78	32.5	54.4	22.0	47.8	7.97	7.50	7.25	39.79	40.09096	0.00 NORMAL
6/15/2022 9:45	11.90	0.79	36.57	1020.6	1072.1	6.79	32.5 32.5	54.4	22.0	47.8 47.8	7.95 7.94	7.51 7.52	7.25	39.79	40.08912	0.00 NORMAL
6/15/2022 9:46 6/15/2022 9:47	11.87 11.78	0.57 0.81	47.43 39.56	1020.4	1073.3 1072.4	6.79 6.79	32.5	54.4 54.4	21.9 21.9	47.8	7.94	7.52	7.25 7.25	39.79 39.79	40.08834 40.08817	0.00 NORMAL 0.00 NORMAL
6/15/2022 9:48	11.61	1.76		1020.3	1072.4	6.79	32.5	54.4	21.9	47.8	7.93	7.53	7.25	39.79	40.08817	0.00 NORMAL
6/15/2022 9:49	11.66	0.24	44.78	1019.9	1068.4	6.79	32.5	54.4	21.9	47.8	7.94	7.53	7.26	39.79	40.09473	0.00 NORMAL
6/15/2022 9:50	11.54	0.11	40.11	1019.7	1066.6	6.79	32.5	54.4	21.9	47.9	7.94	7.53	7.26	39.79	40.09695	0.00 NORMAL
6/15/2022 9:51	11.45	0.38	44.05	1019.5	1068.2	6.79	32.5	54.4	21.9	47.9	7.94	7.53	7.25	39.79	40.09962	0.00 NORMAL
6/15/2022 9:52	11.43	0.23	50.24	1019.3	1069.2	6.79	32.6	54.4	21.9	47.9	7.94	7.53	7.25	39.79	40.10145	0.00 NORMAL
6/15/2022 9:53	11.43	0.51	41.16	1019.1	1070.2	6.79	32.6	54.4	21.9	47.9	7.94	7.53	7.25	39.79	40.10562	0.00 NORMAL
6/15/2022 9:54	11.60	0.65	46.83	1018.9	1070.3	6.79	32.5	54.4	21.9	47.9	7.94	7.53	7.25	39.79	40.10812	0.00 NORMAL
6/15/2022 9:55	11.61	0.12	48.54	1018.7	1067.7	6.79	32.5	54.4	21.9	47.9	7.94	7.53	7.25	39.79	40.11007	0.00 NORMAL
6/15/2022 9:56	11.63	0.32	41.08	1018.4	1066.4	6.80	32.5	54.4	21.9	47.9	7.94	7.53	7.25	39.79	40.11273	0.00 NORMAL
6/15/2022 9:57	11.75	0.30	38.71	1018.2	1067.6	6.80	32.5	54.4	21.9	47.9	7.94	7.54	7.25	39.79	40.11751	0.00 NORMAL
6/15/2022 9:58	11.65	0.42	46.43	1017.9	1068.4	6.80	32.5	54.5	21.9	47.9	7.94	7.55	7.25	39.79	40.11895	0.00 NORMAL
6/15/2022 9:59	11.62	0.40		1017.6	1070.4	6.80	32.5	54.5	21.9	47.9	7.94	7.55	7.25	39.79	40.12128	0.00 NORMAL
6/15/2022 10:00	11.45	0.59	45.62	1017.3	1072.1	6.80	32.5	54.4	21.9	48.0	7.94	7.55	7.24	39.79	40.12478	0.00 NORMAL
6/15/2022 10:01 6/15/2022 10:02	11.31 11.31	0.33 0.11	49.12 46.01	1017.1 1016.8	1070.7 1068.1	6.80 6.80	32.5 32.5	54.4 54.4	21.9 22.0	48.0 48.0	7.95 7.95	7.55 7.55	7.24 7.24	39.79 39.79	40.12951 40.13251	0.00 NORMAL 0.00 NORMAL
6/15/2022 10:02	11.35	0.11		1016.8	1068.1	6.80	32.5	54.4	22.0	48.0	7.95	7.55	7.24	39.79	40.13251	0.00 NORMAL
6/15/2022 10:04	11.33	0.10	43.95	1016.1	1066.3	6.80	32.4	54.4	22.0	48.0	7.97	7.55	7.24	39.79	40.13934	0.00 NORMAL
6/15/2022 10:05	11.56	0.23	43.51	1015.7	1065.2	6.80	32.4	54.4	22.0	48.0	7.98	7.55	7.24	39.79	40.14229	0.00 NORMAL
6/15/2022 10:06	11.62	0.51	37.97	1015.3	1065.8	6.80	32.4	54.4	22.0	48.0	7.98	7.55	7.24	39.79	40.1455	0.00 NORMAL
6/15/2022 10:07	11.23	2.59		1014.9	1069.3	6.80	32.4	54.4	22.0	48.0	7.97	7.56	7.25	39.79	40.14862	0.00 NORMAL
6/15/2022 10:08	10.96	0.27	50.91	1014.5	1074.1	6.80	32.4	54.4	22.0	48.0	7.97	7.57	7.24	39.79	40.15039	0.00 NORMAL
6/15/2022 10:09	11.04	0.00	61.40	1014.0	1078.9	6.80	32.4	54.4	22.1	48.0	7.96	7.57	7.24	39.79	40.15373	0.00 NORMAL
6/15/2022 10:10	11.04	0.42		1013.5	1084.3	6.80	32.4	54.4	22.1	48.0	7.96	7.57	7.23	39.79	40.15695	0.00 NORMAL
6/15/2022 10:11	10.97	0.22		1013.1	1088.2	6.81	32.4	54.4	22.1	48.0	7.95	7.57	7.23	39.79	40.16001	0.00 NORMAL
6/15/2022 10:12	11.16	0.12		1012.6	1089.2	6.81	32.4	54.4	22.1	48.0	7.95	7.57	7.23	39.79	40.16328	0.00 NORMAL
6/15/2022 10:13	11.69	0.24	62.20	1012.0	1088.0	6.81	32.4	54.4	22.1	48.0	7.94	7.57	7.23	39.79	40.16668	0.00 NORMAL
6/15/2022 10:14	12.17	0.00		1011.5	1085.6	6.81	32.3	54.4	22.1	48.0	7.94	7.57	7.24	39.79	40.17123	0.00 NORMAL
6/15/2022 10:15 6/15/2022 10:16	12.20	0.00		1010.9	1082.8	6.81	32.3 32.3	54.4	22.1 22.1	48.0	7.95 7.95	7.57 7.57	7.24	39.78	40.17529 40.17879	0.00 NORMAL 0.00 NORMAL
6/15/2022 10:16	12.03 11.86	0.66 3.46		1010.4	1081.5 1081.0	6.81 6.81	32.3	54.4 54.4	22.1	48.0 48.0	7.95	7.57	7.24 7.23	39.78 39.78	40.17879	0.00 NORMAL
6/15/2022 10:17	12.07	0.14	63.07	1009.8	1081.0	6.81	32.3	54.4	22.1	48.0	7.96	7.57	7.23	39.78	40.18162	0.00 NORMAL
6/15/2022 10:18	12.07	0.14	51.95	1009.3	1079.8	6.81	32.2	54.4	22.2	48.0	7.97	7.55	7.23	39.78	40.18629	0.00 NORMAL
6/15/2022 10:20	11.74	0.23	43.91	1008.2	1078.2	6.81	32.2	54.4	22.2	48.0	7.96	7.55	7.23	39.79	40.19573	0.00 NORMAL
6/15/2022 10:21	11.77	0.34		1007.7	1076.0	6.81	32.2	54.4	22.2	48.0	7.95	7.55	7.23	39.79	40.19862	0.00 NORMAL
-																

Waste F	eed Data				
Time	Anatomical	Cytotoxic	Rx	Contract	Total Kg
9:00	28.8	61.4	35.1		125.4
10:00	123.7	263.6	150.6		538
11:00	115.4	245.9	140.5		501.9
12:00	124.1	264.5	151.1		539.7
13:00	115.7	246.6	140.9		503.2
14:00	115.2	245.5	140.3		501
15:00	115.3	245.5	140.3		501.1
Totals	738.4	1573.0	898.9	0.0	3210.3

24 hour total Kg 10000

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/15/2022 10:22	11.84	0.89	46.78	1007.2	1074.7	6.81	•	54.4	22.2	48.0	7.94	7.55	7.23	39.79	40.20267	0.00 NORMAL
6/15/2022 10:23	11.85	1.09	51.98	1006.8	1075.2	6.81		54.4	22.3	48.0	7.93	7.55	7.23	39.79	40.20667	0.00 NORMAL
6/15/2022 10:24	11.58	0.22	48.67	1006.3	1076.1	6.81		54.5	22.3	48.0	7.92	7.55	7.23	39.79	40.21062	0.00 NORMAL
6/15/2022 10:25	11.43	0.53	44.56	1005.9	1076.6	6.81	32.2	54.5	22.3	48.0	7.92	7.55	7.23	39.79	40.21518	0.00 NORMAL
6/15/2022 10:26	11.30	0.38	41.80	1005.4	1078.6	6.81	32.2	54.5	22.3	48.0	7.91	7.55	7.22	39.79	40.21901	0.00 NORMAL
6/15/2022 10:27	11.07	0.59	51.85	1004.8	1080.5	6.81	32.2	54.5	22.3	48.0	7.91	7.57	7.22	39.79	40.22073	0.00 NORMAL
6/15/2022 10:28	11.14	0.41	53.32	1004.3	1083.2	6.81	32.2	54.4	22.3	48.0	7.92	7.58	7.22	39.79	40.22284	0.00 NORMAL
6/15/2022 10:29	11.33	0.67	63.72	1003.8	1084.7	6.81		54.4	22.3	48.0	7.92	7.58	7.22	39.79	40.22406	0.00 NORMAL
6/15/2022 10:30	11.69	0.15	62.57	1003.3	1084.3	6.81		54.4	22.2	48.0	7.92	7.58	7.22	39.79	40.22784	0.00 NORMAL
6/15/2022 10:31	11.56	0.29	43.83	1002.7	1084.0	6.81		54.4	22.2	48.0	7.93	7.57	7.22	39.79	40.23079	0.00 NORMAL
6/15/2022 10:32	11.49	0.54	47.16	1002.2	1084.5	6.81		54.4	22.3	48.0	7.93	7.56	7.22	39.79	40.23312	0.00 NORMAL
6/15/2022 10:33	11.79	0.12	70.56	1001.6	1083.9	6.81		54.4	22.3	48.0	7.93	7.56	7.22	39.79	40.23712	0.00 NORMAL
6/15/2022 10:34	11.97	0.00	69.58	1001.1	1084.3	6.81		54.4	22.3	48.0	7.94	7.55	7.22	39.79	40.24062	0.00 NORMAL
6/15/2022 10:35 6/15/2022 10:36	12.04 11.37	0.12 0.74	62.49 60.40	1000.5 999.9	1087.0 1089.3	6.81		54.4 54.4	22.3	48.0 48.0	7.93 7.92	7.55 7.55	7.22 7.22	39.79 39.79	40.24284 40.24356	0.00 NORMAL 0.00 NORMAL
6/15/2022 10:37	11.89	0.74	81.06	999.4	1089.3	6.81		54.4	22.3	48.0	7.92	7.55	7.22	39.80	40.24567	0.00 NORMAL
6/15/2022 10:38	12.33	0.30	61.31	998.9	1085.4	6.82		54.4	22.3	48.0	7.91	7.57	7.22	39.80	40.25017	0.00 NORMAL
6/15/2022 10:39	11.91	0.12	47.13	998.3	1085.4	6.82		54.4	22.3	48.0	7.90	7.57	7.22	39.80	40.25417	0.00 NORMAL
6/15/2022 10:40	11.76	0.32	63.30	997.8	1086.2	6.82		54.4	22.4	48.0	7.90	7.58	7.22	39.80	40.25734	0.00 NORMAL
6/15/2022 10:41	11.68	0.11	75.00	997.2	1086.5	6.82		54.4	22.4	48.0	7.90	7.58	7.21	39.80	40.25995	0.00 NORMAL
6/15/2022 10:42	11.84	0.81	67.22	996.7	1089.0	6.82		54.4	22.4	48.0	7.90	7.58	7.21	39.80	40.26173	0.00 NORMAL
6/15/2022 10:43	11.74	0.26	79.51	996.1	1090.0	6.82		54.4	22.3	48.0	7.90	7.58	7.21	39.80	40.26189	0.00 NORMAL
6/15/2022 10:44	11.70	0.23	72.81	995.6	1089.4	6.82	32.1	54.4	22.3	48.0	7.90	7.57	7.21	39.80	40.26256	0.00 NORMAL
6/15/2022 10:45	11.97	0.11	69.69	995.1	1088.9	6.82	32.1	54.4	22.3	48.0	7.90	7.56	7.22	39.80	40.26417	0.00 NORMAL
6/15/2022 10:46	11.88	0.10	66.03	994.6	1088.6	6.82	32.1	54.4	22.3	48.0	7.90	7.57	7.21	39.80	40.26522	0.00 NORMAL
6/15/2022 10:47	12.13	0.13	82.79	994.1	1087.4	6.82	32.1	54.4	22.3	48.0	7.90	7.58	7.21	39.80	40.2665	0.00 NORMAL
6/15/2022 10:48	11.89	4.95	63.41	993.6	1090.3	6.82		54.4	22.3	48.0	7.90	7.58	7.21	39.80	40.26672	0.00 NORMAL
6/15/2022 10:49	11.75	7.03	86.55	993.2	1092.1	6.82		54.4	22.3	48.0	7.90	7.58	7.21	39.80	40.26767	0.00 NORMAL
6/15/2022 10:50	11.87	0.25	80.11	992.7	1091.3	6.82		54.4	22.3	48.0	7.90	7.58	7.21	39.80	40.27167	0.00 NORMAL
6/15/2022 10:51	11.84	0.21	62.98	992.2	1091.1	6.82		54.4	22.3	47.9	7.89	7.58	7.21	39.80	40.27361	0.00 NORMAL
6/15/2022 10:52	11.89	0.61	63.55	991.7	1092.6	6.82		54.4	22.3	47.9	7.89	7.58	7.21	39.80	40.27666	0.00 NORMAL
6/15/2022 10:53	11.93	0.28	87.65	991.3	1090.2	6.82		54.4	22.3	47.9	7.88	7.58	7.21	39.80	40.27672	0.00 NORMAL
6/15/2022 10:54	12.02 12.01	1.02 0.92	65.75 80.09	990.8 990.4	1090.5 1091.8	6.82		54.4 54.4	22.3	47.9 48.0	7.88 7.88	7.58 7.59	7.21 7.21	39.80 39.79	40.27694 40.27834	0.00 NORMAL 0.00 NORMAL
6/15/2022 10:55 6/15/2022 10:56	12.01	0.92	80.99	989.9	1091.8	6.82		54.4	22.3	48.0	7.87	7.60	7.21	39.79	40.27811	0.00 NORMAL
6/15/2022 10:57	11.95	0.04	66.20	989.5	1090.7	6.82		54.4	22.3	48.0	7.87	7.60	7.21	39.79	40.27811	0.00 NORMAL
6/15/2022 10:58	11.95	0.82	74.25	989.0	1093.0	6.82		54.4	22.2	48.0	7.87	7.61	7.21	39.79	40.28184	0.00 NORMAL
6/15/2022 10:59	11.83	0.25	82.88	988.5	1092.3	6.82		54.4	22.2	48.0	7.88	7.59	7.21	39.80	40.28411	0.00 NORMAL
6/15/2022 11:00	12.00	0.21	73.84	988.0	1092.4	6.82		54.4	22.2	48.0	7.88	7.58	7.21	39.80	40.28789	0.00 NORMAL
6/15/2022 11:01	12.03	0.23	81.66	987.5	1093.4	6.82	32.2	54.4	22.2	48.0	7.89	7.58	7.20	39.80	40.29156	0.00 NORMAL
6/15/2022 11:02	12.03	0.51	83.07	987.0	1092.1	6.83	32.2	54.4	22.2	48.0	7.89	7.59	7.21	39.80	40.29378	0.00 NORMAL
6/15/2022 11:03	11.86	0.55	82.70	986.4	1092.4	6.83	32.2	54.4	22.2	48.0	7.89	7.59	7.21	39.80	40.29633	0.00 NORMAL
6/15/2022 11:04	12.07	0.59	114.53	985.8	1093.2	6.83	32.3	54.4	22.1	48.0	7.90	7.60	7.21	39.80	40.29867	0.00 NORMAL
6/15/2022 11:05	12.15	0.40	108.56	985.2	1092.7	6.83		54.4	22.1	48.0	7.90	7.60	7.21	39.80	40.29856	0.00 NORMAL
6/15/2022 11:06	12.03	4.03	65.81	984.6	1094.1	6.83		54.4	22.1	48.0	7.90	7.60	7.21	39.80	40.3	0.00 NORMAL
6/15/2022 11:07	12.14	3.82	90.34	984.0	1094.8	6.83		54.4	22.1	48.0	7.90	7.60	7.21	39.80	40.30206	0.00 NORMAL
6/15/2022 11:08	12.18	0.39	81.50	983.4	1092.5	6.83		54.4	22.1	48.0	7.89	7.61	7.20	39.81	40.3035	0.00 NORMAL
6/15/2022 11:09	12.22	2.33	58.92	982.8	1093.0	6.83		54.4	22.1	48.0	7.88	7.61	7.20	39.81	40.30622	0.00 NORMAL
6/15/2022 11:10	12.18	11.05	72.64	982.3	1094.6	6.83		54.4	22.1	48.0	7.88	7.62	7.21	39.81	40.30455	0.00 NORMAL
6/15/2022 11:11 6/15/2022 11:12	12.00 11.99	0.58 3.62	75.12 59.32	981.7 981.2	1094.5 1096.7	6.83		54.4 54.5	22.1 22.1	48.0 48.0	7.89 7.89	7.62 7.62	7.21 7.21	39.81 39.81	40.30294 40.30472	0.00 NORMAL 0.00 NORMAL
6/15/2022 11:12	11.94	0.86	70.77	980.6	1098.7	6.83		54.5	22.1	48.0	7.89	7.62	7.21	39.81	40.30394	0.00 NORMAL
6/15/2022 11:14	11.85	0.80	75.11	980.1	1098.9	6.83		54.5	22.1	48.1	7.89	7.62	7.20	39.81	40.30334	0.00 NORMAL
6/15/2022 11:14	12.07	0.23	66.64	979.5	1098.0	6.83		54.5	22.1	48.1	7.90	7.62	7.20	39.81	40.30372	0.00 NORMAL
6/15/2022 11:16	12.12	0.21	73.92	979.0	1097.2	6.83		54.4	22.1	48.1	7.89	7.62	7.20	39.81	40.30307	0.00 NORMAL
6/15/2022 11:17	12.12	0.37	74.37	978.4	1093.5	6.83		54.4	22.0	48.1	7.83	7.62	7.20	39.81	40.30422	0.00 NORMAL
6/15/2022 11:18	12.28	0.61	65.50	977.9	1093.0	6.83		54.4	22.0	48.1	7.91	7.61	7.21	39.81	40.30533	0.00 NORMAL
6/15/2022 11:19	12.22	0.59	84.02	977.4	1092.9	6.84		54.4	22.0	48.1	7.92	7.60	7.21	39.81	40.3075	0.00 NORMAL
6/15/2022 11:20	12.24	0.00	81.49	976.9	1092.0	6.84		54.4	22.0	48.1	7.93	7.60	7.20	39.80	40.30872	0.00 NORMAL
6/15/2022 11:21	12.04	41.01	63.17	976.4	1094.1	6.84		54.4	22.0	48.1	7.93	7.59	7.20	39.80	40.30977	0.00 NORMAL
6/15/2022 11:22	11.85	737.31	81.40	975.8	1097.3	6.84	32.4	54.4	22.0	48.1	7.92	7.60	7.20	39.81	40.31144	0.00 NORMAL
6/15/2022 11:23	11.85	25.42	94.23	975.3	1098.0	6.84	32.4	54.4	22.0	48.1	7.92	7.61	7.20	39.80	40.31144	0.00 NORMAL
6/15/2022 11:24	11.93	1.91	78.86	974.8	1099.2	6.84	32.5	54.4	22.0	48.1	7.92	7.61	7.20	39.80	40.31038	0.00 NORMAL
6/15/2022 11:25	11.92	0.93	86.22	974.3	1100.2	6.84	32.5	54.4	22.0	48.1	7.92	7.61	7.20	39.80	40.3096	0.00 NORMAL

FIRE 11-20	TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
614702211126 12ml 912.54 78ml 977.7 10974 634 323 544 23.0 46.1 770 750 750 750 6360 638937] OOK BIRMAL 64470221112 1.74 1.75								•									
Fig. 1979 129 124 126 126 126 127 126 126 127 126	6/15/2022 11:27	12.15	18.79	78.42	973.3	1096.6	6.84	32.5	54.4	21.9	48.1	7.90	7.61	7.20	39.80	40.30944	0.00 NORMAL
First 1.50	6/15/2022 11:28	12.08	932.54	79.48	972.7	1097.4	6.84	32.5	54.4	21.9	48.1	7.91	7.61	7.20	39.80	40.30877	0.00 NORMAL
6/15/2021 1312 1 220	6/15/2022 11:29	12.15	139.01	101.84	972.2	1096.7	6.84	32.5	54.4	21.9	48.1	7.92	7.61	7.20	39.81	40.30882	0.00 NORMAL
\$\frac{\text{Pi}}{\text{Pi}} \frac{\text{Pi}}{\text{Pi}}	6/15/2022 11:30	12.40	7.21	89.77	971.6	1096.0	6.84	32.5	54.4	21.9	48.1	7.93		7.20	39.81	40.30616	0.00 NORMAL
FISTOR 13 170 17	6/15/2022 11:31	12.21	2.86	73.64		1097.4	6.84		54.4	21.9	48.2				39.81	40.30611	0.00 NORMAL
\$15,000,000 126 126 75.0 59.5 59.73 68.5 126 54.6 21.8 48.2 7.9 7.0													-				
\$15,502,21136 11.61 0.76 81.98 98.8 110.01 6.87 22.6 55.4 11.8 48.2 7.59 7.61 7.20 39.81 61.29771 CON/MORAL \$15,502,21136 11.61 0.75 81.98 98.8 110.18 6.85 12.6 55.5 21.8 48.2 7.59 7.61 7.20 39.81 61.29771 CON/MORAL \$15,502,21136 11.61 0.75 81.98 19.8 19.8 11.01.8 6.85 12.6 55.5 21.8 48.2 7.77 7.6 7.70 7.70 39.8 16.29771 CON/MORAL \$15,502,21136 11.01.8 6.8 12.7 55.5 11.8 48.2 7.77 7.70 7.70 7.70 39.8 16.29781 CON/MORAL \$15,502,21136 11.01.8 6.8 12.7 55.5 11.8 48.2 7.77 7.70 7.70 7.70 39.8 16.29781 CON/MORAL \$15,502,21136 11.01.8 6.8 12.7 55.5 11.8 48.2 7.50 7.60 7.00 39.8 16.29781 CON/MORAL \$15,502,21136 11.01.8 6.8 12.7 55.5 11.8 48.2 7.50 7.60 7.00 39.8 16.2991 CON/MORAL \$15,502,21136 11.01.8 6.8 12.7 55.5 11.0 55.																	
\$\(\frac{1}{5}\) \$\(\frac{1}\) \$\(\frac{1}\) \$\(\frac{1}\) \$\(\frac{1}\) \$\(\f																	
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c																	
EMPLOY 11:88 11-76 0061 11-22 0074 110:49 6.85 87.7 94.5 71.8 44.2 7.97 7.61 7.70 33.81 00.7940 00.000MAM 6.15(0.27) 11.15 11.27 00.30 60.55 86.5 110.8 6.85 37.7 94.5 71.8 44.2 7.97 7.6 7.70 7.8 7.70 33.81 00.7940 00.000MAM 6.15(0.27) 11.15																	
Color Colo																	
FISTOR 11-93 0.00 60.05 66.5 1101.01 6.05 1101.01 6.05 1101.01 6.0																	
615/20021144 12.12 0.11 84.05 96.3 1969.0 68.9 127 94.5 21.7 48.2 7.55 7.60 7.20 39.21 42.2223 0.00 NORMAN 615/20021144 12.14 0.72 7.44 94.3 1961.5 6.55 12.8 94.5 21.7 48.3 7.57 7.66 7.20 39.21 42.22230 0.00 NORMAN 615/20021145 12.11 0.12 1.22 0.32 6.32 94.3 1961.5 6.55 12.8 94.5 12.7 48.3 7.57 7.66 7.20 39.21 42.22230 0.00 NORMAN 615/20021145 12.11 0.12 1.22 0.33 6.22 94.5 12.00 1.20 1.20 1.20 1.20 1.20 1.20 1.2																	
615/2012 11-8																	
Control Cont																	
FLY 1972 1974 1971 1971 1971 1972 1963 1996-3 6.88 32.8 54.5 27.7 48.3 7.99 7.61 7.20 39.81 40.72931 0.00 NORMAN 6.156 32.8 54.5 7.77 48.3 7.99 7.61 7.20 39.81 40.72931 0.00 NORMAN 6.157 27.0 2																	
615/2022 11-14 12.29 0.35 82.28 962.9 1094.5 6.86 32.8 34.5 21.6 43.3 7.98 7.61 7.20 39.82 40.29215 0.00 NORMAL 615/2022 11-16 12.23 1.10 7.34 961.9 1094.5 6.86 32.9 54.5 21.6 43.3 7.98 7.61 7.20 39.82 40.29215 0.00 NORMAL 615/2022 11-16 12.23 1.10 7.34 961.9 1094.5 6.86 32.9 54.5 21.6 43.3 7.98 7.61 7.20 39.82 40.2935 0.00 NORMAL 615/2022 11-15 12.24 0.13 80.73 960.9 1093.9 6.86 32.9 54.4 21.6 43.3 7.98 7.63 7.00 38.82 40.2935 0.00 NORMAL 615/2022 11-15 12.24 0.13 80.73 960.9 1093.9 6.86 32.9 54.4 21.5 43.3 8.01 7.64 7.19 38.21 40.2935 0.00 NORMAL 615/2022 11-15 12.24 0.10 80.20 99.64 1094.1 6.86 32.9 54.4 21.5 43.3 6.01 7.64 7.19 38.21 40.2935 0.00 NORMAL 615/2022 11-15 12.24 0.10 7.69 99.64 1094.5 6.86 32.9 54.4 21.5 43.3 6.01 7.64 7.19 38.21 40.2935 0.00 NORMAL 615/2022 11-15 12.07 0.00 7.69 99.68 1094.5 6.86 32.9 54.4 21.5 43.3 6.01 7.64 7.19 38.21 40.2935 0.00 NORMAL 615/2022 11-15 12.07 0.00 7.69 7.69 99.68 1094.5 6.86 32.9 54.4 21.5 43.3 6.01 7.64 7.19 38.21 40.2935 0.00 NORMAL 615/2022 11-15 12.07 0.00 7.69 7.69 99.88 99.84 10.99 10.60 6.86 32.9 54.4 21.5 44.3 42.1 43.3 6.01 7.64 7.19 38.81 40.2935 0.00 NORMAL 615/2022 11-15 12.24 0.10 7.76 99.88 40.2935 0.00 NORMAL 615/2022 11-15 12.24 0.10 7.76 99.88 40.2935 0.00 NORMAL 615/2022 11-15 12.44 0.10 7.76 99.78 0.00 NORMAL 615/2022 11-15 12.44 0.10 7.76 99.78 0.00 NORMAL 615/2022 11-15 12.44 0.10 1.25 0.00 NORMAL 615/2022 11-15 0.10 0.00 0.																	
	6/15/2022 11:46	12.30	0.32	71.89	963.4	1094.8	6.86	32.8	54.5	21.7	48.3	7.98	7.61	7.20	39.81	40.29139	0.00 NORMAL
615/2002 11-99 12-22 1.00 74-34 661.9 1994.5 6.86 32-9 54.5 71.6 48.3 7.98 7.61 7.70 38.32 40.79477 0.00 NORMAL 615/2002 11-51 12-24 0.13 80.73 80.9 1093.9 6.86 32-9 54.4 21.6 48.3 7.99 7.63 7.79 7.83 2.0 2.98421 615/2002 11-51 12-24 0.01 80.73 80.9 1093.9 6.86 32-9 54.4 21.6 48.3 8.01 7.64 7.79 7.83 2.0 2.9841 615/2002 11-53 12-24 0.66 87.20 959.9 1092.5 6.86 32-9 54.4 21.5 48.3 8.01 7.64 7.70 7.70 38.32 40.29451 615/2002 11-53 12-24 0.66 87.20 959.9 1092.5 6.86 32-9 54.4 21.5 48.3 8.02 7.62 7.70 7.70 38.32 40.29451 615/2002 11-53 12-24 0.06 87.20 959.9 1092.5 6.86 32-9 54.4 21.5 48.3 8.02 7.62 7.70 7.70 38.32 40.29451 615/2002 11-55 12-27 0.19 76.98 958.9 1092.5 6.86 32.9 54.4 21.5 48.3 8.02 7.62 7.70 7.70 38.32 40.29451 615/2002 11-55 12-27 0.19 76.98 958.9 1092.5 6.86 32.9 54.4 21.5 48.3 8.01 7.61 7.70 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-27 0.19 74.79 957.9 1098.7 6.87 33.0 54.5 21.5 48.3 8.01 7.61 7.70 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-27 0.19 74.79 957.9 1098.7 6.87 33.0 54.5 21.5 48.4 8.00 7.60 7.79 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-24 0.10 95.56 100.2 6.87 33.0 54.5 21.5 48.4 7.90 7.60 7.79 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-24 0.10 95.56 100.2 6.87 33.0 54.5 21.5 48.4 7.90 7.60 7.79 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-24 0.10 0.00 95.56 100.2 6.87 33.0 54.5 21.5 48.4 7.90 7.60 7.79 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-24 0.10 0.00 95.56 100.2 6.87 33.0 54.5 21.5 48.4 7.90 7.70 7.79 39.33 40.2987 0.00 NORMAL 615/2002 11-55 12-24 0.00 0.00 95.56 100.2 6.87 33.0 54.5 21.5	6/15/2022 11:47	12.29	0.35	82.28	962.9	1094.5	6.86	32.8	54.5	21.7	48.3	7.98	7.61	7.20	39.82	40.29222	0.00 NORMAL
67/5/2021150 12.25 0.49 77.99 961.4 1094.7 6.86 32.9 54.4 21.6 48.3 7.89 7.60 7.00 39.82 40.29389 0.00 NORMAL 67/5/2021155 12.24 0.18 86.7 960.9 1094.9 6.86 32.9 54.4 21.6 48.3 7.99 7.66 7.19 39.82 40.29381 0.00 NORMAL 67/5/2021155 12.24 0.66 87.0 959.9 1095.5 6.86 32.9 54.4 21.5 48.3 8.01 7.64 7.19 38.87 40.39361 0.00 NORMAL 67/5/2021155 12.24 0.22 65.78 959.4 1092.5 6.86 32.9 54.4 21.5 48.3 8.01 7.64 7.20 39.82 40.39361 0.00 NORMAL 67/5/2021155 12.27 0.22 65.78 959.4 1092.5 6.86 32.9 54.4 21.5 48.3 8.01 7.61 7.02 39.82 40.39361 0.00 NORMAL 67/5/2021155 12.27 0.22 65.78 959.4 1092.8 6.86 32.9 54.4 21.5 48.3 8.01 7.62 7.20 39.82 40.39361 0.00 NORMAL 67/5/2021155 12.07 0.19 7.98 98.98 10.00 NORMAL 67/5/2021156 12.33 0.12 94.88 95.8 4 1095.1 6.87 33.0 54.5 21.5 48.3 8.01 7.61 7.00 7.00 7.19 38.8 40.29011 0.00 NORMAL 67/5/2021156 12.33 0.12 94.38 958.4 1095.1 6.87 33.0 54.5 21.5 48.4 8.00 7.60 7.00 7.19 38.8 40.29011 0.00 NORMAL 67/5/2021159 11.86 0.00 80.20 95.9 100.0	6/15/2022 11:48	12.11	0.41	74.86	962.4	1094.1	6.86	32.8	54.5	21.6	48.3	7.98	7.61	7.20	39.82	40.29216	0.00 NORMAL
6/15/2002 11-51 12.24 0.11 80.73 96.09 1093.9 6.86 32.9 5.44 21.6 48.3 7.99 7.81 7.19 39.82 40.2981 0.00 NORMAL 6/15/2002 11-52 12.08 0.29 6.19 96.04 10.94 10	6/15/2022 11:49	12.23	1.02	74.34	961.9	1094.5	6.86	32.9	54.5	21.6	48.3	7.98	7.61	7.20	39.82	40.29427	0.00 NORMAL
615/2022 1152	6/15/2022 11:50	12.25	0.49	77.99	961.4	1094.7	6.86	32.9	54.4	21.6	48.3	7.98	7.63	7.20	39.82	40.29339	0.00 NORMAL
6/5/20/2211-55 12.24 0.06 87.20 959.9 1092.5 6.86 32.9 54.4 21.5 48.3 8.02 7.63 7.70 39.87 40.29861 0.00 NORMAL 6/5/20/2211-55 12.07 0.19 75.98 958.4 0.092.5 6.86 32.9 54.4 21.5 48.3 8.02 7.62 7.20 39.87 40.29861 0.00 NORMAL 6/5/20/2211-55 12.09 0.12 94.8 958.4 0.095.7 6.87 33.0 54.5 21.5 48.4 8.00 7.60 7.19 39.83 40.29861 0.00 NORMAL 6/5/20/2211-55 12.09 0.12 94.8 958.4 0.099.9 6.87 33.0 54.5 21.5 48.4 8.00 7.60 7.19 39.83 40.299.0 0.00 NORMAL 6/5/20/2211-55 12.09 0.12 94.8 958.4 0.009.9 6.87 33.0 54.5 21.5 48.4 8.00 7.60 7.19 39.83 40.299.3 0.00 NORMAL 6/5/20/2211-55 12.09 0.10	6/15/2022 11:51	12.24	0.13	80.73	960.9	1093.9	6.86	32.9	54.4	21.6	48.3	7.99	7.63	7.19	39.82	40.29361	0.00 NORMAL
6/15/2022 11:55	6/15/2022 11:52	12.08	0.29	66.19	960.4	1094.1	6.86	32.9	54.4	21.5	48.3	8.01	7.64	7.19	39.82	40.294	0.00 NORMAL
6/15/20/22 11:55	6/15/2022 11:53	12.24	0.66	87.20	959.9	1092.5	6.86	32.9	54.4	21.5	48.3	8.02		7.20	39.82	40.29361	0.00 NORMAL
6/15/20211-159 12.03 0.12 94.38 958.4 1099.1 6.87 33.0 54.5 21.5 48.4 8.00 7.60 7.99 39.83 40.28973 0.00 NORMAL 6/15/20211-159 11.94 0.12 74.76 957.9 1098.7 6.87 33.0 54.5 21.5 48.4 7.99 7.60 7.19 39.83 40.28973 0.00 NORMAL 6/15/20211-159 11.94 0.00 80.00 95.6 1100.2 6.87 33.0 54.5 21.5 48.4 7.99 7.60 7.19 39.83 40.28973 0.00 NORMAL 6/15/20211-159 11.94 0.00 80.00 95.6 1100.2 6.87 33.0 54.4 21.4 48.4 7.98 7.60 7.19 39.83 40.28973 0.00 NORMAL 6/15/20211-01 12.18 0.11 66.68 95.5 1095.5 6.87 33.0 54.4 21.4 48.4 7.98 7.60 7.19 39.83 40.28978 0.00 NORMAL 6/15/20211-01 12.18 0.11 66.68 95.5 1095.5 6.87 33.0 54.4 21.4 48.4 7.99 7.60 7.20 39.83 40.28978 0.00 NORMAL 6/15/20211-01 12.18 0.11 66.68 95.5 1095.5 6.87 33.0 54.4 21.4 48.4 7.99 7.60 7.20 39.83 40.28978 0.00 NORMAL 6/15/20211-02 12.18 0.11 66.88 95.4 1097.3 6.87 33.1 54.4 21.4 48.4 8.00 7.60 7.20 39.83 40.28973 0.00 NORMAL 6/15/20211-03 12.11 0.13 7.5 99 95.4 1095.0 6.87 33.1 54.4 21.4 48.4 8.00 7.60 7.19 39.83 40.2973 0.00 NORMAL 6/15/20211-03 12.11 0.13 7.5 99 95.4 1095.0 6.87 33.1 54.4 21.4 48.4 8.00 7.60 7.19 39.83 40.2973 0.00 NORMAL 6/15/20211-03 12.11 0.13 7.5 99 95.4 1095.0 6.87 33.0 54.4 21.4 48.4 8.00 7.60 7.19 39.83 40.2979 0.00 NORMAL 6/15/20211-03 12.11 0.13 7.5 99 95.4 1095.0 6.87 33.0 54.4 21.4 48.4 8.00 7.60 7.19 39.83 40.2979 0.00 NORMAL 6/15/20211-03 12.00 0.12 71.86 95.1 1095.0 6.88 33.0 54.4 21.4 48.4 8.00 7.60 7.19 39.84 40.2979 0.00 NORMAL 6/15/20211-03 12.00 0.12 71.86 95.5 1088.2 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.2979 0.00 NORMAL 6/15/20211-03 12.00 0.12 71.8 95.2 10.00 0.00 NORMAL 6/15/20211-03 12.00 0.12 71.0 0.00 0.00 NORMAL 6/15/20211-03 12.00 0.12 71.0 0.00 0.00 NORMAL 6/15/20211-03 12.00 0.00 NORMAL 6/15/20211-03 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									54.4		48.3						
6/15/20/211:57 11.94 0.12 74.76 957.9 1098.7 6.87 33.0 54.5 21.5 48.4 7.99 7.60 7.19 39.83 40.29873 0.00 NORMAL 67.15/20/211:58 12.14 0.00 80.90 959.9 1100.2 6.87 33.0 54.4 21.4 48.4 7.98 7.60 7.19 39.83 40.29923 0.00 NORMAL 67.15/20/21:19 12.12 0.12													-				
\$\frac{6}{15/20221128}\$\$ 11.84\$ 0.00 80.80 956.95 9100.2\$ 6.87 33.0\$ 54.5 21.5 48.4 7.99 7.60 7.19 39.83 40.290.23 0.00 NORMAL 6/15/202212.00 12.02 0.12 73.70 956.4 1097.2\$ 6.87 33.0 54.4 21.4 48.4 7.98 7.60 7.19 39.83 40.290.23 0.00 NORMAL 6/15/202212.01 11.96 0.10 11 66.68 95.9 100.00 10.00 5.68 7.33.0 54.4 21.4 48.4 7.98 7.61 7.19 39.83 40.290.23 0.00 NORMAL 6/15/202212.01 11.96 0.61 71.88 955.4 10.095.5 6.87 33.0 54.4 21.4 48.4 7.98 7.61 7.19 39.83 40.293.3 40.290 0.00 NORMAL 6/15/202212.01 11.96 0.61 71.88 955.4 10.097.3 6.87 33.1 54.4 21.4 48.4 8.00 7.62 7.20 39.83 40.299 0.00 NORMAL 6/15/202212.01 11.96 0.61 71.88 955.4 10.097.3 6.87 33.1 54.4 21.4 48.4 8.00 7.62 7.20 39.83 40.2997 0.00 NORMAL 6/15/202212.02 12.04 6.61 254.4 10.093.7 6.87 33.0 54.4 21.4 48.4 8.00 7.62 7.19 39.83 40.2997 0.00 NORMAL 6/15/202212.04 12.21 0.24 6.61 954.4 10.093.7 6.87 33.0 54.4 21.4 48.4 8.00 7.62 7.19 39.83 40.2997 0.00 NORMAL 6/15/202212.05 12.40 0.12 71.86 953.9 10.09 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.2997.9 0.00 NORMAL 6/15/20212.05 12.44 0.00 70.90 953.5 10.882 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.2997.9 0.00 NORMAL 6/15/20212.05 12.44 0.00 70.90 953.5 10.882 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.3097.9 0.00 NORMAL 6/15/20212.07 12.44 0.53 8.78 953.1 10.852 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.3097.9 0.00 NORMAL 6/15/20212.07 12.44 0.53 8.78 953.1 10.852 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.3095.1 0.00 NORMAL 6/15/20212.07 12.44 0.53 8.78 953.1 10.852 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.3095.1 0.00 NORMAL 6/15/20212.10 12.43 0.12 6.62 952.0 10.812 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.3095.1 0.00 NORMAL 6/15/20212.11 12.18 0.10 5.553 951.7 10.812 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.3095.1 0.00 NORMAL 6/15/20212.11 12.18 0.10 5.553 951.7 10.812 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.3095.0 0.00 NORMAL 6/15/20212.11 11.19 0.00 5.667 951.4 10.811 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.3095.0 0.00 NORMAL 6																	
\$\(\frac{6}{15}\) \(\frac{7}{22}\) \(\frac{7}																	
6/15/2021 12.02																	
6/15/2021 12.18																	
6/15/2022 12:00 12:10 0.13 71.88 95:5.4 1097.3 6.87 33.1 54.4 21.4 48.4 8.00 7.62 7.20 39.83 40.2897.3 0.00 NORMAL 6/15/2022 12:00 12:21 0.24 66.12 954.4 1093.7 6.87 33.0 54.4 21.4 48.4 8.00 7.62 7.19 39.83 40.2997.3 0.00 NORMAL 6/15/2022 12:00 12:21 0.24 66.12 954.4 1093.7 6.87 33.0 54.4 21.4 48.4 8.00 7.62 7.19 39.83 40.2997.3 0.00 NORMAL 6/15/2022 12:06 12:40 0.01 71.86 953.9 1091.9 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.2973.9 0.00 NORMAL 6/15/2022 12:06 12:44 0.00 7.09 953.5 1088.2 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.2973.9 0.00 NORMAL 6/15/2022 12:08 12:55 0.55 6.54 952.7 1083.7 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.2973.9 0.00 NORMAL 6/15/2022 12:08 12:55 0.55 6.54 952.7 1083.7 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.30351 0.00 NORMAL 6/15/2022 12:08 12:55 0.55 6.54 952.7 1083.7 6.88 33.1 54.5 21.4 48.5 8.00 7.63 7.19 39.84 40.30351 0.00 NORMAL 6/15/2022 12:08 12:55 0.55 6.54 952.2 1082.3 6.88 33.0 54.5 21.4 48.5 8.00 7.63 7.19 39.84 40.30551 0.00 NORMAL 6/15/2022 12:00 12:43 0.12 66.20 952.0 1081.2 6.88 33.0 54.5 21.4 48.5 8.01 7.64 7.19 39.84 40.30967 0.00 NORMAL 6/15/2022 12:10 12:43 0.12 66.20 952.0 1081.2 6.88 33.0 54.5 21.4 48.5 8.01 7.64 7.19 39.84 40.31751 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.57 951.4 1081.2 6.88 33.0 54.5 21.4 48.5 8.03 7.63 7.19 39.84 40.31751 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.57 951.4 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31751 0.00 NORMAL 6/15/2022 12:11 11.05 0.00 56.67 951.4 1081.1 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.32950 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.33950 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.33950 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 55.67 951.4 1081.1 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.33950 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 55.83 950.2 1081.3 6.88 33.0 54.4 21.4 48.5 8.00 7.62 7.19 39.85 40.33950 0.00 NORMAL 6/15/2022																	
\$\(\begin{array}{c} \) \(\begin{array}{c} \	· · ·																
6/15/2022 12:06 12:40 0.24 66.12 99.44 1093.7 6.87 33.0 54.4 21.4 48.4 8.00 7.62 7.19 39.83 40.29495 0.00 NORMAL 6/15/2022 12:06 12:40 0.00 70.90 953.5 1088.2 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.29739 0.00 NORMAL 6/15/2022 12:07 12:44 0.00 70.90 953.5 1088.2 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.29739 0.00 NORMAL 6/15/2022 12:08 12:55 0.55 65.45 953.1 1085.2 6.88 33.0 54.4 21.4 48.4 8.00 7.63 7.19 39.84 40.30512 0.00 NORMAL 6/15/2022 12:08 12:55 0.55 65.45 952.7 1083.7 6.88 33.0 54.4 21.4 48.5 8.00 7.63 7.19 39.84 40.30512 0.00 NORMAL 6/15/2022 12:09 12:41 0.12 71.30 952.3 1082.3 6.88 33.0 54.5 21.4 48.5 8.00 7.63 7.19 39.84 40.30512 0.00 NORMAL 6/15/2022 12:10 12.43 0.12 66.20 952.0 1081.2 6.88 33.0 54.5 21.4 48.5 8.01 7.64 7.19 39.84 40.30516 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.53 951.7 1081.2 6.88 33.0 54.5 21.4 48.5 8.02 7.64 7.19 39.84 40.31551 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.53 951.7 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31551 0.00 NORMAL 6/15/2022 12:11 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31551 0.00 NORMAL 6/15/2022 12:12 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.88 40.32852 0.00 NORMAL 6/15/2022 12:12 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.88 40.3284 0.00 NORMAL 6/15/2022 12:12 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.88 40.3284 0.00 NORMAL 6/15/2022 12:15 12.02 0.66 87.84 99.08 1082.6 6.88 33.0 54.4 21.4 48.5 8.00 7.61 7.19 39.85 40.3334 0.00 NORMAL 6/15/2022 12:16 12.02 0.48 61.33 950.2 1081.3 6.88 33.0 54.4 21.4 48.5 8.00 7.61 7.19 39.85 40.3334 0.00 NORMAL 6/15/2022 12:16 12.02 0.48 61.33 950.2 1081.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.85 40.3334 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.8 1080.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.85 40.3334 0.00 NORMAL 6/15/2022 12:18 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.99 7.63 7.19 39.87 40.33102 0.00 NORMAL 6/15/2022 12:21 11																	
6/15/2022 12:05	· · ·																
6/15/2022 12:07																	
6/15/2022 12:08 12:55 0.55 65.45 952.7 1083.7 6.88 33.1 54.5 21.4 48.5 8.00 7.63 7.19 39.84 40.30512 0.00 NORMAL 6/15/2022 12:10 12.43 0.12 66.20 952.0 1081.2 6.88 33.0 54.5 21.4 48.5 8.02 7.64 7.19 39.84 40.305067 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.53 951.7 1081.2 6.88 33.0 54.5 21.4 48.5 8.02 7.64 7.19 39.84 40.31506 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.53 951.7 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31515 0.00 NORMAL 6/15/2022 12:13 11.79 0.20 56.67 951.4 1081.1 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31515 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.32526 0.00 NORMAL 6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.32262 0.00 NORMAL 6/15/2022 12:15 12.02 0.66 87.84 950.5 1082.1 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.32384 0.00 NORMAL 6/15/2022 12:16 12.02 0.68 67.84 950.5 1082.1 6.88 33.0 54.4 21.5 48.5 8.00 7.61 7.19 39.85 40.33384 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.49 8 1080.3 6.89 32.9 54.5 21.5 48.5 8.00 7.61 7.19 39.85 40.33304 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.49 94.9 8 1080.3 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.33107 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.6 48.5 7.99 7.63 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.3466 0.00 NORMAL 6/15/2022 12:22 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:22 11.64 0.11 55.98 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:22		12.44	0.00	70.90	953.5	1088.2	6.88	33.0	54.4	21.4	48.4	8.00	7.63	7.19	39.84	40.29917	
6/15/2022 12:10 12:41 0.12 71:30 952.3 1082.3 6.88 33.0 54.5 21.4 48.5 8.01 7.64 7.19 39.84 40.30967 0.00 NORMAL 6/15/2022 12:10 12:43 0.12 66.20 952.0 1081.2 6.88 33.0 54.5 21.4 48.5 8.02 7.64 7.19 39.84 40.31506 0.00 NORMAL 6/15/2022 12:11 12:18 0.10 56.53 951.7 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31505 0.00 NORMAL 6/15/2022 12:12 11.79 0.20 56.67 951.4 1081.1 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31551 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31551 0.00 NORMAL 6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.32284 0.00 NORMAL 6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.32284 0.00 NORMAL 6/15/2022 12:15 12.02 0.66 87.84 950.5 1082.1 6.88 33.0 54.4 21.4 48.5 8.01 7.61 7.19 39.85 40.32384 0.00 NORMAL 6/15/2022 12:16 12.02 0.66 87.84 99.8 1082.3 6.88 33.0 54.4 21.5 48.5 8.01 7.61 7.19 39.85 40.33344 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 54.2 99.8 1080.3 6.89 32.9 54.5 21.5 48.5 8.00 7.61 7.19 39.86 40.3334 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.5 1078.5 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.3334 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.3441 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.99 7.63 7.19 39.86 40.3441 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 94.8 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.3464 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 94.8 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35500 0.00 NORMAL 6/15/2022 12:22 11.64 0.11 55.98 94.8 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35500 0.00 NORMAL 6/15/2022 12:23 11.45 0.20 47.76 94.3 1078.8 6.89 32.9 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35500 0.00 NORMAL 6/15/2022 12:24 11.75 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35500 0.00 NORMAL 6/15/2022 12:25 14.32 0.0	6/15/2022 12:07	12.44	0.53	58.78	953.1	1085.2	6.88	33.0	54.4	21.4	48.4	8.00	7.63	7.19	39.84	40.30251	0.00 NORMAL
6/15/2022 12:10 12:43 0.12 66.20 952.0 1081.2 66.88 33.0 54.5 21.4 48.5 8.02 7.64 7.19 39.84 40.31506 0.00 NORMAL 6/15/2022 12:11 12.18 0.10 56.53 951.7 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.3151 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 55.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31581 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.3262 0.00 NORMAL 6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.3262 0.00 NORMAL 6/15/2022 12:16 12.02 0.66 87.84 950.5 1082.1 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.32364 0.00 NORMAL 6/15/2022 12:16 12.02 0.48 61.33 950.2 1081.3 6.88 33.0 54.4 21.5 48.5 8.00 7.61 7.19 39.85 40.3334 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.42 949.8 1080.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.3370 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.5 1078.5 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.3401 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.3401 0.00 NORMAL 6/15/2022 12:20 12:15 0.31 58.76 948.9 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.3404 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.3555 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.3555 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.3555 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.3555 0.00 NORMAL 6/15/2022 12:22 11.37 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35595 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35595 0.00 NORMAL 6/15/2022 12:25 14.30 0.96 52.98 947.1 1090.9 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.18 39.88 40.36574 0.00 NORMAL 6/15/2022 12:25 14.30 0.9	6/15/2022 12:08	12.55	0.55	65.45	952.7	1083.7	6.88	33.1	54.5	21.4	48.5	8.00	7.63	7.19	39.84	40.30512	0.00 NORMAL
6/15/2022 12:11 12:18 0.10 56:53 951.7 1081.2 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31751 0.00 NORMAL 6/15/2022 12:12 11.79 0.20 56:67 951.4 1081.1 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31851 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.32262 0.00 NORMAL 6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.32284 0.00 NORMAL 6/15/2022 12:15 12.02 0.66 87.84 950.5 1082.1 6.88 33.0 54.4 21.5 48.5 8.01 7.61 7.19 39.85 40.33246 0.00 NORMAL 6/15/2022 12:16 12.02 0.48 61.3 950.2 1081.3 6.88 33.0 54.4 21.5 48.5 8.01 7.61 7.19 39.85 40.33234 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.42 949.8 1080.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.3314 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.5 1078.5 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.3314 0.00 NORMAL 6/15/2022 12:21 12.01 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.99 7.63 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.3448 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35555 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35555 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35555 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:22 11.37 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35585 0.00 NORMAL 6/15/2022 12:25 14	6/15/2022 12:09	12.41	0.12	71.30	952.3	1082.3	6.88	33.0	54.5	21.4	48.5	8.01	7.64	7.19	39.84	40.30967	0.00 NORMAL
6/15/2022 12:12 11.79 0.00 59.93 951.4 1081.1 6.88 33.0 54.4 21.4 48.5 8.03 7.63 7.19 39.84 40.31851 0.00 NORMAL 6/15/2022 12:13 11.79 0.00 59.93 951.1 1081.6 6.88 33.0 54.4 21.4 48.5 8.03 7.62 7.19 39.85 40.32262 0.00 NORMAL 6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.32384 0.00 NORMAL 6/15/2022 12:15 12.02 0.66 87.84 950.5 1082.1 6.88 33.0 54.4 21.5 48.5 8.01 7.61 7.19 39.85 40.33340 0.00 NORMAL 6/15/2022 12:16 12.02 0.48 61.33 950.2 1081.3 6.88 33.0 54.4 21.5 48.5 8.00 7.61 7.19 39.85 40.33343 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.42 949.8 1080.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.3370 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.5 1078.5 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.3441 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.3448 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.3466 0.00 NORMAL 6/15/2022 12:22 11.37 0.22 47.76 948.3 1079.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.30 0.09 60.07 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.30 0.09 60.07 946.9 1093.4 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.18 39.88 40.3679 0.00 NORMAL 6/15/2022 12:26 14.		12.43	0.12	66.20	952.0	1081.2	6.88	33.0	54.5	21.4	48.5	8.02	7.64	7.19	39.84	40.31506	0.00 NORMAL
6/15/2022 12:13	6/15/2022 12:11	12.18	0.10	56.53	951.7	1081.2	6.88	33.0	54.4	21.4	48.5	8.03	7.63	7.19	39.84	40.31751	0.00 NORMAL
6/15/2022 12:14 11.65 1.71 54.23 950.8 1082.6 6.88 33.0 54.4 21.4 48.5 8.02 7.62 7.19 39.85 40.32384 0.00 NORMAL 6/15/2022 12:15 12.02 0.66 87.84 950.5 1082.1 6.88 33.0 54.4 21.5 48.5 8.01 7.61 7.19 39.85 40.33046 0.00 NORMAL 6/15/2022 12:16 12.02 0.48 61.33 950.2 1081.3 6.88 33.0 54.4 21.5 48.5 8.00 7.61 7.19 39.85 40.33046 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.42 949.8 1080.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.33707 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.5 1078.5 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.5 48.5 7.98 7.63 7.19 39.86 40.3448 0.00 NORMAL 6/15/2022 12:20 12.15 0.31 58.76 948.9 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.3448 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35502 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35597 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35597 0.00 NORMAL 6/15/2022 12:26 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.18 39.88 40.3679 0.00 NORMAL 6/15/2022 12:26 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 6.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 6.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL 6/15/202																	
6/15/2022 12:15																	
6/15/2022 12:16 12.02 0.48 61.33 950.2 1081.3 6.88 33.0 54.4 21.5 48.5 8.00 7.61 7.19 39.85 40.33334 0.00 NORMAL 6/15/2022 12:17 11.93 0.78 59.42 949.8 1080.3 6.89 32.9 54.5 21.5 48.5 7.99 7.62 7.19 39.86 40.33707 0.00 NORMAL 6/15/2022 12:18 12.22 0.12 69.23 949.5 1078.5 6.89 32.9 54.5 21.5 48.5 7.98 7.62 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:19 12.10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.6 48.5 7.98 7.63 7.19 39.86 40.34141 0.00 NORMAL 6/15/2022 12:20 12:20 12:15 0.31 58.76 948.9 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.34646 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.3585 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 947.6 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 6.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:27 14.30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL 6/15/2022 12:28 14.92 0.																	
6/15/2022 12:17																	
6/15/2022 12:18																	
6/15/2022 12:19 12:10 0.00 54.53 949.2 1077.3 6.89 32.9 54.5 21.6 48.5 7.98 7.63 7.19 39.86 40.3448 0.00 NORMAL 6/15/2022 12:20 12:15 0.31 58.76 948.9 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.34646 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.3585 0.00 NORMAL 6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.36246 0.00 NORMAL 6/15/2022 12:25 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36574 0.00 NORMAL 6/15/2022 12:27 14.30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
6/15/2022 12:20 12:15 0.31 58.76 948.9 1078.2 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.86 40.34646 0.00 NORMAL 6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35885 0.00 NORMAL 6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:26 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36574 0.00 NORMAL 6/15/2022 12:27 14.30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
6/15/2022 12:21 11.64 0.11 55.98 948.6 1078.8 6.89 32.9 54.4 21.6 48.5 7.99 7.63 7.19 39.87 40.35102 0.00 NORMAL 6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35885 0.00 NORMAL 6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:26 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36574 0.00 NORMAL 6/15/2022 12:27 14.30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
6/15/2022 12:22 11.37 0.20 47.76 948.3 1079.8 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35535 0.00 NORMAL 6/15/2022 12:23 11.45 3.27 50.47 948.1 1080.5 6.89 32.8 54.4 21.6 48.5 8.00 7.63 7.19 39.87 40.35885 0.00 NORMAL 6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36574 0.00 NORMAL 6/15/2022 12:27 14.30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
6/15/2022 12:23																	
6/15/2022 12:24 12.76 0.00 0.00 947.8 1081.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.35979 0.00 NORMAL 6/15/2022 12:25 14.32 0.00 0.00 947.6 1085.5 6.89 32.8 54.4 21.6 48.5 8.01 7.63 7.19 39.87 40.36246 0.00 NORMAL 6/15/2022 12:26 14.16 1.50 46.35 947.3 1090.6 6.89 32.8 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36574 0.00 NORMAL 6/15/2022 12:27 14.30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
6/15/2022 12:25																	
6/15/2022 12:26																	
6/15/2022 12:27 14:30 0.96 52.98 947.1 1092.9 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.36979 0.00 NORMAL 6/15/2022 12:28 14:92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
6/15/2022 12:28 14.92 0.00 60.07 946.9 1093.4 6.89 32.7 54.4 21.7 48.5 8.01 7.63 7.18 39.88 40.37124 0.00 NORMAL																	
					946.6	1092.8											

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/15/2022 12:30	13.72	1.19	60.28	946.4	1088.8	6.89	32.7	54.5	21.7	48.5	8.01	7.61	7.19	39.88	40.37779	0.00 NORMAL
6/15/2022 12:31	12.39	0.46	65.39	946.1	1083.9	6.89	32.7	54.5	21.8	48.5	8.01	7.62	7.19	39.88	40.38268	0.00 NORMAL
6/15/2022 12:32	12.37	0.74	57.39	945.8	1081.9	6.89	32.7	54.5	21.8	48.5	8.02	7.62	7.18	39.88	40.38746	0.00 NORMAL
6/15/2022 12:33	12.36	0.36	69.74	945.5	1081.7	6.90	32.7	54.4	21.8	48.5	8.02	7.62	7.18	39.89	40.39129	0.00 NORMAL
6/15/2022 12:34	11.94	0.11	69.73	945.2	1081.7	6.90	32.7	54.4	21.8	48.5	8.02	7.62	7.18	39.89	40.39307	0.00 NORMAL
6/15/2022 12:35	11.68	1.02	62.89	944.9	1083.3	6.90	32.6	54.4	21.8	48.5	8.02	7.62	7.18	39.89	40.39346	0.00 NORMAL
6/15/2022 12:36	11.83	1.87	83.23	944.5	1083.4	6.90	32.6	54.4	21.8	48.5	8.02	7.62	7.18	39.89	40.39718	0.00 NORMAL
6/15/2022 12:37	12.00	0.26	70.36		1082.1	6.90	32.6	54.4	21.8	48.5	8.02	7.62	7.18	39.90	40.40273	0.00 NORMAL
6/15/2022 12:38	12.06	0.48	60.83	943.7	1082.4	6.90	32.6	54.5	21.8	48.5	8.02	7.62	7.18	39.90	40.40723	0.00 NORMAL
6/15/2022 12:39	11.79	0.90	65.83	943.3	1083.0	6.90	32.6	54.5	21.9	48.5	8.01	7.62	7.18	39.90	40.41135	0.00 NORMAL
6/15/2022 12:40	11.88	0.12	75.93	942.9	1082.6	6.90	32.6	54.5	21.9	48.5	8.01	7.64 7.64	7.18	39.90	40.41423	0.00 NORMAL
6/15/2022 12:41 6/15/2022 12:42	11.99 11.89	2.17 1.23	65.31 84.47	942.5 942.1	1084.8 1086.9	6.90 6.90	32.6 32.6	54.5 54.4	21.9 21.9	48.5 48.5	8.01 8.01	7.65	7.18 7.18	39.90 39.91	40.41718 40.42129	0.00 NORMAL 0.00 NORMAL
6/15/2022 12:43	11.83	0.13	77.88	941.7	1080.9	6.90	32.6	54.4	21.9	48.5	8.02	7.65	7.18	39.91	40.42123	0.00 NORMAL
6/15/2022 12:44	12.06	0.15	70.60	941.2	1087.3	6.90	32.6	54.4	21.9	48.5	8.03	7.65	7.18	39.91	40.42884	0.00 NORMAL
6/15/2022 12:45	12.09	0.30	72.50	940.8	1088.9	6.90	32.6	54.4	21.8	48.5	8.04	7.64	7.18	39.91	40.43162	0.00 NORMAL
6/15/2022 12:46	11.93	0.22	90.16	940.4	1089.5	6.91	32.6	54.4	21.8	48.5	8.05	7.63	7.18	39.91	40.43156	0.00 NORMAL
6/15/2022 12:47	12.01	0.73	81.36	940.1	1091.4	6.91	32.6	54.4	21.8	48.5	8.05	7.62	7.18	39.91	40.43223	0.00 NORMAL
6/15/2022 12:48	12.03	0.25	90.80	939.7	1092.8	6.91	32.6	54.5	21.9	48.5	8.04	7.62	7.18	39.92	40.43201	0.00 NORMAL
6/15/2022 12:49	12.02	0.12	75.06	939.3	1092.9	6.91	32.6	54.5	21.9	48.5	8.03	7.62	7.17	39.92	40.4314	0.00 NORMAL
6/15/2022 12:50	12.01	0.11	80.04	939.0	1092.3	6.91	32.6	54.5	21.9	48.5	8.03	7.63	7.17	39.92	40.43068	0.00 NORMAL
6/15/2022 12:51	11.95	0.20	86.66	938.6	1092.3	6.91	32.6	54.5	21.8	48.5	8.03	7.64	7.17	39.92	40.4289	0.00 NORMAL
6/15/2022 12:52	12.17	0.38	103.04	938.2	1091.4	6.91	32.7	54.5	21.8	48.5	8.04	7.64	7.17	39.92	40.42796	0.00 NORMAL
6/15/2022 12:53	12.09	0.69	78.55	937.9	1092.7	6.91	32.7	54.5	21.8	48.5	8.04	7.64	7.17	39.92	40.42512	0.00 NORMAL
6/15/2022 12:54	11.96	0.91	86.10	937.5	1094.6	6.91	32.7	54.4	21.7	48.5	8.05	7.64	7.17	39.92	40.42506	0.00 NORMAL
6/15/2022 12:55	11.84	0.57	73.91	937.1	1095.8	6.92	32.7	54.4	21.7	48.5	8.05	7.64	7.17	39.92	40.42434	0.00 NORMAL
6/15/2022 12:56	11.76	0.42	77.15	936.7	1096.6	6.92	32.7	54.4	21.7	48.5	8.04	7.64	7.17	39.92	40.42284	0.00 NORMAL
6/15/2022 12:57	11.94	0.55	86.41	936.4	1097.8	6.92	32.8	54.4	21.7	48.5	8.06	7.64	7.17	39.93	40.41912	0.00 NORMAL
6/15/2022 12:58	11.81	0.11	82.02	936.0	1097.2	6.92	32.8	54.4	21.6	48.5	8.07	7.64	7.17	39.93	40.41901	0.00 NORMAL
6/15/2022 12:59 6/15/2022 13:00	11.99 12.08	0.33	73.72 75.66	935.7 935.4	1096.2 1094.1	6.92 6.93	32.8 32.8	54.5 54.5	21.6 21.6	48.5 48.5	8.07 8.07	7.64 7.64	7.17 7.17	39.93 39.93	40.41723 40.41523	0.00 NORMAL 0.00 NORMAL
6/15/2022 13:01	12.23	0.48	75.99	935.4	1094.1	6.93	32.8	54.5	21.6	48.5	8.07	7.65	7.17	39.93	40.41323	0.00 NORMAL
6/15/2022 13:02	12.23	0.00	73.79	934.7	1030.8	6.93	32.9	54.5	21.6	48.5	8.06	7.65	7.17	39.93	40.41373	0.00 NORMAL
6/15/2022 13:03	12.38	0.11	69.51	934.4	1085.0	6.93	32.9	54.5	21.6	48.5	8.07	7.64	7.17	39.94	40.41478	0.00 NORMAL
6/15/2022 13:04	12.33	0.33	64.78	934.1	1083.4	6.93	32.9	54.5	21.5	48.5	8.07	7.64	7.17	39.94	40.4125	0.00 NORMAL
6/15/2022 13:05	12.21	0.72	62.79	933.8	1083.9	6.94	33.0	54.4	21.5	48.5	8.07	7.64	7.17	39.94	40.412	0.00 NORMAL
6/15/2022 13:06	12.18	0.47	82.66	933.5	1084.8	6.94	33.0	54.4	21.4	48.6	8.07	7.66	7.17	39.94	40.41072	0.00 NORMAL
6/15/2022 13:07	12.21	0.13	83.75	933.2	1084.8	6.94	33.0	54.4	21.4	48.6	8.07	7.66	7.17	39.94	40.40995	0.00 NORMAL
6/15/2022 13:08	12.23	0.46	70.27	932.9	1084.2	6.94	33.0	54.4	21.4	48.6	8.07	7.65	7.17	39.94	40.41317	0.00 NORMAL
6/15/2022 13:09	12.21	0.33	61.56	932.6	1083.7	6.94	33.0	54.4	21.4	48.6	8.07	7.65	7.17	39.94	40.41472	0.00 NORMAL
6/15/2022 13:10	11.97	0.38	57.10		1082.9	6.95	33.0	54.4	21.4	48.6	8.07	7.65	7.17	39.94	40.41433	0.00 NORMAL
6/15/2022 13:11	11.96	1.02	60.36		1083.9	6.95	33.0	54.4	21.4	48.6	8.08	7.65	7.17	39.94	40.41372	0.00 NORMAL
6/15/2022 13:12	11.98	4.63	77.04		1084.9	6.95	33.0	54.5	21.4	48.6	8.09	7.65	7.17	39.94	40.413	0.00 NORMAL
6/15/2022 13:13	12.10	0.14	76.75		1084.4	6.95	33.0	54.5	21.4	48.6	8.10	7.65	7.17	39.94	40.41405	0.00 NORMAL
6/15/2022 13:14	11.99	0.32	55.36		1083.6	6.95	33.0	54.5	21.4	48.6	8.10	7.65	7.17	39.94	40.41394	0.00 NORMAL
6/15/2022 13:15 6/15/2022 13:16	11.75 11.96	0.57	50.94 59.92		1082.7 1080.9	6.95 6.96		54.5 54.4	21.4	48.6 48.6	8.09 8.09	7.66 7.67	7.17 7.17	39.94 39.94	40.41744 40.41972	0.00 NORMAL 0.00 NORMAL
6/15/2022 13:16	11.72	0.33	53.55		1080.9	6.96		54.4	21.4	48.6	8.09	7.67	7.17	39.94	40.41972	0.00 NORMAL
6/15/2022 13:18	11.72	0.89	80.28		1081.5	6.96	33.1	54.4	21.4	48.6	8.08	7.68	7.17	39.94	40.42127	0.00 NORMAL
6/15/2022 13:19	11.70	0.00	74.93		1083.1	6.96		54.4	21.4	48.7	8.10	7.68	7.17	39.94	40.42143	0.00 NORMAL
6/15/2022 13:20	11.65	0.21	60.64		1084.0	6.96		54.4	21.3	48.7	8.10	7.67	7.17	39.95	40.42366	0.00 NORMAL
6/15/2022 13:21	11.43	2.21	53.16		1086.7	6.96		54.5	21.3	48.7	8.11	7.66	7.17	39.95	40.42166	0.00 NORMAL
6/15/2022 13:22	11.28	0.50	74.72		1090.2	6.97	33.2	54.5	21.3	48.7	8.11	7.65	7.17	39.95	40.41827	0.00 NORMAL
6/15/2022 13:23	11.42	0.10	76.72		1096.6	6.97	33.2	54.5	21.3	48.7	8.11	7.65	7.17	39.95	40.4146	0.00 NORMAL
6/15/2022 13:24	10.97	0.64	74.89	928.7	1106.2	6.97	33.3	54.5	21.2	48.7	8.11	7.67	7.17	39.95	40.41077	0.00 NORMAL
6/15/2022 13:25	10.60	1.35	88.20	928.5	1114.5	6.97	33.3	54.5	21.2	48.7	8.12	7.67	7.17	39.95	40.40627	0.00 NORMAL
6/15/2022 13:26	10.65	0.32	73.58		1119.6	6.97	33.3	54.4	21.1	48.7	8.13	7.67	7.17	39.95	40.4026	0.00 NORMAL
6/15/2022 13:27	11.00	0.10	76.74		1122.8	6.98		54.4	21.1	48.7	8.14	7.66	7.17	39.95	40.40155	0.00 NORMAL
6/15/2022 13:28	10.97	0.00	81.36		1124.6	6.98		54.4	21.0	48.7	8.14	7.65	7.17	39.95	40.39999	0.00 NORMAL
6/15/2022 13:29	11.17	0.22	89.78		1123.8	6.98		54.4	21.0	48.7	8.14	7.65	7.17	39.95	40.39932	0.00 NORMAL
6/15/2022 13:30	11.45	0.00	80.00		1122.6	6.98	33.5	54.4	21.0	48.8	8.13	7.64	7.17	39.95	40.39543	0.00 NORMAL
6/15/2022 13:31	11.59	0.11	77.94		1120.9	6.98		54.4	21.0	48.8	8.13	7.65	7.17	39.95	40.39277	0.00 NORMAL
6/15/2022 13:32	11.57	0.32	75.78		1119.2	6.99	33.5	54.5	20.9	48.8	8.14	7.66	7.17	39.95	40.3921	0.00 NORMAL
6/15/2022 13:33	11.74	1.98	91.56	926.7	1115.8	6.99	33.6	54.5	20.9	48.8	8.14	7.66	7.17	39.95	40.38932	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/15/2022 13:34	12.23	0.00	86.63	926.6	1110.9	6.99	•	54.5	20.9	48.8	8.15	7.67	7.17	39.95	40.38788	0.00 NORMAL
6/15/2022 13:35	12.47	0.00	82.76	926.4	1105.8	6.99	33.6	54.5	20.9	48.8	8.15	7.67	7.17	39.96	40.38799	0.00 NORMAL
6/15/2022 13:36	12.56	0.46	71.49	926.2	1100.9	6.99	33.6	54.5	20.9	48.9	8.15	7.67	7.17	39.96	40.38848	0.00 NORMAL
6/15/2022 13:37	12.76	0.13	78.75	926.0	1094.2	6.99	33.6	54.4	20.8	48.9	8.15	7.67	7.17	39.96	40.38688	0.00 NORMAL
6/15/2022 13:38	12.93	0.71	66.16	925.9	1088.2	6.99	33.6	54.4	20.8	48.9	8.16	7.65	7.16	39.96	40.38582	0.00 NORMAL
6/15/2022 13:39	12.66	1.56	55.71	925.7	1084.2	7.00	33.6	54.4	20.8	48.9	8.16	7.65	7.16	39.96	40.38843	0.00 NORMAL
6/15/2022 13:40	12.51	0.24	66.49	925.6	1080.5	7.00	33.6	54.4	20.8	48.9	8.16	7.64	7.17	39.96	40.39215	0.00 NORMAL
6/15/2022 13:41	12.27	0.32	59.88	925.4	1077.8	7.00	33.6	54.4	20.8	48.9	8.16	7.64	7.17	39.96	40.39443	0.00 NORMAL
6/15/2022 13:42	11.89	0.73	53.86	925.3	1077.4	7.00		54.4	20.8	48.9	8.16	7.65	7.17	39.96	40.3976	0.00 NORMAL
6/15/2022 13:43	11.73	0.35	66.93	925.1	1077.0	7.00		54.4	20.8	48.9	8.16	7.66	7.16	39.97	40.39809	0.00 NORMAL
6/15/2022 13:44	11.49	0.50	53.53	924.9	1077.9	7.00		54.4	20.9	49.0	8.16	7.66	7.16	39.97	40.40126	0.00 NORMAL
6/15/2022 13:45	11.44	6.00	53.50	924.8	1079.7	7.00		54.4	20.9	49.0	8.16	7.66	7.16	39.97	40.40126	0.00 NORMAL
6/15/2022 13:46	11.55	0.40	72.75	924.6	1080.3	7.00		54.4	20.9	49.0	8.17	7.65	7.16	39.97	40.40382	0.00 NORMAL
6/15/2022 13:47	11.60	0.11	67.45	924.4	1080.1	7.00		54.4	20.9	49.0	8.18	7.64	7.16	39.98	40.40754	0.00 NORMAL
6/15/2022 13:48 6/15/2022 13:49	11.66 11.44	0.28 0.51	52.62 53.05	924.2 924.0	1081.5 1081.5	7.01 7.01		54.4 54.4	20.9	49.0 49.0	8.19 8.18	7.64 7.64	7.16 7.16	39.98 39.98	40.41087 40.41209	0.00 NORMAL 0.00 NORMAL
6/15/2022 13:49	11.62	0.31	56.15	923.9	1081.3	7.01		54.4	20.9	49.0	8.18	7.64	7.16	39.98	40.41209	0.00 NORMAL
6/15/2022 13:51	11.78	1.26	64.18	923.7	1081.4	7.01		54.5	20.9	49.0	8.17	7.65	7.16	39.99	40.41288	0.00 NORMAL
6/15/2022 13:51	11.78	0.00	73.62	923.6	1082.0	7.01		54.5	20.9	49.0	8.17	7.66	7.16	39.99	40.4141	0.00 NORMAL
6/15/2022 13:53	11.60	0.00	58.26	923.5	1081.2	7.01		54.4	20.9	49.0	8.17	7.66	7.16	39.99	40.42054	0.00 NORMAL
6/15/2022 13:54	11.63	0.20	53.84	923.3	1080.7	7.01		54.4	20.9	49.0	8.17	7.66	7.16	39.99	40.42343	0.00 NORMAL
6/15/2022 13:55	11.83	0.58	57.44	923.2	1080.0	7.01		54.4	20.9	49.0	8.16	7.65	7.16	40.00	40.4291	0.00 NORMAL
6/15/2022 13:56	11.51	0.28	53.86	923.0	1080.9	7.01		54.4	21.0	49.0	8.16	7.64	7.16	40.00	40.43026	0.00 NORMAL
6/15/2022 13:57	11.49	1.86	63.17	922.9	1082.4	7.01	33.5	54.4	21.0	49.0	8.17	7.64	7.16	40.00	40.43015	0.00 NORMAL
6/15/2022 13:58	11.51	0.27	71.31	922.7	1082.1	7.01	33.5	54.4	21.0	49.0	8.18	7.64	7.16	40.00	40.43182	0.00 NORMAL
6/15/2022 13:59	11.55	0.20	57.99	922.6	1082.6	7.01	33.5	54.5	21.0	49.0	8.18	7.64	7.16	40.00	40.4351	0.00 NORMAL
6/15/2022 14:00	11.51	0.75	54.31	922.4	1083.8	7.01	33.5	54.5	21.0	49.0	8.18	7.64	7.16	40.00	40.43521	0.00 NORMAL
6/15/2022 14:01	11.61	0.37	69.90	922.3	1083.2	7.01	33.5	54.5	21.0	49.0	8.18	7.64	7.16	40.00	40.43466	0.00 NORMAL
6/15/2022 14:02	11.89	0.33	74.86	922.1	1083.6	7.02	33.5	54.5	21.0	49.0	8.18	7.64	7.16	40.00	40.4346	0.00 NORMAL
6/15/2022 14:03	11.93	0.74	85.13	921.9	1085.2	7.02	33.5	54.5	21.0	49.0	8.17	7.64	7.16	40.00	40.43349	0.00 NORMAL
6/15/2022 14:04	11.83	0.00	80.00	921.8	1084.9	7.02		54.5	21.0	49.0	8.17	7.64	7.16	40.00	40.43299	0.00 NORMAL
6/15/2022 14:05	12.10	0.25	78.36	921.7	1083.2	7.02		54.5	21.0	49.1	8.19	7.64	7.16	40.00	40.43644	0.00 NORMAL
6/15/2022 14:06	12.26	0.52	59.48	921.5	1082.5	7.02		54.5	21.0	49.1	8.19	7.64	7.16	40.00	40.43871	0.00 NORMAL
6/15/2022 14:07	12.02	0.83	61.07	921.4	1080.7	7.02		54.5	21.0	49.1	8.19	7.64	7.16	40.00	40.43938	0.00 NORMAL
6/15/2022 14:08	12.02	0.33	61.56	921.3	1078.8	7.02		54.5	21.0	49.1	8.19	7.63	7.16	40.00	40.44327	0.00 NORMAL
6/15/2022 14:09	11.73	1.60	55.60	921.3	1078.6	7.02		54.5	21.0	49.1	8.19	7.63	7.16	39.99	40.44488	0.00 NORMAL
6/15/2022 14:10	11.57	0.34	64.58	921.2	1079.2	7.02		54.5	21.0	49.1	8.19	7.64	7.16	39.99	40.44771	0.00 NORMAL
6/15/2022 14:11	11.27 11.34	0.40 0.11	62.33 69.30	921.1 921.0	1079.3 1079.8	7.02 7.03		54.4 54.4	21.0 21.0	49.1 49.1	8.17 8.16	7.64 7.64	7.16 7.16	40.00	40.44977 40.45216	0.00 NORMAL 0.00 NORMAL
6/15/2022 14:12 6/15/2022 14:13	11.34	0.11	68.84	921.0	1079.8	7.03		54.4	21.0	49.1	8.16	7.64	7.16	40.00 40.00	40.45216	0.00 NORMAL
6/15/2022 14:14	11.34	0.10	61.69	920.9	1080.3	7.03		54.4	21.0	49.1	8.17	7.64	7.16	40.00	40.45677	0.00 NORMAL
6/15/2022 14:15	11.28	1.26	55.91	920.9	1080.3	7.03		54.4	21.1	49.1	8.17	7.64	7.16	40.00	40.45899	0.00 NORMAL
6/15/2022 14:16	11.43	0.50	77.88	920.8	1080.7	7.03		54.4	21.1	49.1	8.18	7.64	7.15	40.00	40.46171	0.00 NORMAL
6/15/2022 14:17	11.57	0.30	66.47	920.8	1079.1	7.03		54.5	21.1	49.1	8.17	7.65	7.16	40.00	40.46494	0.00 NORMAL
6/15/2022 14:18	11.48	0.41	58.82	920.8	1078.2	7.03		54.5	21.2	49.1	8.16	7.66	7.16	40.00	40.46733	0.00 NORMAL
6/15/2022 14:19	11.55	0.11	64.80	920.8	1076.5	7.03		54.5	21.2	49.1	8.15	7.67	7.16	40.00	40.46783	0.00 NORMAL
6/15/2022 14:20	11.64	0.33	64.56	920.7	1074.6	7.03		54.5	21.2	49.1	8.15	7.66	7.16	40.00	40.47132	0.00 NORMAL
6/15/2022 14:21	11.66	1.55	57.63	920.7	1074.0	7.03		54.5	21.2	49.1	8.15	7.66	7.16	40.01	40.47421	0.00 NORMAL
6/15/2022 14:22	11.59	0.71	71.95	920.7	1073.3	7.03		54.4	21.2	49.1	8.15	7.66	7.16	40.01	40.47616	0.00 NORMAL
6/15/2022 14:23	11.54	0.32	70.88	920.7	1072.8	7.03		54.4	21.2	49.1	8.14	7.64	7.16	40.01	40.47805	0.00 NORMAL
6/15/2022 14:24	11.51	0.20	70.94	920.7	1073.1	7.03	33.2	54.4	21.3	49.1	8.14	7.64	7.16	40.01	40.47982	0.00 NORMAL
6/15/2022 14:25	11.51	0.22	75.50	920.7	1072.9	7.03	33.1	54.4	21.3	49.1	8.14	7.63	7.16	40.01	40.48294	0.00 NORMAL
6/15/2022 14:26	11.52	0.00	71.72	920.7	1072.5	7.03	33.1	54.4	21.3	49.1	8.15	7.63	7.16	40.01	40.48433	0.00 NORMAL
6/15/2022 14:27	11.49	1.17	62.55	920.8	1073.0	7.04	33.1	54.4	21.3	49.1	8.15	7.65	7.16	40.01	40.48689	0.00 NORMAL
6/15/2022 14:28	11.52	0.48	75.88	920.8	1072.6	7.04		54.4	21.4	49.1	8.15	7.65	7.16	40.01	40.48927	0.00 NORMAL
6/15/2022 14:29	11.60	0.11	71.08	920.8	1071.6	7.04		54.5	21.4	49.1	8.13	7.66	7.15	40.02	40.49089	0.00 NORMAL
6/15/2022 14:30	11.64	0.10	61.88	920.9	1071.0	7.04		54.5	21.5	49.1	8.12	7.66	7.15	40.02	40.49583	0.00 NORMAL
6/15/2022 14:31	11.63	0.54	65.68	920.9	1069.8	7.04		54.5	21.5	49.1	8.12	7.65	7.15	40.02	40.49983	0.00 NORMAL
6/15/2022 14:32	11.58	0.44	62.69	921.0	1068.1	7.04		54.5	21.5	49.1	8.11	7.64	7.15	40.02	40.50322	0.00 NORMAL
6/15/2022 14:33	11.55	3.89	56.53	921.1	1068.0	7.04		54.5	21.5	49.1	8.11	7.64	7.16	40.03	40.50627	0.00 NORMAL
6/15/2022 14:34	11.54	1.67	75.26	921.2	1067.9	7.04		54.4	21.5	49.1	8.12	7.65	7.15	40.03	40.51005	0.00 NORMAL
6/15/2022 14:35	11.42	0.31	65.31	921.3	1069.0	7.04		54.4	21.5	49.1	8.12	7.66	7.15	40.03	40.51044	0.00 NORMAL
6/15/2022 14:36	11.24	0.46	65.07	921.4	1071.1	7.04		54.4	21.5	49.1	8.11	7.66	7.15	40.03	40.51266	0.00 NORMAL
6/15/2022 14:37	11.35	0.12	74.80	921.5	1072.4	7.04	32.8	54.4	21.6	49.1	8.10	7.66	7.15	40.03	40.51522	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP	OpMode
6/15/2022 14:38	11.33	0.21	65.50	921.6	1072.8	7.04	32.8	54.4	21.6	49.1	8.10	7.67	7.15	40.03	40.51539	0.00	NORMAL
6/15/2022 14:39	11.28	1.98	58.90	921.7	1074.2	7.04	32.8	54.4	21.6	49.1	8.11	7.65	7.15	40.03	40.51867	0.00	NORMAL
6/15/2022 14:40	11.29	1.08	78.50	921.7	1073.7	7.04	32.8	54.4	21.7	49.0	8.11	7.65	7.15	40.03	40.52105	0.00	NORMAL
6/15/2022 14:41	11.40	0.11	70.75	921.8	1072.3	7.04	32.7	54.4	21.7	49.0	8.11	7.64	7.15	40.03	40.52344	0.00	NORMAL
6/15/2022 14:42	11.56	0.00	67.40	921.8	1072.0	7.04	32.7	54.4	21.7	49.0	8.11	7.64	7.15	40.03	40.52739	0.00	NORMAL
6/15/2022 14:43	11.44	0.43	71.97	921.8	1071.4	7.04	32.7	54.4	21.8	49.0	8.09	7.65	7.15	40.03	40.52966	0.00	NORMAL
6/15/2022 14:44	11.56	0.12	71.78	921.8	1070.1	7.04	32.7	54.4	21.8	49.0	8.08	7.66	7.15	40.03	40.53016	0.00	NORMAL
6/15/2022 14:45	11.62	1.79	62.37	921.8	1070.2	7.04	32.6	54.4	21.8	49.0	8.07	7.66	7.15	40.03	40.53177	0.00	NORMAL
6/15/2022 14:46	11.62	0.48	76.91	921.8	1070.0	7.04	32.6	54.4	21.8	49.0	8.06	7.66	7.15	40.03	40.53278	0.00	NORMAL
6/15/2022 14:47	11.62	0.00	69.65	921.8	1069.1	7.04	32.6	54.4	21.8	49.0	8.06	7.66	7.15	40.03	40.53272	0.00	NORMAL
6/15/2022 14:48	11.54	0.00	67.36	921.9	1068.6	7.04	32.6	54.4	21.9	49.0	8.06	7.66	7.15	40.03	40.53405	0.00	NORMAL
6/15/2022 14:49	11.73	0.24	82.66	921.9	1067.2	7.04	32.5	54.5	21.9	49.0	8.06	7.65	7.15	40.03	40.53405	0.00	NORMAL
6/15/2022 14:50	11.69	0.00	73.77	921.9	1065.3	7.04	32.5	54.5	21.9	49.0	8.07	7.64	7.15	40.03	40.53567	0.00	NORMAL
6/15/2022 14:51	11.79	1.32	65.69	921.9	1064.7	7.04	32.5	54.5	22.0	49.0	8.07	7.64	7.15	40.03	40.53783	0.00	NORMAL
6/15/2022 14:52	11.72	0.80	80.16	921.9	1064.2	7.04	32.5	54.5	22.0	49.0	8.06	7.63	7.15	40.03	40.5395	0.00	NORMAL
6/15/2022 14:53	11.50	0.39	69.45	921.9	1065.4	7.04	32.5	54.5	22.0	49.0	8.05	7.63	7.15	40.03	40.541	0.00	NORMAL
6/15/2022 14:54	11.47	0.77	72.19	921.9	1067.3	7.04	32.4	54.4	22.0	49.0	8.04	7.64	7.15	40.02	40.54228	0.00	NORMAL
6/15/2022 14:55	11.57	0.13	89.68	921.9	1067.8	7.04	32.4	54.4	22.0	49.0	8.04	7.65	7.15	40.02	40.54533	0.00	NORMAL
6/15/2022 14:56	11.47	0.21	80.16	921.9	1068.8	7.04	32.4	54.4	22.1	49.0	8.03	7.65	7.15	40.02	40.547	0.00	NORMAL
6/15/2022 14:57	11.24	2.25	62.86	921.9	1071.3	7.04	32.4	54.4	22.1	49.0	8.03	7.65	7.15	40.02	40.54883	0.00	NORMAL
6/15/2022 14:58	11.27	1.75	84.52	922.0	1071.0	7.04	32.3	54.4	22.1	49.0	8.03	7.65	7.15	40.02	40.54811	0.00	NORMAL
Average	11.89	6.22	65.37	962.53	1083.90	6.90	32.73	54.44	21.71	48.40	8.02	7.61	7.19	39.88	40.32	0.00	
Min	10.60	0.00	0.00	920.72	1059.62	6.76	32.06	54.40	20.78	47.66	7.87	7.46	7.15	39.78	40.06	0.00	
Max	15.01	932.54	116.23	1024.30	1124.58	7.04	33.64	54.51	22.36	49.08	8.19	7.68	7.27	40.03	40.55	0.00	Normal(on)

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP	OpMode
6/16/2022 8:58	11.69	1.81	60.30	835.5	1067.4	7.23	30.4	54.6	24.2	49.0	8.12	7.28	7.13	39.64	40.74399		NORMAL
6/16/2022 8:59	11.71	2.27	95.27	835.9	1065.3	7.24	30.5	54.6	24.1	49.1	8.14	7.29	7.13	39.64	40.74005		NORMAL
6/16/2022 9:00 6/16/2022 9:01	11.58 11.47	1.63 1.39	57.33 75.83	836.3 836.8	1068.1 1067.0	7.24 7.25	30.5 30.6	54.6 54.6	24.1 24.0	49.1 49.2	8.16 8.17	7.29 7.30	7.13 7.14	39.64 39.64	40.73349 40.72932		NORMAL NORMAL
6/16/2022 9:02	11.53	1.23	68.72	837.2	1070.6	7.25	30.7	54.6	23.9	49.2	8.19	7.30	7.14	39.64	40.72693		NORMAL
6/16/2022 9:03	11.17	0.90	84.76	837.7	1068.7	7.26	30.8	54.6	23.8	49.2	8.20	7.30	7.14	39.64	40.72004		NORMAL
6/16/2022 9:04	11.47	1.73	68.56	838.1	1071.2	7.26	30.9	54.6	23.7	49.3	8.21	7.30	7.14	39.65	40.7146		NORMAL
6/16/2022 9:05	10.93	0.65	72.07	838.5	1070.1	7.27	31.0	54.6	23.6	49.3	8.21	7.30	7.14	39.65	40.70727		NORMAL
6/16/2022 9:06 6/16/2022 9:07	11.45 10.95	0.59 0.73	77.47 66.00	838.9 839.3	1070.6 1071.2	7.28 7.28	31.1 31.2	54.5 54.5	23.5 23.4	49.4 49.4	8.22 8.22	7.30 7.30	7.13 7.13	39.65 39.65	40.70199 40.6936		NORMAL NORMAL
6/16/2022 9:08	11.35	0.61	93.71	839.6	1071.7	7.29	31.2	54.5	23.3	49.4	8.22	7.30	7.13	39.65	40.68821		NORMAL
6/16/2022 9:09	10.98	0.81	58.14	839.8	1072.5	7.29	31.3	54.6	23.2	49.5	8.22	7.30	7.13	39.65	40.68227	0.00	NORMAL
6/16/2022 9:10	11.20	1.27	75.39	840.0	1070.6	7.30	31.4	54.6	23.1	49.5	8.23	7.30	7.13	39.65	40.66965		NORMAL
6/16/2022 9:11 6/16/2022 9:12	11.16 11.07	1.45 0.55	56.97 80.68	840.2 840.3	1072.7 1070.3	7.30 7.31	31.5 31.6	54.6 54.6	23.0 22.9	49.6 49.6	8.23 8.23	7.29 7.28	7.14 7.13	39.65	40.65993 40.64821		NORMAL NORMAL
6/16/2022 9:13	11.07	1.42	64.10	840.5	1070.3	7.31	31.7	54.5	22.9	49.6	8.23	7.28	7.13	39.65 39.65	40.64821		NORMAL
6/16/2022 9:14	11.34	0.57	59.55	840.8	1069.8	7.32	31.8	54.5	22.7	49.7	8.20	7.27	7.13	39.65	40.63115		NORMAL
6/16/2022 9:15	11.82	1.46	73.27	841.0	1069.4	7.33	31.9	54.5	22.6	49.7	8.18	7.26	7.13	39.65	40.62215	0.00	NORMAL
6/16/2022 9:16	11.25	0.80	59.58	841.3	1068.9	7.33	32.0	54.5	22.4	49.8	8.16	7.27	7.14	39.65	40.61021		NORMAL
6/16/2022 9:17 6/16/2022 9:18	11.93 11.64	2.45 3.06	88.91 53.44	841.6 841.9	1067.1 1068.8	7.34 7.35	32.1 32.2	54.5 54.4	22.3 22.2	49.8 49.9	8.15 8.16	7.28 7.29	7.13 7.13	39.65 39.65	40.60343 40.5947		NORMAL NORMAL
6/16/2022 9:19	11.38	0.70	78.94	842.3	1068.8	7.35	32.3	54.4	22.2	49.9	8.17	7.29	7.13	39.65	40.58643		NORMAL
6/16/2022 9:20	11.60	0.99	77.86	842.7	1070.6	7.36	32.4	54.5	22.0	50.0	8.17	7.30	7.13	39.65	40.5811		NORMAL
6/16/2022 9:21	11.12	0.72	64.98	843.1	1071.0	7.37	32.6	54.5	21.9	50.0	8.18	7.30	7.13	39.66	40.57354		NORMAL
6/16/2022 9:22	11.48	0.77	76.66	843.6	1072.3	7.37	32.7	54.5	21.8	50.0	8.18	7.30	7.13	39.66	40.5686		NORMAL
6/16/2022 9:23 6/16/2022 9:24	10.85 11.27	0.46 0.49	71.05 92.54	844.0 844.4	1072.4 1070.9	7.38 7.39	32.8 32.9	54.5 54.5	21.8 21.7	50.1 50.1	8.19 8.19	7.30 7.30	7.13 7.14	39.66 39.66	40.55854 40.54871		NORMAL NORMAL
6/16/2022 9:25	11.32	1.95	53.77	844.8	1071.9	7.39	33.0	54.6	21.6	50.2	8.19	7.30	7.13	39.66	40.53988		NORMAL
6/16/2022 9:26	11.11	0.29	82.44	845.2	1071.2	7.40	33.1	54.6	21.5	50.2	8.19	7.30	7.13	39.66	40.5286	0.00	NORMAL
6/16/2022 9:27	11.66	0.51	93.88	845.6	1071.1	7.41	33.2	54.5	21.3	50.3	8.20	7.30	7.13	39.66	40.5201		NORMAL
6/16/2022 9:28 6/16/2022 9:29	11.11 11.63	0.72 1.58	62.10 82.52	846.0 846.4	1071.4 1071.2	7.41 7.42	33.3 33.4	54.5 54.5	21.2	50.3 50.4	8.20 8.20	7.30 7.30	7.13 7.13	39.66 39.66	40.51037 40.50326		NORMAL NORMAL
6/16/2022 9:30	11.03	0.75	62.48	846.8	1071.2	7.42	33.5	54.5	20.9	50.4	8.20	7.30	7.13	39.66	40.30326		NORMAL
6/16/2022 9:31	11.42	0.71	96.53	847.3	1069.8	7.43	33.6	54.4	20.8	50.5	8.19	7.30	7.13	39.66	40.48854		NORMAL
6/16/2022 9:32	11.44	1.27	66.29	847.7	1072.1	7.44	33.7	54.4	20.7	50.5	8.19	7.30	7.13	39.66	40.48016		NORMAL
6/16/2022 9:33	11.18	0.43	78.11	848.2	1070.4	7.45	33.9	54.4	20.6	50.6	8.20	7.31	7.13	39.66	40.47043		NORMAL
6/16/2022 9:34 6/16/2022 9:35	11.62 11.29	0.92 0.21	77.81 99.52	848.7 849.2	1072.2 1070.7	7.45 7.46	34.0 34.1	54.5 54.5	20.5 20.4	50.6 50.7	8.21 8.23	7.32 7.33	7.13 7.13	39.66 39.66	40.46393 40.45799		NORMAL NORMAL
6/16/2022 9:36	11.79	1.30	85.96	849.7	1070.3	7.40	34.2	54.5	20.3	50.7	8.25	7.34	7.13	39.66	40.45243		NORMAL
6/16/2022 9:37	11.45	1.04	51.53	850.2	1069.5	7.47	34.3	54.5	20.3	50.8	8.26	7.34	7.13	39.66	40.44488		NORMAL
6/16/2022 9:38	11.85	1.92	78.10	850.7	1068.2	7.48	34.4	54.6	20.2	50.8	8.27	7.34	7.13	39.66	40.43893		NORMAL
6/16/2022 9:39	11.55	0.54	68.50	851.2	1069.0	7.49	34.5	54.6	20.1	50.9	8.28	7.34	7.13	39.66	40.43277		NORMAL
6/16/2022 9:40 6/16/2022 9:41	11.78 11.62	0.83 0.76	87.75 68.22	851.7 852.3	1067.5 1069.6	7.49 7.50	34.6 34.7	54.6 54.5	20.0 19.9	50.9 51.0	8.29 8.29	7.35 7.35	7.13 7.13	39.67 39.67	40.42755 40.42188		NORMAL NORMAL
6/16/2022 9:42	11.54	0.74	84.12	852.8	1067.5	7.50	34.8	54.5	19.8	51.0	8.29	7.35	7.13	39.67	40.41527		NORMAL
6/16/2022 9:43	11.84	4.08	56.64	853.4	1068.4	7.51	34.8	54.5	19.7	51.1	8.30	7.35	7.13	39.67	40.40905	0.00	NORMAL
6/16/2022 9:44	11.43	0.59	68.47	853.9	1066.6	7.52	34.9	54.5	19.6	51.1	8.30	7.35	7.13	39.67	40.39988		NORMAL
6/16/2022 9:45 6/16/2022 9:46	11.99 11.41	2.55 0.67	91.86 68.31	854.5 855.0	1066.9 1066.7	7.52 7.53	35.0 35.1	54.5 54.5	19.5 19.4	51.2 51.2	8.30 8.30	7.35 7.35	7.13 7.13	39.67 39.67	40.39349 40.38699		NORMAL NORMAL
6/16/2022 9:47	12.00	3.61	105.64	855.6	1066.1	7.53	35.2	54.5	19.4	51.3	8.30	7.36	7.13	39.68	40.38099		NORMAL
6/16/2022 9:48	11.43	0.78	84.57	856.1	1067.5	7.54	35.3	54.5	19.2	51.3	8.30	7.37	7.13	39.67	40.37532		NORMAL
6/16/2022 9:49	11.70	0.69	130.47	856.7	1065.8	7.55	35.4	54.5	19.1	51.4	8.31	7.37	7.13	39.68	40.36838		NORMAL
6/16/2022 9:50	11.66	1.90 0.11	67.33 91.67	857.2 857.8	1068.1 1066.2	7.55 7.56	35.5 35.6	54.5 54.5	19.0 18.9	51.4 51.4	8.32	7.37	7.13 7.13	39.68	40.36216 40.35682		NORMAL NORMAL
6/16/2022 9:51 6/16/2022 9:52	11.46 11.74	40.32		857.8 858.4	1068.9	7.56	35.6	54.5	18.9	51.4	8.32 8.32	7.37 7.37	7.13	39.68 39.68	40.35682		NORMAL
6/16/2022 9:53	11.27	89.08	84.99	859.0	1066.9	7.57	35.8	54.5	18.7	51.5	8.32	7.37	7.13	39.68	40.34748		NORMAL
6/16/2022 9:54	11.82	2.07	83.15	859.5	1068.2	7.57	35.9	54.5	18.6	51.6	8.32	7.37	7.13	39.68	40.34337		NORMAL
6/16/2022 9:55	11.23	0.46	70.86	860.1	1068.0	7.58	36.0	54.5	18.5	51.6	8.31	7.37	7.13	39.68	40.33821		NORMAL
6/16/2022 9:56 6/16/2022 9:57	11.65 11.25	1.26 0.61	107.84 79.15	860.8 861.4	1067.9 1068.8	7.58 7.59	36.1 36.1	54.5 54.5	18.4 18.4	51.7 51.7	8.31 8.30	7.37 7.37	7.13 7.13	39.68 39.68	40.33288 40.32671		NORMAL NORMAL
6/16/2022 9:58	11.53	0.01	91.09	862.0	1068.4	7.60	36.2	54.5	18.3	51.7	8.30	7.37	7.13	39.68	40.32371		NORMAL
6/16/2022 9:59	11.40	0.00	93.90	862.7	1070.6	7.60	36.3	54.5	18.2	51.8	8.30	7.36	7.13	39.69	40.31915	0.00	NORMAL
6/16/2022 10:00	11.43	1.00	103.36	863.3	1068.2	7.61	36.4	54.5	18.1	51.9	8.29	7.36	7.13	39.69	40.3151		NORMAL
6/16/2022 10:01 6/16/2022 10:02	11.62 11.22	2.90 0.68	59.28 83.82	863.7 864.1	1070.5 1069.8	7.61 7.62	36.5 36.6	54.5 54.5	18.0 18.0	51.9 52.0	8.29 8.29	7.36 7.38	7.13 7.13	39.69 39.69	40.31182 40.30849		NORMAL NORMAL
6/16/2022 10:02	11.79	0.50	119.15	864.1	1069.8	7.62	36.6	54.5	17.9	52.0	8.29	7.38	7.13	39.69	40.30849		NORMAL
6/16/2022 10:04	11.36	0.27	84.54	864.4	1070.0	7.63	36.7	54.5	17.8	52.1	8.29	7.40	7.13	39.69	40.29882		NORMAL
6/16/2022 10:05	11.90	0.69	112.99	864.5	1070.0	7.63	36.8	54.5	17.7	52.1	8.31	7.41	7.13	39.69	40.29343		NORMAL
6/16/2022 10:06	11.40	0.90	67.96	864.5	1070.4	7.64	36.9	54.5	17.7	52.1	8.33	7.41	7.13	39.69	40.28799		NORMAL
6/16/2022 10:07 6/16/2022 10:08	11.75 11.82	1.19 0.71	91.74 81.86	864.5 864.4	1068.2 1070.1	7.64 7.65	36.9 37.0	54.5 54.5	17.6 17.5	52.2 52.2	8.34 8.36	7.42 7.42	7.13 7.13	39.69 39.69	40.28243 40.2771		NORMAL NORMAL
6/16/2022 10:09	11.56	0.63	88.84	864.3	1070.1	7.65	37.1	54.5	17.4	52.3	8.37	7.42	7.13	39.69	40.2771		NORMAL
6/16/2022 10:10	12.19	3.79		864.1	1069.0	7.66	37.1	54.5	17.3	52.3	8.38	7.42	7.13	39.69	40.27115		NORMAL

Waste Fe	eed Data				
Time	Anatomical	Cytotoxic	Rx	Contract	Total Kg
8:00	116.3	247.7	141.5		505.5
9:00	116.1	247.3	141.3		504.6
10:00	118.1	251.6	143.8		513.5
11:00	115.0	245.1	140.1		500.2
12:00	115.6	246.4	140.8		502.8
13:00	127.3	271.3	155.0		553.6
14:00	116.8	248.9	142.2		508
15:00	115.1	245.2	140.1		500.5
16:00	116.8	248.9	142.2		508
Totals	1057.2	2252.4	1287.1	0.0	4596.7

24 hour total Kg 6086.9

TheDate 6/16/2022 10:11 6/16/2022 10:12 6/16/2022 10:13 6/16/2022 10:14 6/16/2022 10:15 6/16/2022 10:16 6/16/2022 10:17 6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20	OX6min 11.56 12.26 11.66 12.02 11.86	COmin 0.90 1.46 0.98	NOXmin 68.32 107.31	PrimTemp 863.9 863.7	SecTemp 1068.4	SNCR 7.66	DemTemp 37.2	CarbTemp 54.5	DiffTemp 17.3	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	40.26659	HEPADP OpMode
6/16/2022 10:13 6/16/2022 10:14 6/16/2022 10:15 6/16/2022 10:16 6/16/2022 10:17 6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20	11.66 12.02		107.31	863.7				34.3	17.5	52.4	8.39	7.42	7.13	39.69	40.20039	0.00 NORMAL
6/16/2022 10:14 6/16/2022 10:15 6/16/2022 10:16 6/16/2022 10:17 6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20	12.02	0.98		003.7	1068.1	7.66	37.3	54.5	17.2	52.4	8.39	7.43	7.13	39.69	40.26093	0.00 NORMAL
6/16/2022 10:15 6/16/2022 10:16 6/16/2022 10:17 6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20			67.13	863.5	1068.4	7.67	37.3	54.5	17.2	52.4	8.40	7.43	7.13	39.69	40.25676	0.00 NORMAL
6/16/2022 10:16 6/16/2022 10:17 6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20	11.86	1.94	85.83	863.3	1067.4	7.67	37.4	54.5	17.1	52.5	8.40	7.43	7.13	39.69	40.24959	0.00 NORMAL
6/16/2022 10:17 6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20	11.60	1.43 0.67	67.59 97.33	863.2 863.1	1070.0 1068.3	7.68 7.68	37.5 37.5	54.5 54.6	17.1 17.0	52.5 52.6	8.40 8.41	7.43 7.43	7.13 7.13	39.69	40.24465	0.00 NORMAL 0.00 NORMAL
6/16/2022 10:18 6/16/2022 10:19 6/16/2022 10:20	12.05	1.44	81.12	862.9	1008.3	7.69	37.5	54.6	17.0	52.6	8.41	7.43	7.13	39.69 39.69	40.23948 40.23542	0.00 NORMAL
6/16/2022 10:19 6/16/2022 10:20	11.49	0.10	78.61	862.7	1068.8	7.69	37.6	54.6	16.9	52.6	8.41	7.44	7.13	39.69	40.23264	0.00 NORMAL
	12.25	2.70	83.72	862.5	1067.1	7.70	37.7	54.5	16.8	52.7	8.41	7.46	7.13	39.69	40.22981	0.00 NORMAL
c / + c / c ·	11.83	1.26	56.31	862.3	1066.3	7.70	37.7	54.5	16.8	52.7	8.41	7.47	7.13	39.69	40.2247	0.00 NORMAL
6/16/2022 10:21	12.16	0.47	88.04	862.0	1065.7	7.70	37.8	54.5	16.7	52.8	8.41	7.48	7.13	39.70	40.22121	0.00 NORMAL
6/16/2022 10:22	12.36	3.36	77.55	861.8	1063.5	7.71	37.8	54.5	16.6	52.8	8.41	7.48	7.13	39.70	40.21887	0.00 NORMAL
6/16/2022 10:23	11.89	0.90	48.65	861.5	1064.1	7.71	37.9	54.5	16.6	52.8	8.41	7.48	7.13	39.70	40.2142	0.00 NORMAL
6/16/2022 10:24	12.50	3.03	74.14	861.2	1064.8	7.72	37.9	54.5	16.5	52.9	8.41	7.49	7.13	39.70	40.20843	0.00 NORMAL
6/16/2022 10:25 6/16/2022 10:26	11.91 11.93	2.24 0.69	48.96 67.48	861.0 860.7	1064.4 1065.2	7.72 7.72	38.0 38.1	54.5 54.5	16.5 16.5	52.9 52.9	8.41 8.41	7.49 7.49	7.13 7.13	39.70 39.70	40.20343 40.19882	0.00 NORMAL 0.00 NORMAL
6/16/2022 10:27	12.20	5.37	77.52	860.4	1064.9	7.72	38.1	54.6	16.4	53.0	8.41	7.49	7.13	39.70	40.19587	0.00 NORMAL
6/16/2022 10:28	11.65	1.18	44.65	860.0	1064.8	7.73	38.2	54.6	16.4	53.0	8.41	7.49	7.13	39.70	40.19215	0.00 NORMAL
6/16/2022 10:29	12.31	3.61	70.40	859.7	1065.3	7.73	38.2	54.6	16.4	53.0	8.41	7.49	7.13	39.70	40.18832	0.00 NORMAL
6/16/2022 10:30	11.70	2.81	55.52	859.4	1065.6	7.74	38.3	54.6	16.3	53.1	8.42	7.49	7.13	39.70	40.18521	0.00 NORMAL
6/16/2022 10:31	11.97	1.98	74.95	859.2	1065.2	7.74	38.3	54.5	16.2	53.1	8.42	7.49	7.13	39.70	40.18026	0.00 NORMAL
6/16/2022 10:32	11.87	4.92	56.93	858.9	1068.6	7.75	38.4	54.5	16.2	53.1	8.42	7.49	7.13	39.70	40.17493	0.00 NORMAL
6/16/2022 10:33	11.54	2.14	89.10	858.5	1066.6	7.75	38.4	54.5	16.1	53.2	8.42	7.49	7.13	39.71	40.17237	0.00 NORMAL
6/16/2022 10:34	12.02	8.89	59.99	858.2	1067.7	7.75	38.5	54.5	16.0	53.2	8.42	7.49	7.13	39.71	40.16887	0.00 NORMAL
6/16/2022 10:35	11.41	0.83	59.18	858.0	1068.1	7.76	38.5	54.5	16.0	53.2	8.42	7.49	7.13	39.71	40.16443	0.00 NORMAL
6/16/2022 10:36	11.76	1.35	81.36	857.7 857.5	1066.9	7.76 7.76	38.6 38.6	54.5	15.9	53.3 53.3	8.42 8.42	7.49 7.50	7.13	39.71	40.1591	0.00 NORMAL 0.00 NORMAL
6/16/2022 10:37 6/16/2022 10:38	11.46 11.48	0.38	62.34 69.50	857.5 857.2	1067.2 1069.7	7.76	38.6	54.5 54.5	15.9 15.9	53.3	8.42	7.50	7.13 7.13	39.71 39.71	40.15537 40.15193	0.00 NORMAL
6/16/2022 10:39	11.79	1.29	83.86	856.9	1067.9	7.77	38.7	54.6	15.8	53.4	8.45	7.52	7.13	39.71	40.14726	0.00 NORMAL
6/16/2022 10:40	11.50	2.14	60.84	856.6	1067.3	7.77	38.7	54.6	15.8	53.4	8.46	7.53	7.14	39.71	40.14432	0.00 NORMAL
6/16/2022 10:41	11.71	0.73	73.83	856.3	1069.5	7.78	38.8	54.6	15.8	53.4	8.47	7.53	7.14	39.71	40.13671	0.00 NORMAL
6/16/2022 10:42	11.90	2.98	83.80	856.0	1065.1	7.78	38.8	54.6	15.7	53.4	8.47	7.53	7.13	39.71	40.13143	0.00 NORMAL
6/16/2022 10:43	11.79	1.08	63.65	855.7	1065.2	7.78	38.9	54.5	15.7	53.5	8.46	7.53	7.13	39.71	40.12482	0.00 NORMAL
6/16/2022 10:44	12.02	0.11	95.44	855.5	1067.6	7.79	38.9	54.5	15.6	53.5	8.45	7.52	7.13	39.71	40.12009	0.00 NORMAL
6/16/2022 10:45	11.98	1.65	94.88	855.2	1064.3	7.79	39.0	54.5	15.5	53.5	8.44	7.52	7.13	39.71	40.11432	0.00 NORMAL
6/16/2022 10:46	11.72	0.70	64.24	854.9	1065.7	7.79	39.0	54.5	15.5	53.6	8.42	7.52	7.13	39.71	40.10682	0.00 NORMAL
6/16/2022 10:47 6/16/2022 10:48	12.04 11.82	0.13 2.15	108.24 73.53	854.7 854.5	1067.2 1064.5	7.80 7.80	39.1 39.1	54.5 54.5	15.4 15.4	53.6 53.6	8.41 8.40	7.52 7.53	7.13 7.14	39.71 39.70	40.10199 40.09848	0.00 NORMAL 0.00 NORMAL
6/16/2022 10:49	11.82	0.09	52.44	854.2	1065.9	7.80	39.2	54.5	15.4	53.7	8.40	7.54	7.13	39.70	40.09487	0.00 NORMAL
6/16/2022 10:50	12.04	3.01	74.03	854.0	1066.2	7.80	39.2	54.5	15.3	53.7	8.42	7.55	7.13	39.70	40.09148	0.00 NORMAL
6/16/2022 10:51	11.72	1.42	70.25	853.8	1064.7	7.81	39.2	54.5	15.3	53.7	8.43	7.56	7.13	39.70	40.08915	0.00 NORMAL
6/16/2022 10:52	12.05	0.64	65.93	853.6	1066.0	7.81	39.3	54.5	15.3	53.7	8.44	7.56	7.13	39.70	40.08382	0.00 NORMAL
6/16/2022 10:53	12.20	7.28	73.43	853.4	1064.3	7.81	39.3	54.6	15.2	53.8	8.45	7.56	7.13	39.70	40.07832	0.00 NORMAL
6/16/2022 10:54	11.65	1.02	77.07	853.3	1064.6	7.82	39.3	54.5	15.2	53.8	8.46	7.56	7.13	39.70	40.07449	0.00 NORMAL
6/16/2022 10:55	12.22	0.92	106.86	853.1	1065.4	7.82	39.4	54.5	15.1	53.8	8.47	7.56	7.13	39.70	40.07198	0.00 NORMAL
6/16/2022 10:56	11.97	3.91	57.20	852.9	1064.7	7.82 7.83	39.4 39.4	54.5 54.5	15.1	53.8 53.9	8.47 8.47	7.56 7.56	7.13 7.13	39.70	40.06737	0.00 NORMAL
6/16/2022 10:57 6/16/2022 10:58	11.63 11.99	1.42 2.51	45.54 81.04	852.8 852.6	1066.1 1066.4	7.83	39.4	54.5	15.1 15.0	53.9	8.47	7.56	7.13	39.70 39.70	40.06409 40.06104	0.00 NORMAL 0.00 NORMAL
6/16/2022 10:59	11.32	1.11	73.76	852.4	1066.4	7.83	39.5	54.5	15.0	53.9	8.48	7.56	7.13	39.70	40.05104	0.00 NORMAL
6/16/2022 11:00	11.68	0.31	98.27	852.2	1068.3	7.83	39.5	54.5	15.0	53.9	8.48	7.56	7.13	39.70	40.05565	0.00 NORMAL
6/16/2022 11:01	11.68	1.98	73.16	852.1	1065.6	7.83	39.5	54.5	15.0	53.9	8.48	7.56	7.13	39.70	40.05404	0.00 NORMAL
6/16/2022 11:02	11.35	1.65	56.07	851.9	1065.6	7.84	39.6	54.5	15.0	54.0	8.48	7.57	7.13	39.70	40.04832	0.00 NORMAL
6/16/2022 11:03	11.69	0.87	86.90	851.8	1068.0	7.84	39.6	54.5	14.9	54.0	8.48	7.59	7.13	39.70	40.04576	0.00 NORMAL
6/16/2022 11:04	11.75	3.80	80.87	851.6	1063.5	7.84	39.6	54.5	14.9	54.0	8.50	7.60	7.13	39.70	40.04371	0.00 NORMAL
6/16/2022 11:05	11.72	1.91	48.46	851.4	1064.6	7.84	39.7	54.6	14.9	54.0	8.52	7.61	7.13	39.70	40.03921	0.00 NORMAL
6/16/2022 11:06	11.85	0.46	76.77	851.3	1067.2	7.84	39.7	54.5	14.9	54.1	8.52	7.61	7.13	39.70	40.03493	0.00 NORMAL
6/16/2022 11:07	11.84	1.17 0.61	81.81 50.81	851.2	1063.8	7.85	39.7 39.7	54.5	14.8	54.1 54.1	8.52	7.61 7.61	7.13	39.70	40.03038	0.00 NORMAL
6/16/2022 11:08 6/16/2022 11:09	11.84 12.21	3.04	66.63	851.1 851.0	1065.5 1066.0	7.85 7.85	39.7	54.5 54.5	14.8 14.7	54.1	8.51 8.51	7.61	7.14 7.13	39.70 39.70	40.02782 40.02282	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:09	11.99	4.89	55.12	851.0	1062.5	7.85	39.8	54.5	14.7	54.1	8.50	7.61	7.13	39.70	40.02282	0.00 NORMAL
6/16/2022 11:11	11.94	0.80	52.06	851.0	1064.4	7.85	39.8	54.5	14.7	54.1	8.50	7.61	7.13	39.69	40.01566	0.00 NORMAL
6/16/2022 11:12	12.22	3.41	74.96	850.9	1063.6	7.85	39.8	54.5	14.7	54.2	8.49	7.61	7.13	39.69	40.01288	0.00 NORMAL
6/16/2022 11:13	11.94	3.84	53.23	850.9	1061.4	7.86	39.8	54.5	14.7	54.2	8.49	7.61	7.13	39.69	40.01227	0.00 NORMAL
6/16/2022 11:14	12.16	0.49	69.64	850.8	1064.2	7.86	39.9	54.5	14.7	54.2	8.49	7.61	7.13	39.69	40.00782	0.00 NORMAL
6/16/2022 11:15	12.16	6.49	69.42	850.8	1063.2	7.86	39.9	54.6	14.7	54.2	8.49	7.61	7.13	39.69	40.00788	0.00 NORMAL
6/16/2022 11:16	11.72	2.96	45.29	850.8	1063.1	7.86	39.9	54.6	14.7	54.2	8.49	7.61	7.13	39.69	40.00655	0.00 NORMAL
6/16/2022 11:17	12.13	1.02	62.07	850.7	1065.4	7.86	39.9	54.6	14.7	54.3	8.48	7.62	7.13	39.69	40.00632	0.00 NORMAL
6/16/2022 11:18	11.99	2.66	64.01	850.6	1061.2	7.87	39.9	54.6	14.6	54.3	8.48	7.63	7.13	39.69	40.00466	0.00 NORMAL
6/16/2022 11:19	12.31	5.36	60.28	850.6	1053.8	7.87	39.9	54.6	14.6	54.3	8.49	7.64	7.13	39.69	40.00249	0.00 NORMAL
6/16/2022 11:20 6/16/2022 11:21	12.37 11.66	4.91 0.36	45.10 51.60	850.6 850.6	1054.8 1054.8	7.87 7.87	40.0 40.0	54.5 54.5	14.6 14.5	54.3 54.3	8.51 8.53	7.65 7.66	7.13 7.13	39.69 39.68	40.00066 39.99805	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:21	12.30	5.01	69.34	850.6	1054.8	7.87	40.0	54.5	14.5	54.3	8.53	7.66	7.13	39.68	39.99672	0.00 NORMAL
6/16/2022 11:23	12.52	8.82	55.04	850.7	1032.2	7.87	40.0	54.5	14.5	54.3	8.52	7.65	7.13	39.68	39.99411	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/16/2022 11:24	12.51	8.05	61.01	850.9	1047.2	7.88	40.0	54.5	14.5	54.3	8.52	7.65	7.13	39.68	39.99306	0.00 NORMAL
6/16/2022 11:25	12.65	16.68	64.13	850.9	1036.3	7.88	40.0	54.5	14.5	54.3	8.51	7.65	7.13	39.68	39.99339	0.00 NORMAL
6/16/2022 11:26	13.19	21.54	67.38	851.1	1020.0	7.88	40.0	54.6	14.6	54.4	8.51	7.65	7.14	39.68	39.99478	0.00 NORMAL
6/16/2022 11:27 6/16/2022 11:28	13.63	20.81	50.91	851.2	1008.2	7.88	40.0	54.6	14.6	54.4	8.50	7.65 7.65	7.14	39.68	39.99461	0.00 NORMAL
6/16/2022 11:29	13.34 13.09	9.48 7.44	50.70 60.56	851.3 851.5	1000.7 996.9	7.88 7.88	40.0 40.0	54.6 54.6	14.6 14.6	54.4 54.4	8.50 8.50	7.65	7.13 7.13	39.68 39.68	39.99495 39.99528	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:30	12.99	9.63	62.48	851.7	996.3	7.88	40.0	54.6	14.6	54.4	8.49	7.65	7.13	39.68	39.99706	0.00 NORMAL
6/16/2022 11:31	12.76	9.46	65.88	851.8	997.6	7.89	40.0	54.6	14.6	54.4	8.49	7.65	7.13	39.68	40.00301	0.00 NORMAL
6/16/2022 11:32	12.47	16.96	57.98	852.0	998.8	7.89	39.9	54.5	14.6	54.4	8.49	7.65	7.13	39.68	40.01412	0.00 NORMAL
6/16/2022 11:33	12.03	6.64	42.72	852.2	1001.0	7.89	39.9	54.5	14.6	54.4	8.49	7.64	7.13	39.68	40.02806	0.00 NORMAL
6/16/2022 11:34	11.44	25.42	44.42	852.4	1004.0	7.89	39.9	54.5	14.6	54.4	8.49	7.66	7.13	39.68	40.03429	0.00 NORMAL
6/16/2022 11:35 6/16/2022 11:36	11.34 11.19	7.70 8.49	55.84 68.33	852.6 852.9	1006.9 1009.8	7.89 7.89	39.9 39.9	54.5 54.5	14.6 14.6	54.4 54.4	8.48 8.48	7.67 7.67	7.13 7.13	39.68 39.68	40.03634 40.04634	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:37	11.13	1.55	72.36	853.1	1012.6	7.89	39.8	54.5	14.7	54.4	8.48	7.67	7.13	39.68	40.05841	0.00 NORMAL
6/16/2022 11:38	10.63	1.95	57.02	853.3	1014.0	7.89	39.8	54.6	14.8	54.4	8.48	7.67	7.13	39.68	40.07135	0.00 NORMAL
6/16/2022 11:39	10.76	0.87	50.08	853.6	1014.0	7.89	39.8	54.6	14.8	54.4	8.50	7.68	7.13	39.68	40.08118	0.00 NORMAL
6/16/2022 11:40	11.07	0.67	47.25	853.9	1013.8	7.90	39.7	54.6	14.9	54.4	8.51	7.68	7.13	39.68	40.08857	0.00 NORMAL
6/16/2022 11:41	10.96	1.16	43.11	854.2	1014.2	7.90	39.7	54.6	14.9	54.4	8.51	7.68	7.13	39.68	40.09819	0.00 NORMAL
6/16/2022 11:42	10.71	1.92	38.30	854.5	1016.2	7.90	39.6	54.6	15.0	54.4	8.51	7.68 7.67	7.13	39.68	40.10413	0.00 NORMAL
6/16/2022 11:43 6/16/2022 11:44	10.44 10.82	24.59 5.45	47.29 51.87	854.9 855.2	1018.2 1019.1	7.90 7.90	39.6 39.6	54.6 54.6	15.0 15.0	54.4 54.4	8.50 8.50	7.67	7.13 7.13	39.68 39.68	40.10913 40.1148	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:45	11.06	3.45	50.80	855.6	1013.1	7.90	39.5	54.6	15.0	54.3	8.49	7.67	7.13	39.68	40.1148	0.00 NORMAL
6/16/2022 11:46	11.51	8.21	51.19	856.0	1017.0	7.90	39.5	54.5	15.0	54.3	8.48	7.67	7.13	39.68	40.12286	0.00 NORMAL
6/16/2022 11:47	11.97	12.89	48.50	856.4	1012.7	7.90	39.5	54.5	15.0	54.3	8.48	7.67	7.13	39.68	40.1278	0.00 NORMAL
6/16/2022 11:48	12.11	6.44	39.84	856.8	1008.3	7.90	39.4	54.5	15.1	54.3	8.47	7.67	7.13	39.68	40.13124	0.00 NORMAL
6/16/2022 11:49	12.51	7.76	56.35	857.2	1004.1	7.90	39.4	54.5	15.1	54.3	8.47	7.67	7.13	39.68	40.13497	0.00 NORMAL
6/16/2022 11:50 6/16/2022 11:51	12.59 12.79	6.28 8.24	58.29 57.15	857.6 858.0	1000.2 996.6	7.90 7.90	39.4 39.3	54.5 54.5	15.1 15.2	54.3 54.3	8.47 8.47	7.67 7.67	7.13 7.13	39.68 39.68	40.13852 40.14396	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:51	12.79	13.51	51.01	858.4	990.6	7.90	39.3	54.6	15.2	54.3	8.47	7.67	7.13	39.68	40.14396	0.00 NORMAL
6/16/2022 11:53	12.79	20.38	43.91	858.8	988.0	7.90	39.3	54.6	15.3	54.2	8.47	7.67	7.13	39.68	40.15169	0.00 NORMAL
6/16/2022 11:54	13.14	22.59	43.54	859.3	983.5	7.90	39.3	54.6	15.4	54.2	8.47	7.68	7.13	39.68	40.15708	0.00 NORMAL
6/16/2022 11:55	12.66	9.14	39.15	859.7	987.1	7.90	39.2	54.6	15.4	54.2	8.47	7.68	7.13	39.68	40.16108	0.00 NORMAL
6/16/2022 11:56	11.56	2.67	26.60	860.2	1001.6	7.91	39.2	54.6	15.4	54.2	8.47	7.66	7.13	39.68	40.16469	0.00 NORMAL
6/16/2022 11:57	11.01 11.18	7.56	43.60 54.11	860.6 861.1	1018.2	7.91 7.91	39.2 39.2	54.6 54.6	15.4 15.4	54.2 54.2	8.47 8.47	7.65 7.64	7.13 7.13	39.67 39.67	40.16558 40.16758	0.00 NORMAL 0.00 NORMAL
6/16/2022 11:58 6/16/2022 11:59	10.58	2.50	35.68	861.6	1032.0 1050.8	7.91	39.2	54.5	15.4	54.2	8.45	7.63	7.13	39.67	40.16758	0.00 NORMAL
6/16/2022 12:00	9.95	0.17	57.59	862.1	1064.2	7.91	39.2	54.5	15.3	54.2	8.44	7.62	7.13	39.67	40.16863	0.00 NORMAL
6/16/2022 12:01	10.72	5.10	65.18	862.6	1062.8	7.91	39.2	54.5	15.3	54.1	8.42	7.62	7.13	39.67	40.17091	0.00 NORMAL
6/16/2022 12:02	11.48	1.79	33.89	863.1	1063.8	7.91	39.2	54.5	15.4	54.1	8.40	7.62	7.13	39.67	40.17207	0.00 NORMAL
6/16/2022 12:03	11.38	0.26	39.20	863.7	1070.7	7.91	39.2	54.5	15.4	54.1	8.39	7.61	7.13	39.67	40.17174	0.00 NORMAL
6/16/2022 12:04	11.41	5.59	59.68	864.2	1068.7	7.91	39.2	54.6	15.4	54.1	8.38	7.61	7.13	39.67	40.17241	0.00 NORMAL
6/16/2022 12:05 6/16/2022 12:06	11.36 11.58	1.99 0.38	34.56 50.93	864.7 865.2	1069.3 1074.3	7.91 7.91	39.2 39.2	54.6 54.6	15.5 15.5	54.1 54.1	8.37 8.37	7.61 7.63	7.12 7.12	39.67 39.67	40.1734 40.17546	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:07	11.75	10.36	67.54	865.7	1074.3	7.92	39.2	54.6	15.5	54.1	8.36	7.64	7.12	39.67	40.17802	0.00 NORMAL
6/16/2022 12:08	12.30	15.29	46.01	866.1	1057.7	7.92	39.1	54.6	15.5	54.1	8.36	7.65	7.13	39.67	40.18119	0.00 NORMAL
6/16/2022 12:09	12.91	10.19	43.19	866.5	1048.0	7.92	39.1	54.6	15.5	54.1	8.36	7.65	7.13	39.67	40.18713	0.00 NORMAL
6/16/2022 12:10	12.73	10.13	44.24	866.9	1032.5	7.92	39.1	54.6	15.5	54.1	8.36	7.65	7.13	39.67	40.19702	0.00 NORMAL
6/16/2022 12:11	13.22	18.49	38.27	867.3	1017.4	7.92	39.1	54.5	15.5	54.1	8.36	7.65	7.12	39.67	40.20407	0.00 NORMAL
6/16/2022 12:12	13.13	19.40 13.09	26.98 40.52	867.7 868.0	1009.2	7.92 7.92	39.0	54.5	15.5	54.0 54.0	8.36	7.65	7.12	39.67	40.21313	0.00 NORMAL
6/16/2022 12:13 6/16/2022 12:14	12.69 12.39	16.44	41.51	868.4	1004.2 1001.5	7.92	39.0 38.9	54.5 54.5	15.5 15.6	54.0	8.36 8.36	7.65 7.65	7.12 7.12	39.67 39.67	40.22135 40.22207	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:15	11.57	8.11	34.22	868.7	1001.1	7.92	38.9	54.6	15.7	54.0	8.36	7.66	7.12	39.67	40.23285	0.00 NORMAL
6/16/2022 12:16	10.57	7.15	42.90	869.1	1001.9	7.92	38.8	54.6	15.7	54.0	8.37	7.66	7.12	39.67	40.23907	0.00 NORMAL
6/16/2022 12:17	10.30	4.61	47.98	869.5	1006.7	7.92	38.8	54.6	15.8	54.0	8.36	7.65	7.12	39.67	40.24352	0.00 NORMAL
6/16/2022 12:18	9.76	1.25	33.49	869.8	1022.0	7.92	38.8	54.6	15.9	54.0	8.35	7.65	7.12	39.67	40.24868	0.00 NORMAL
6/16/2022 12:19 6/16/2022 12:20	9.12 9.13	0.34 1.64	45.92 57.17	870.2 870.5	1040.5 1053.6	7.92 7.92	38.7 38.7	54.6 54.6	15.9 15.9	54.0 53.9	8.33 8.32	7.64 7.64	7.12 7.12	39.67 39.67	40.25046 40.25252	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:20	9.13	3.63	51.94	870.5	1053.6	7.92	38.7	54.6	15.9	53.9	8.32	7.64	7.12	39.67	40.25252	0.00 NORMAL
6/16/2022 12:22	10.27	0.44	46.36	871.2	1003.9	7.92	38.7	54.6	15.9	53.9	8.30	7.63	7.12	39.67	40.25946	0.00 NORMAL
6/16/2022 12:23	10.70	2.49	66.18	871.5	1075.6	7.92	38.7	54.5	15.9	53.9	8.29	7.63	7.12	39.67	40.26179	0.00 NORMAL
6/16/2022 12:24	11.89	4.47	55.93	871.8	1066.0	7.92	38.6	54.5	15.9	53.9	8.29	7.63	7.12	39.67	40.26429	0.00 NORMAL
6/16/2022 12:25	12.67	8.29	50.69	872.1	1057.9	7.92	38.6	54.5	15.9	53.9	8.29	7.63	7.12	39.67	40.26923	0.00 NORMAL
6/16/2022 12:26	12.47	8.85	44.46	872.3	1047.3	7.93	38.6	54.5	15.9	53.8	8.29	7.63	7.12	39.67	40.27685	0.00 NORMAL
6/16/2022 12:27 6/16/2022 12:28	12.63 13.23	13.19 15.75	53.19 47.13	872.6 872.9	1030.4 1015.8	7.93 7.93	38.5 38.5	54.5 54.6	16.0 16.1	53.8 53.8	8.29 8.29	7.63 7.63	7.12 7.12	39.67 39.67	40.28724 40.29451	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:28	13.23	26.27	47.13	872.9	1015.8	7.93	38.5	54.6	16.1	53.8	8.29	7.63	7.12	39.67	40.29451	0.00 NORMAL
6/16/2022 12:30	13.45	69.97	49.74	873.4	991.4	7.93	38.4	54.6	16.2	53.8	8.29	7.63	7.12	39.67	40.30657	0.00 NORMAL
6/16/2022 12:31	13.20	49.44	38.21	873.7	982.4	7.93	38.4	54.7	16.3	53.8	8.29	7.65	7.12	39.67	40.31279	0.00 NORMAL
6/16/2022 12:32	12.49	83.27	36.51	874.0	978.6	7.93	38.3	54.7	16.3	53.7	8.30	7.65	7.12	39.67	40.3214	0.00 NORMAL
6/16/2022 12:33	11.60	540.20	51.87	874.3	978.7	7.93	38.3	54.7	16.4	53.7	8.30	7.63	7.12	39.67	40.32795	0.00 NORMAL
6/16/2022 12:34	11.04	28.58	39.78	874.6	989.0	7.93	38.2	54.6	16.4	53.7	8.29	7.62	7.12	39.67	40.33345	0.00 NORMAL
6/16/2022 12:35	10.30 9.54	1.55 0.45	32.37 38.31	874.9 875.2	1008.5 1030.7	7.93 7.93	38.2 38.2	54.6 54.6	16.4 16.4	53.7 53.7	8.27 8.26	7.61 7.62	7.12 7.12	39.67 39.67	40.33712 40.33834	0.00 NORMAL 0.00 NORMAL
0/10/2022 12:36	9.54	0.45	58.51	0/3.2	1030./	7.93	38.2	34.0	10.4	55./	8.20	7.62	7.12	39.07	40.53834	U.UU NUKIVIAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/16/2022 12:37	9.58	0.36	56.42	875.5	1050.5	7.93	38.2	54.6	16.4	53.6	8.25	7.62	7.12	39.67	40.34084	0.00 NORMAL
6/16/2022 12:38	10.31	0.31	54.16	875.8	1069.2	7.93	38.2	54.5	16.4	53.6	8.24	7.63	7.12	39.67	40.34245	0.00 NORMAL
6/16/2022 12:39	11.03	0.00	53.35	876.1	1079.1	7.93	38.2	54.6	16.4	53.6	8.24	7.63	7.12	39.67	40.34323	0.00 NORMAL
6/16/2022 12:40	11.53	0.62	48.64	876.3	1080.8	7.93	38.2	54.6	16.4	53.6	8.23	7.64 7.64	7.12	39.67	40.3434	0.00 NORMAL
6/16/2022 12:41 6/16/2022 12:42	12.07 12.25	0.00	56.69 59.10	876.6 876.8	1079.2 1080.5	7.93 7.93	38.2 38.2	54.6 54.6	16.4 16.4	53.6 53.6	8.23 8.23	7.64	7.12 7.12	39.67 39.67	40.34296 40.34306	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:43	12.14	0.33	87.27	877.1	1080.4	7.93	38.2	54.7	16.4	53.6	8.23	7.64	7.12	39.67	40.34195	0.00 NORMAL
6/16/2022 12:44	12.44	3.07	91.70	877.4	1078.6	7.93	38.3	54.7	16.4	53.6	8.24	7.63	7.12	39.67	40.34195	0.00 NORMAL
6/16/2022 12:45	12.07	1.35	55.49	877.6	1081.1	7.93	38.3	54.7	16.4	53.6	8.24	7.64	7.12	39.67	40.34056	0.00 NORMAL
6/16/2022 12:46	11.90	0.11	65.71	877.8	1083.9	7.93	38.3	54.7	16.4	53.6	8.24	7.66	7.12	39.67	40.33957	0.00 NORMAL
6/16/2022 12:47 6/16/2022 12:48	12.28 11.99	8.40 6.02	83.19 44.38	878.1 878.4	1079.3 1079.6	7.93 7.93	38.3 38.3	54.6 54.6	16.3 16.3	53.6 53.5	8.25 8.25	7.65 7.65	7.12 7.12	39.66 39.66	40.33856 40.33717	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:49	11.92	0.85	75.33	878.7	1082.6	7.93	38.3	54.6	16.3	53.5	8.24	7.65	7.12	39.66	40.33623	0.00 NORMAL
6/16/2022 12:50	11.95	3.01	88.80	879.0	1079.3	7.93	38.3	54.6	16.3	53.5	8.23	7.64	7.12	39.66	40.33484	0.00 NORMAL
6/16/2022 12:51	11.83	0.45	61.86	879.2	1079.6	7.93	38.4	54.6	16.2	53.5	8.21	7.64	7.12	39.66	40.33451	0.00 NORMAL
6/16/2022 12:52	12.06	0.90	76.12	879.5	1081.8	7.93	38.4	54.6	16.2	53.5	8.20	7.64	7.12	39.66	40.33173	0.00 NORMAL
6/16/2022 12:53 6/16/2022 12:54	12.04 12.48	9.67 4.47	67.40 61.34	879.9 880.2	1073.9 1063.8	7.93 7.94	38.4 38.4	54.6 54.6	16.2 16.2	53.5 53.5	8.19 8.19	7.63 7.65	7.12 7.12	39.65 39.65	40.33139 40.33112	0.00 NORMAL 0.00 NORMAL
6/16/2022 12:55	12.46	3.79	60.87	880.5	1055.7	7.94	38.4	54.6	16.3	53.5	8.19	7.66	7.12	39.65	40.32928	0.00 NORMAL
6/16/2022 12:56	11.95	4.76	42.72	880.8	1044.2	7.94	38.3	54.6	16.3	53.5	8.18	7.66	7.12	39.65	40.3315	0.00 NORMAL
6/16/2022 12:57	11.63	12.57	38.63	881.2	1036.1	7.94	38.3	54.6	16.4	53.5	8.18	7.66	7.12	39.64	40.34106	0.00 NORMAL
6/16/2022 12:58	11.04	3.18	40.15	881.6	1033.8	7.94	38.2	54.6	16.4	53.5	8.19	7.66	7.12	39.64	40.34134	0.00 NORMAL
6/16/2022 12:59	10.83	4.41	51.51	882.0	1032.1	7.94 7.94	38.2	54.6	16.4 16.4	53.5	8.19 8.19	7.66 7.67	7.12	39.64	40.34339 40.345	0.00 NORMAL
6/16/2022 13:00 6/16/2022 13:01	10.99 10.99	7.63 4.69	46.31 47.88	882.5 883.0	1029.8 1026.1	7.94	38.2 38.1	54.6 54.6	16.5	53.5 53.5	8.19	7.67	7.12 7.12	39.64 39.64	40.345	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:02	11.45	3.28	51.02	883.4	1020.9	7.94	38.1	54.6	16.5	53.5	8.20	7.67	7.12	39.63	40.34917	0.00 NORMAL
6/16/2022 13:03	12.24	5.97	50.23	883.9	1015.0	7.94	38.1	54.6	16.5	53.4	8.21	7.66	7.12	39.63	40.35	0.00 NORMAL
6/16/2022 13:04	12.80	11.63	48.68	884.4	1009.9	7.94	38.1	54.6	16.5	53.4	8.20	7.66	7.12	39.63	40.3545	0.00 NORMAL
6/16/2022 13:05	12.75	18.75	45.97	884.9	1005.1	7.94	38.0	54.6	16.5	53.4	8.19	7.65	7.12	39.63	40.3565	0.00 NORMAL
6/16/2022 13:06 6/16/2022 13:07	12.71 12.79	30.98 26.67	42.12 42.24	885.4 885.9	999.7 994.3	7.94 7.94	38.0 38.0	54.6 54.6	16.6 16.6	53.4 53.4	8.18 8.17	7.64 7.64	7.12 7.12	39.62 39.62	40.36228 40.36994	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:08	12.76	16.46	43.86	886.3	989.2	7.94	37.9	54.6	16.7	53.4	8.16	7.65	7.12	39.62	40.3755	0.00 NORMAL
6/16/2022 13:09	12.63	16.52	40.46	886.8	984.6	7.94	37.9	54.6	16.7	53.4	8.15	7.65	7.12	39.62	40.37961	0.00 NORMAL
6/16/2022 13:10	12.42	23.30	38.51	887.2	980.2	7.94	37.9	54.7	16.8	53.3	8.14	7.66	7.12	39.62	40.38283	0.00 NORMAL
6/16/2022 13:11	12.23	29.02	38.28	887.7	976.1	7.94	37.8	54.7	16.9	53.3	8.14	7.66	7.12	39.62	40.38766	0.00 NORMAL
6/16/2022 13:12 6/16/2022 13:13	12.15 12.06	38.96 52.90	39.99 38.09	888.2 888.8	971.6 966.4	7.94 7.94	37.8 37.7	54.7 54.6	16.9 16.9	53.3 53.3	8.14 8.14	7.66 7.66	7.12 7.12	39.62 39.61	40.39439 40.39894	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:14	11.90	49.40	36.09	889.3	961.7	7.94	37.7	54.6	16.9	53.3	8.14	7.66	7.12	39.61	40.40438	0.00 NORMAL
6/16/2022 13:15	11.74	53.22	31.79	889.9	958.1	7.94	37.6	54.6	17.0	53.2	8.14	7.67	7.12	39.61	40.40955	0.00 NORMAL
6/16/2022 13:16	11.68	53.23	33.98	890.4	955.1	7.94	37.6	54.6	17.0	53.2	8.14	7.68	7.12	39.61	40.41344	0.00 NORMAL
6/16/2022 13:17	11.66	38.83	39.71	891.0	952.5	7.94	37.5	54.6	17.0	53.2	8.15	7.68	7.12	39.61	40.41694	0.00 NORMAL
6/16/2022 13:18 6/16/2022 13:19	11.62 11.64	56.24 58.81	33.92 36.12	891.6 892.2	949.8 945.8	7.94 7.94	37.5 37.4	54.6 54.6	17.1 17.2	53.2 53.2	8.15 8.15	7.68 7.66	7.12 7.12	39.60 39.60	40.42389 40.42933	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:13	11.82	51.83	37.24	892.7	941.2	7.94	37.4	54.6	17.2	53.1	8.15	7.65	7.12	39.60	40.43716	0.00 NORMAL
6/16/2022 13:21	12.05	61.61	34.01	893.3	936.7	7.94	37.3	54.7	17.3	53.1	8.13	7.64	7.12	39.60	40.44555	0.00 NORMAL
6/16/2022 13:22	12.24	59.38	32.80	893.8	932.6	7.94	37.3	54.7	17.4	53.1	8.12	7.63	7.12	39.60	40.44955	0.00 NORMAL
6/16/2022 13:23	12.38	64.67	32.88	894.2	928.8	7.94	37.2	54.7	17.5	53.1	8.11	7.63	7.12	39.59	40.45544	0.00 NORMAL
6/16/2022 13:24 6/16/2022 13:25	12.56 12.73	67.51 73.26	34.51 37.40	894.7 895.1	925.3 920.6	7.94 7.93	37.1 37.1	54.7 54.7	17.6 17.6	53.0 53.0	8.10 8.09	7.63 7.62	7.12 7.12	39.59 39.59	40.46077 40.46649	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:26	12.73	63.61	41.63	895.5	914.8	7.93	37.1	54.7	17.7	53.0	8.09	7.62	7.12	39.59	40.47366	0.00 NORMAL
6/16/2022 13:27	12.89	59.66	42.40	896.0	908.8	7.93	36.9	54.6	17.7	53.0	8.09	7.62	7.12	39.59	40.47939	0.00 NORMAL
6/16/2022 13:28	12.85	72.36	42.46	896.5	903.1	7.93	36.9	54.6	17.8	52.9	8.08	7.62	7.12	39.59	40.48405	0.00 NORMAL
6/16/2022 13:29	12.82	90.90	42.77	897.0	900.8	7.93	36.8	54.6	17.8	52.9	8.08	7.62	7.12	39.59	40.49138	0.00 NORMAL
6/16/2022 13:30 6/16/2022 13:31	11.99	42.34	28.95	897.5 898.0	911.1 932.7	7.93	36.8 36.7	54.6 54.6	17.9 17.9	52.9 52.9	8.08 8.09	7.63 7.64	7.12 7.12	39.59	40.49722	0.00 NORMAL
6/16/2022 13:31	10.82	5.89 1.60	25.32 24.39	898.0 898.6	932.7	7.93 7.93	36.7	54.6	17.9	52.9	8.09	7.64	7.12	39.59 39.59	40.50116 40.50699	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:33	9.82	0.67	24.46	899.1	991.3	7.93	36.6	54.6	18.0	52.8	8.09	7.64	7.12	39.59	40.51121	0.00 NORMAL
6/16/2022 13:34	9.48	0.56	26.18	899.6	1022.8	7.93	36.6	54.7	18.1	52.8	8.09	7.64	7.12	39.59	40.51538	0.00 NORMAL
6/16/2022 13:35	9.19	0.49	27.76	900.1	1044.6	7.93	36.5	54.7	18.1	52.8	8.10	7.64	7.12	39.59	40.51943	0.00 NORMAL
6/16/2022 13:36	9.72	0.10	34.30	900.6	1057.3	7.93	36.5	54.7	18.2	52.7	8.10	7.64	7.12	39.59	40.52327	0.00 NORMAL
6/16/2022 13:37 6/16/2022 13:38	10.60 11.19	0.10	30.81 28.93	901.0 901.4	1064.7 1068.1	7.93 7.93	36.5 36.4	54.7 54.7	18.2 18.2	52.7 52.7	8.11 8.10	7.63 7.62	7.12 7.12	39.59 39.59	40.52455 40.5266	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:39	11.19	0.50	25.41	901.4	1069.6	7.93	36.4	54.7	18.3	52.7	8.08	7.62	7.12	39.59	40.52821	0.00 NORMAL
6/16/2022 13:40	11.31	0.10	27.71	902.3	1070.9	7.93	36.4	54.7	18.3	52.6	8.07	7.61	7.12	39.59	40.52921	0.00 NORMAL
6/16/2022 13:41	11.67	3.03	47.67	902.7	1067.8	7.93	36.4	54.7	18.3	52.6	8.06	7.60	7.12	39.59	40.53466	0.00 NORMAL
6/16/2022 13:42	12.13	36.05	49.79	903.1	1059.4	7.93	36.4	54.7	18.3	52.6	8.05	7.60	7.12	39.59	40.54705	0.00 NORMAL
6/16/2022 13:43	12.26	26.59	35.41 29.48	903.5 903.9	1047.9 1037.7	7.93	36.3	54.6 54.6	18.3 18.4	52.5	8.05 8.04	7.60 7.60	7.12 7.12	39.58	40.56316	0.00 NORMAL
6/16/2022 13:44 6/16/2022 13:45	12.09 11.24	30.99 542.34	29.48	903.9	1037.7	7.93 7.93	36.2 36.2	54.6	18.4	52.5 52.5	8.04	7.60	7.12	39.58 39.58	40.5706 40.57433	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:46	11.36	438.72	42.62	904.6	1027.4	7.93	36.2	54.6	18.5	52.5	8.04	7.62	7.12	39.58	40.57743	0.00 NORMAL
6/16/2022 13:47	11.57	24.79	62.34	905.0	1023.4	7.93	36.1	54.6	18.5	52.4	8.05	7.63	7.12	39.58	40.58044	0.00 NORMAL
6/16/2022 13:48	11.66	20.18	58.65	905.3	1020.2	7.93	36.1	54.6	18.5	52.4	8.05	7.62	7.12	39.58	40.58355	0.00 NORMAL
6/16/2022 13:49	11.54	10.83	35.08	905.6	1020.9	7.93	36.1	54.6	18.6	52.4	8.05	7.61	7.12	39.58	40.58738	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/16/2022 13:50	11.24	1.72	33.24	905.9	1022.1	7.93	36.0	54.6	18.6	52.4	8.03	7.60	7.12	39.58	40.58955	0.00 NORMAL
6/16/2022 13:51	11.96	0.37	40.94	906.2	1030.2	7.93	36.0	54.6	18.6	52.3	8.02	7.60	7.12	39.58	40.59016	0.00 NORMAL
6/16/2022 13:52	11.92	0.50	45.78	906.5	1044.9	7.93	36.0	54.6	18.6	52.3	8.00	7.59	7.12	39.58	40.59127	0.00 NORMAL
6/16/2022 13:53	11.47	0.42	53.48	906.8	1063.2	7.93	36.0	54.7	18.6	52.3	7.99	7.59	7.12	39.58	40.59132	0.00 NORMAL
6/16/2022 13:54	11.04	0.00	68.93 61.17	907.1	1076.0 1082.1	7.93 7.93	36.0 36.1	54.7 54.7	18.6 18.6	52.3 52.3	7.98 7.98	7.59 7.59	7.12 7.12	39.57 39.58	40.59039	0.00 NORMAL 0.00 NORMAL
6/16/2022 13:55 6/16/2022 13:56	11.21 11.63	0.23	59.87	907.6	1082.1	7.93	36.1	54.7	18.6	52.3	7.98	7.59	7.12	39.58	40.59066 40.58916	0.00 NORMAL
6/16/2022 13:57	11.84	0.32	50.66	907.9	1084.7	7.93	36.1	54.7	18.6	52.2	7.97	7.59	7.12	39.57	40.58805	0.00 NORMAL
6/16/2022 13:58	11.92	0.21	79.79	908.1	1084.1	7.93	36.1	54.7	18.5	52.2	7.97	7.59	7.12	39.57	40.58699	0.00 NORMAL
6/16/2022 13:59	12.14	4.80	78.34	908.4	1081.5	7.93	36.1	54.7	18.5	52.2	7.97	7.59	7.12	39.57	40.58627	0.00 NORMAL
6/16/2022 14:00	11.56	1.61	71.78	908.7	1083.3	7.93	36.2	54.6	18.5	52.2	7.98	7.59	7.12	39.57	40.58555	0.00 NORMAL
6/16/2022 14:01	11.82	3.58	112.30	909.0	1081.3	7.93	36.2	54.6	18.5	52.2	7.98	7.59	7.12	39.57	40.58449	0.00 NORMAL
6/16/2022 14:02	11.71	8.97	69.71	909.2	1078.5	7.93	36.2	54.6	18.4	52.2	7.98	7.58	7.12	39.57	40.58449	0.00 NORMAL
6/16/2022 14:03	11.13	1.55	67.16	909.5	1081.5	7.94	36.2	54.6	18.4	52.2	7.98	7.58	7.12	39.57	40.58338	0.00 NORMAL
6/16/2022 14:04 6/16/2022 14:05	11.39 11.07	2.42	100.66 83.43	909.8 910.1	1082.7 1081.9	7.94 7.94	36.3 36.3	54.7 54.7	18.4 18.4	52.2 52.2	7.96 7.95	7.58 7.58	7.12 7.13	39.57 39.57	40.58183 40.58044	0.00 NORMAL 0.00 NORMAL
6/16/2022 14:06	11.40	0.19	124.59	910.1	1081.3	7.94	36.3	54.7	18.4	52.2	7.93	7.57	7.13	39.57	40.57899	0.00 NORMAL
6/16/2022 14:07	11.41	2.46	147.78	910.5	1086.3	7.94	36.4	54.7	18.3	52.2	7.92	7.57	7.12	39.57	40.57671	0.00 NORMAL
6/16/2022 14:08	11.39	5.53	75.71	910.8	1082.8	7.94	36.4	54.7	18.3	52.2	7.91	7.57	7.12	39.57	40.57538	0.00 NORMAL
6/16/2022 14:09	11.70	0.72	78.50	911.0	1086.0	7.95	36.4	54.7	18.3	52.2	7.91	7.58	7.12	39.57	40.57433	0.00 NORMAL
6/16/2022 14:10	11.89	1.95	125.55	911.1	1082.4	7.95	36.5	54.7	18.2	52.2	7.90	7.59	7.12	39.56	40.57194	0.00 NORMAL
6/16/2022 14:11	11.72	5.65	64.62	911.3	1080.7	7.95	36.5	54.7	18.2	52.2	7.90	7.59	7.13	39.56	40.57122	0.00 NORMAL
6/16/2022 14:12	11.90	3.00	94.29	911.5	1083.9	7.95	36.5	54.6	18.1	52.2	7.90	7.60	7.13	39.56	40.56944	0.00 NORMAL
6/16/2022 14:13 6/16/2022 14:14	12.11 11.75	10.24 4.76	102.71 47.20	911.7 911.9	1080.3 1078.6	7.95 7.95	36.5 36.6	54.6 54.6	18.1 18.0	52.2 52.2	7.90 7.90	7.60 7.60	7.13 7.12	39.56 39.56	40.56894 40.56655	0.00 NORMAL 0.00 NORMAL
6/16/2022 14:14	12.26	0.62	88.89	911.9	1078.6	7.95	36.6	54.6	18.0	52.2	7.90	7.60	7.12	39.56	40.56461	0.00 NORMAL
6/16/2022 14:16	12.29	4.48	110.43	912.1	1074.8	7.95	36.6	54.6	18.0	52.2	7.90	7.61	7.12	39.56	40.56316	0.00 NORMAL
6/16/2022 14:17	12.06	2.39	48.86	912.6	1075.0	7.96	36.6	54.6	18.0	52.2	7.90	7.60	7.13	39.56	40.56044	0.00 NORMAL
6/16/2022 14:18	12.26	1.86	88.11	912.8	1076.7	7.96	36.6	54.6	18.0	52.2	7.91	7.60	7.13	39.56	40.55849	0.00 NORMAL
6/16/2022 14:19	12.13	7.25	87.28	913.0	1069.3	7.96	36.7	54.7	18.0	52.2	7.90	7.59	7.13	39.56	40.55805	0.00 NORMAL
6/16/2022 14:20	12.79	7.31	60.73	913.2	1062.0	7.96	36.7	54.7	18.0	52.2	7.89	7.58	7.13	39.56	40.55777	0.00 NORMAL
6/16/2022 14:21	12.23	3.95	44.41	913.4	1065.3	7.96	36.7	54.7	18.0	52.2	7.87	7.57	7.13	39.56	40.55739	0.00 NORMAL
6/16/2022 14:22	11.59	0.58	76.01	913.5	1064.2	7.96	36.7	54.7	18.0	52.2	7.86	7.58	7.13	39.56	40.55645	0.00 NORMAL
6/16/2022 14:23 6/16/2022 14:24	12.49 11.89	1.98 0.77	85.14 56.11	913.7 913.9	1062.6 1069.6	7.96 7.96	36.7 36.7	54.7 54.7	18.0 17.9	52.2 52.2	7.84 7.83	7.59 7.59	7.13 7.13	39.56 39.56	40.55639 40.55389	0.00 NORMAL 0.00 NORMAL
6/16/2022 14:25	11.90	0.77	95.89	914.1	1074.0	7.96	36.8	54.6	17.9	52.2	7.82	7.60	7.13	39.56	40.55116	0.00 NORMAL
6/16/2022 14:26	11.91	3.61	67.03	914.2	1071.0	7.96	36.8	54.6	17.8	52.2	7.82	7.60	7.13	39.55	40.549	0.00 NORMAL
6/16/2022 14:27	11.82	0.33	67.50	914.4	1072.5	7.96	36.8	54.6	17.8	52.2	7.81	7.60	7.13	39.55	40.54599	0.00 NORMAL
6/16/2022 14:28	12.17	1.09	111.28	914.5	1074.8	7.97	36.9	54.6	17.7	52.2	7.81	7.59	7.13	39.55	40.54183	0.00 NORMAL
6/16/2022 14:29	12.04	2.53	94.32	914.6	1072.9	7.97	36.9	54.6	17.7	52.2	7.81	7.59	7.13	39.55	40.53877	0.00 NORMAL
6/16/2022 14:30	12.18	0.83	79.55	914.7	1077.7	7.97	36.9	54.6	17.7	52.2	7.81	7.59	7.13	39.55	40.53566	0.00 NORMAL
6/16/2022 14:31	12.21	3.67	118.64	914.8	1078.6	7.97	37.0	54.6	17.7	52.3	7.80	7.59	7.13	39.55	40.5291	0.00 NORMAL
6/16/2022 14:32 6/16/2022 14:33	11.80 12.25	0.32	92.96 106.33	914.8 914.9	1077.4 1079.1	7.97 7.97	37.0 37.1	54.7 54.7	17.6 17.6	52.3 52.3	7.80 7.81	7.60 7.61	7.13 7.13	39.55 39.54	40.51632 40.50071	0.00 NORMAL 0.00 NORMAL
6/16/2022 14:34	12.43	1.55	96.88	914.9	1079.1	7.97	37.1	54.7	17.5	52.3	7.81	7.61	7.13	39.54	40.49405	0.00 NORMAL
6/16/2022 14:35	12.09	1.50	67.04	915.0	1076.4	7.97	37.2	54.7	17.5	52.3	7.81	7.60	7.13	39.54	40.49082	0.00 NORMAL
6/16/2022 14:36	12.55	0.50	106.18	915.0	1078.8	7.97	37.2	54.7	17.4	52.3	7.81	7.60	7.13	39.54	40.47905	0.00 NORMAL
6/16/2022 14:37	12.20	0.95	96.61	915.0	1077.6	7.97	37.3	54.6	17.3	52.3	7.81	7.60	7.13	39.54	40.46655	0.00 NORMAL
6/16/2022 14:38	11.98	0.53	76.39	915.1	1079.1	7.97	37.4	54.6	17.2	52.3	7.81	7.60	7.13	39.54	40.45155	0.00 NORMAL
6/16/2022 14:39	12.31	0.55	99.96	915.1	1081.0	7.98	37.5	54.6	17.1	52.3	7.80	7.59	7.13	39.54	40.44043	0.00 NORMAL
6/16/2022 14:40	12.02	0.23	115.12	915.2	1080.3	7.98	37.5	54.6	17.1	52.4	7.78	7.60	7.13	39.54	40.43132	0.00 NORMAL
6/16/2022 14:41	12.24	0.12	111.61	915.2	1081.1	7.98	37.6	54.6	17.0	52.4	7.77	7.61	7.13	39.54	40.42055	0.00 NORMAL
6/16/2022 14:42 6/16/2022 14:43	12.51 11.86	3.85 404.61	101.31 49.05	915.1 915.1	1078.8 1079.2	7.98 7.98	37.7 37.7	54.5 54.5	16.9 16.8	52.4 52.4	7.76 7.75	7.62 7.62	7.13 7.13	39.53 39.53	40.41299 40.40644	0.00 NORMAL 0.00 NORMAL
6/16/2022 14:44	12.43	404.61	91.53	915.1	1079.2	7.98	37.7	54.6	16.8	52.4	7.73	7.62	7.13	39.53	40.40644	0.00 NORMAL
6/16/2022 14:45	12.47	7.24	80.68	915.1	1077.7	7.98	37.8	54.6	16.8	52.4	7.74	7.62	7.13	39.53	40.39399	0.00 NORMAL
6/16/2022 14:46	12.00	1.63	63.66	915.1	1078.5	7.98	37.9	54.6	16.7	52.4	7.73	7.62	7.13	39.53	40.38794	0.00 NORMAL
6/16/2022 14:47	12.51	5.22	96.12	915.1	1077.2	7.98	37.9	54.7	16.7	52.5	7.73	7.62	7.14	39.53	40.38127	0.00 NORMAL
6/16/2022 14:48	12.27	7.02	53.13	915.0	1070.6	7.98	38.0	54.7	16.7	52.5	7.73	7.62	7.14	39.53	40.3766	0.00 NORMAL
6/16/2022 14:49	12.62	0.20	65.08	915.0	1071.3	7.98	38.0	54.7	16.6	52.5	7.73	7.63	7.14	39.53	40.37071	0.00 NORMAL
6/16/2022 14:50	12.62	1.29	95.52	915.0	1072.0	7.98	38.1	54.7	16.6	52.5	7.73	7.64	7.14	39.53	40.36538	0.00 NORMAL
6/16/2022 14:51	12.41	2.88	71.79 64.84	915.0	1069.3	7.98	38.1	54.6	16.5	52.5	7.73	7.65	7.13	39.53	40.35744	0.00 NORMAL
6/16/2022 14:52 6/16/2022 14:53	12.52 12.34	0.64 2.55	91.06	914.9 914.9	1074.4 1074.8	7.98 7.98	38.2 38.2	54.6 54.6	16.4 16.3	52.5 52.5	7.73 7.73	7.65 7.65	7.13 7.14	39.53 39.53	40.35155 40.34516	0.00 NORMAL 0.00 NORMAL
6/16/2022 14:54	11.86	1.28	66.89	914.8	1074.8	7.98	38.3	54.6	16.2	52.6	7.73	7.65	7.14	39.53	40.34310	0.00 NORMAL
6/16/2022 14:55	12.23	1.14	102.92	914.8	1075.7	7.99	38.4	54.6	16.2	52.6	7.73	7.65	7.14	39.53	40.33266	0.00 NORMAL
6/16/2022 14:56	12.38	7.26	70.55	914.7	1074.3	7.99	38.4	54.6	16.1	52.6	7.73	7.65	7.14	39.53	40.32805	0.00 NORMAL
6/16/2022 14:57	11.82	1.28	64.64	914.6	1075.5	7.99	38.5	54.6	16.1	52.6	7.73	7.67	7.14	39.53	40.32599	0.00 NORMAL
6/16/2022 14:58	12.31	0.38	108.01	914.5	1077.7	7.99	38.5	54.6	16.1	52.6	7.73	7.68	7.14	39.53	40.32249	0.00 NORMAL
6/16/2022 14:59	12.35	6.10	90.40	914.4	1073.0	7.99	38.5	54.6	16.1	52.6	7.73	7.68	7.14	39.53	40.31993	0.00 NORMAL
6/16/2022 15:00	12.39	1.69	62.00	914.3	1074.8	7.99	38.5	54.7	16.1	52.7	7.73	7.68	7.14	39.53	40.31799	0.00 NORMAL
6/16/2022 15:01	12.50	7.19	92.50	914.2	1075.3	7.99	38.6	54.7	16.1	52.7	7.73	7.68	7.14	39.53	40.3146	0.00 NORMAL
6/16/2022 15:02	12.14	6.04	64.28	914.1	1072.3	7.99	38.6	54.6	16.0	52.7	7.74	7.69	7.14	39.53	40.31166	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/16/2022 15:03	12.19	0.53	93.40	914.0	1076.3	7.99	38.6	54.6	16.0	52.7	7.74	7.70	7.14	39.53	40.31099	0.00 NORMAL
6/16/2022 15:04	11.99	0.87	104.23	913.9	1080.9	7.99	38.7	54.6	15.9	52.7	7.74	7.71	7.14	39.53	40.30871	0.00 NORMAL
6/16/2022 15:05	11.69	0.97	103.87	913.8	1079.3	7.99	38.7	54.6	15.9	52.7	7.74	7.71	7.14	39.53	40.30677	0.00 NORMAL
6/16/2022 15:06	11.65	0.18	94.15	913.7	1084.2	7.98	38.7	54.5	15.8	52.7	7.74	7.69	7.14	39.53	40.30471	0.00 NORMAL
6/16/2022 15:07	11.57 11.51	0.65	121.35 103.23	913.6 913.5	1084.9 1083.3	7.98 7.98	38.7 38.8	54.5 54.5	15.8 15.8	52.7 52.7	7.74 7.74	7.70 7.70	7.14 7.14	39.53 39.53	40.30244	0.00 NORMAL 0.00 NORMAL
6/16/2022 15:08 6/16/2022 15:09	11.71	0.32	129.39	913.5	1085.6	7.98	38.8	54.6	15.8	52.7	7.74	7.70	7.14	39.53	40.29944 40.29338	0.00 NORMAL
6/16/2022 15:10	11.74	0.11	130.78	913.3	1087.5	7.98	38.9	54.6	15.7	52.8	7.74	7.69	7.14	39.53	40.28361	0.00 NORMAL
6/16/2022 15:11	11.79	1.14	95.83	913.2	1084.0	7.98	38.9	54.6	15.7	52.8	7.74	7.69	7.14	39.53	40.27611	0.00 NORMAL
6/16/2022 15:12	11.92	0.59	79.00	913.1	1086.4	7.98	39.0	54.6	15.7	52.8	7.74	7.70	7.14	39.53	40.26766	0.00 NORMAL
6/16/2022 15:13	12.04	0.57	129.75	913.0	1084.1	7.98	39.0	54.6	15.6	52.8	7.75	7.71	7.14	39.53	40.25855	0.00 NORMAL
6/16/2022 15:14	12.27	0.74	93.42	913.0	1079.9	7.98	39.1	54.6	15.5	52.8	7.75	7.72	7.14	39.53	40.25672	0.00 NORMAL
6/16/2022 15:15	12.28	0.00	97.43	912.9	1080.2	7.98	39.2	54.6	15.4	52.8	7.75	7.71	7.14	39.53	40.24633	0.00 NORMAL
6/16/2022 15:16	12.62	0.43	101.74	912.8	1078.2	7.98	39.2	54.5	15.3	52.8	7.75	7.70	7.14	39.53	40.2405	0.00 NORMAL
6/16/2022 15:17 6/16/2022 15:18	12.58 12.66	1.59 0.00	70.29 70.63	912.6 912.5	1074.1 1075.6	7.98 7.98	39.3 39.3	54.5 54.5	15.3 15.2	52.9 52.9	7.75 7.75	7.70 7.70	7.14 7.14	39.52 39.52	40.23494 40.22916	0.00 NORMAL 0.00 NORMAL
6/16/2022 15:19	12.85	3.62	92.80	912.3	1073.0	7.98	39.3	54.5	15.2	52.9	7.74	7.70	7.14	39.52	40.22510	0.00 NORMAL
6/16/2022 15:20	12.68	3.08	54.01	912.3	1069.0	7.98	39.3	54.5	15.2	52.9	7.74	7.72	7.14	39.52	40.22361	0.00 NORMAL
6/16/2022 15:21	12.78	0.10	58.36	912.3	1072.7	7.98	39.4	54.6	15.2	52.9	7.74	7.73	7.14	39.52	40.21822	0.00 NORMAL
6/16/2022 15:22	12.58	0.12	73.39	912.2	1073.3	7.97	39.4	54.6	15.2	52.9	7.74	7.73	7.14	39.52	40.21516	0.00 NORMAL
6/16/2022 15:23	12.93	10.93	77.64	912.2	1067.5	7.97	39.4	54.6	15.2	52.9	7.74	7.73	7.14	39.52	40.21249	0.00 NORMAL
6/16/2022 15:24	12.94	2.60	46.95	912.1	1068.9	7.97	39.4	54.6	15.2	52.9	7.74	7.73	7.14	39.52	40.20921	0.00 NORMAL
6/16/2022 15:25	12.34	0.11	50.03	912.1	1070.6	7.97	39.5	54.6	15.2	52.9	7.74	7.73	7.14	39.52	40.20388	0.00 NORMAL
6/16/2022 15:26	12.45	0.00	61.33	912.1	1069.3	7.97	39.5	54.6	15.1	52.9	7.74	7.74	7.15	39.52	40.19705	0.00 NORMAL
6/16/2022 15:27 6/16/2022 15:28	12.65 12.45	0.60	58.52 67.53	912.1 912.0	1069.9 1075.5	7.97 7.96	39.5 39.6	54.6 54.5	15.0 15.0	52.9 53.0	7.73 7.73	7.75 7.76	7.15 7.14	39.52 39.52	40.18599 40.17922	0.00 NORMAL 0.00 NORMAL
6/16/2022 15:29	12.45	0.00	58.64	912.0	1075.5	7.96	39.6	54.5	14.9	53.0	7.73	7.76	7.14	39.52	40.17922	0.00 NORMAL
6/16/2022 15:30	12.21	0.58	50.31	911.9	1079.3	7.96	39.7	54.5	14.9	53.0	7.73	7.77	7.14	39.52	40.16744	0.00 NORMAL
6/16/2022 15:31	12.20	0.21	73.54	911.9	1079.0	7.96	39.7	54.5	14.8	53.0	7.73	7.75	7.14	39.52	40.16083	0.00 NORMAL
6/16/2022 15:32	12.82	31.78	100.95	911.8	1071.6	7.96	39.8	54.5	14.8	53.0	7.72	7.75	7.15	39.52	40.15182	0.00 NORMAL
6/16/2022 15:33	12.82	14.24	39.53	911.7	1063.5	7.96	39.8	54.5	14.7	53.0	7.72	7.75	7.15	39.52	40.14572	0.00 NORMAL
6/16/2022 15:34	12.89	1.46	43.66	911.6	1057.4	7.96	39.8	54.5	14.7	53.0	7.72	7.74	7.15	39.52	40.14005	0.00 NORMAL
6/16/2022 15:35	12.82	1.12	46.41	911.5	1052.4	7.96	39.9	54.5	14.7	53.0	7.71	7.76	7.15	39.52	40.13694	0.00 NORMAL
6/16/2022 15:36	12.78 12.92	1.47 0.58	44.47 51.23	911.5 911.4	1049.0 1052.7	7.96 7.96	39.9 39.8	54.5 54.5	14.7 14.7	53.0 53.0	7.71 7.71	7.76 7.76	7.15 7.15	39.52 39.52	40.13544 40.13366	0.00 NORMAL 0.00 NORMAL
6/16/2022 15:37 6/16/2022 15:38	12.23	0.38	51.23	911.4	1052.7	7.95	39.8	54.5	14.7	53.0	7.71	7.75	7.15	39.52	40.13306	0.00 NORMAL
6/16/2022 15:39	11.98	0.70	58.50	911.3	1060.2	7.95	39.8	54.5	14.7	53.0	7.70	7.75	7.15	39.51	40.13144	0.00 NORMAL
6/16/2022 15:40	12.05	0.12	61.49	911.2	1062.4	7.95	39.8	54.5	14.8	53.0	7.70	7.75	7.15	39.51	40.13143	0.00 NORMAL
6/16/2022 15:41	12.10	0.58	48.63	911.2	1063.8	7.95	39.8	54.5	14.8	53.0	7.69	7.75	7.15	39.51	40.13182	0.00 NORMAL
6/16/2022 15:42	12.12	1.03	40.15	911.1	1065.0	7.95	39.7	54.5	14.8	53.0	7.69	7.75	7.15	39.51	40.13226	0.00 NORMAL
6/16/2022 15:43	11.91	0.50	54.09	911.1	1067.0	7.95	39.7	54.5	14.8	53.0	7.69	7.76	7.15	39.51	40.13327	0.00 NORMAL
6/16/2022 15:44	11.94	0.00	65.73	911.0	1067.0	7.94	39.7	54.5	14.8	53.0	7.68	7.77	7.15	39.51	40.13393	0.00 NORMAL
6/16/2022 15:45	12.12	0.22	49.89	911.0	1066.4	7.94	39.6	54.5	14.8	53.0	7.68	7.77 7.76	7.15	39.51	40.1356	0.00 NORMAL
6/16/2022 15:46 6/16/2022 15:47	12.10 12.17	0.23	44.19 46.27	910.9 910.9	1065.5 1063.7	7.94 7.94	39.6 39.6	54.5 54.5	14.9 14.9	53.0 53.0	7.68 7.67	7.75	7.15 7.15	39.51 39.51	40.13609 40.13582	0.00 NORMAL 0.00 NORMAL
6/16/2022 15:48	12.17	0.12	48.12	910.9	1060.1	7.94	39.6	54.5	14.9	52.9	7.67	7.75	7.15	39.51	40.13582	0.00 NORMAL
6/16/2022 15:49	12.49	0.24	44.00	910.8	1056.8	7.94	39.5	54.5	14.9	52.9	7.66	7.75	7.15	39.51	40.13671	0.00 NORMAL
6/16/2022 15:50	12.51	0.36	47.19	910.7	1053.8	7.93	39.5	54.5	15.0	52.9	7.66	7.75	7.15	39.51	40.13743	0.00 NORMAL
6/16/2022 15:51	12.58	0.12	60.41	910.6	1051.4	7.93	39.5	54.5	15.0	52.9	7.66	7.75	7.15	39.51	40.13838	0.00 NORMAL
6/16/2022 15:52	12.45	0.32	52.12	910.6	1050.3	7.93	39.4	54.5	15.0	52.9	7.65	7.77	7.15	39.51	40.14021	0.00 NORMAL
6/16/2022 15:53	12.24	0.32	40.70	910.5	1050.0	7.93	39.4	54.5	15.1	52.9	7.65	7.78	7.15	39.51	40.1401	0.00 NORMAL
6/16/2022 15:54	12.08	0.75	42.05	910.4	1049.8	7.92	39.5	54.5	15.1	52.9	7.64	7.77	7.15	39.51	40.13894	0.00 NORMAL
6/16/2022 15:55	11.95	0.87	44.69 40.29	910.4 910.3	1049.2	7.92	39.5 39.5	54.5 54.5	15.1	52.8	7.64 7.63	7.76 7.75	7.15	39.52	40.14144	0.00 NORMAL
6/16/2022 15:56 6/16/2022 15:57	12.01 12.01	0.74 1.18	40.29	910.3	1047.9 1045.5	7.92 7.92	39.5	54.5	15.1 15.0	52.8 52.8	7.63	7.75	7.15 7.15	39.52 39.52	40.13799 40.12772	0.00 NORMAL 0.00 NORMAL
6/16/2022 15:58	12.14	0.23	45.76	910.2	1043.3	7.92	39.5	54.5	15.0	52.8	7.63	7.75	7.15	39.52	40.12772	0.00 NORMAL
6/16/2022 15:59	12.33	0.12	57.51	909.9	1040.9	7.91	39.6	54.5	14.9	52.8	7.62	7.77	7.15	39.52	40.12377	0.00 NORMAL
6/16/2022 16:00	12.42	0.57	50.36	909.7	1040.0	7.91	39.6	54.5	14.9	52.8	7.62	7.77	7.15	39.52	40.12238	0.00 NORMAL
6/16/2022 16:01	12.56	0.60	47.69	909.5	1039.5	7.91	39.6	54.5	14.9	52.8	7.61	7.77	7.15	39.52	40.12132	0.00 NORMAL
6/16/2022 16:02	12.58	0.63	50.38	909.3	1039.2	7.90	39.6	54.5	14.9	52.8	7.61	7.76	7.15	39.52	40.11944	0.00 NORMAL
6/16/2022 16:03	12.66	2.25	43.05	909.1	1038.5	7.90	39.6	54.5	14.9	52.8	7.60	7.76	7.15	39.53	40.1181	0.00 NORMAL
6/16/2022 16:04	12.73	3.19	36.60	908.9	1037.6	7.90	39.6	54.5	14.9	52.8	7.60	7.76	7.15	39.53	40.1151	0.00 NORMAL
6/16/2022 16:05 6/16/2022 16:06	12.75 12.70	0.97	48.17 52.20	908.7	1036.2 1036.3	7.89 7.89	39.6 39.6	54.5 54.6	14.9 14.9	52.8 52.8	7.59 7.59	7.76 7.76	7.15 7.15	39.53 39.53	40.11304 40.10671	0.00 NORMAL 0.00 NORMAL
6/16/2022 16:06	12.60	0.44	65.33	908.4	1036.3	7.89	39.6	54.5	14.9	52.8	7.59	7.76	7.15	39.53	40.10671	0.00 NORMAL
6/16/2022 16:08	12.47	0.11	43.08	908.2	1037.4	7.89	39.7	54.5	14.9	52.8	7.58	7.77	7.16	39.53	40.09849	0.00 NORMAL
6/16/2022 16:09	12.30	0.44	39.11	907.8	1041.6	7.88	39.7	54.5	14.8	52.8	7.58	7.77	7.16	39.53	40.08755	0.00 NORMAL
6/16/2022 16:10	12.17	0.00	46.03	907.6	1044.4	7.88	39.7	54.5	14.8	52.8	7.57	7.76	7.16	39.53	40.08188	0.00 NORMAL
6/16/2022 16:11	12.08	0.11	43.79	907.4	1046.2	7.88	39.7	54.5	14.7	52.7	7.57	7.76	7.16	39.53	40.07793	0.00 NORMAL
6/16/2022 16:12	12.13	0.00	41.17	907.1	1047.3	7.87	39.8	54.4	14.7	52.7	7.57	7.76	7.16	39.53	40.07116	0.00 NORMAL
6/16/2022 16:13	12.16	0.69	37.67	906.9	1048.2	7.87	39.8	54.5	14.7	52.7	7.56	7.76	7.16	39.53	40.06627	0.00 NORMAL
6/16/2022 16:14	12.18	0.35	40.11	906.6	1048.5	7.87	39.8	54.5	14.7	52.7	7.56	7.76	7.16	39.53	40.06121	0.00 NORMAL
6/16/2022 16:15	12.25	0.12	41.05	906.3	1048.1	7.87	39.8	54.5	14.7	52.7	7.55	7.76	7.16	39.53	40.05605	0.00 NORMAL

_																	
TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP	OpMode
6/16/2022 16:16	12.32	0.59	39.84	906.1	1047.3	7.86	39.8	54.5	14.7	52.7	7.55	7.76	7.16	39.54	40.05188	0.00	NORMAL
Average	11.87	12.20	64.54	880.27	1051.16	7.83	37.67	54.57	16.90	52.78	8.13	7.59	7.13	39.62	40.31	0.00	
Min	9.12	0.00	24.39	835.48	900.84	7.23	30.37	54.43	14.50	49.04	7.55	7.26	7.12	39.51	39.99	0.00	Normal(on)
Max	13.63	542.34	147.78	915.17	1087.52	7.99	40.01	54.72	24.21	54.40	8.53	7.78	7.16	39.71	40.74	0.00	

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/17/2022 8:36	11.73	738.58	98.71	897.4	1068.3	6.78	33.6	54.5	20.9	49.5	8.85	7.68	7.18	39.21	38.8992	0.00 NORMAL
6/17/2022 8:37	11.95	85.76		897.4	1065.8	6.78	33.6	54.5	20.9	49.5	8.88	7.68	7.19	39.21	38.89887	0.00 NORMAL
6/17/2022 8:38	11.44	3.16		897.5	1064.9	6.78	33.6	54.4	20.8	49.5	8.90	7.68	7.19	39.21	38.89932	0.00 NORMAL
6/17/2022 8:39 6/17/2022 8:40	12.08 11.84	2.34	113.67 91.79	897.6 897.7	1065.6 1062.3	6.78 6.78	33.6 33.6	54.4 54.4	20.8	49.5 49.5	8.90 8.91	7.68 7.68	7.19 7.19	39.21 39.21	38.89932 38.89838	0.00 NORMAL 0.00 NORMAL
6/17/2022 8:41	11.56	0.97	75.10	897.8	1063.5	6.79	33.6	54.4	20.8	49.5	8.92	7.68	7.19	39.21	38.89754	0.00 NORMAL
6/17/2022 8:42	12.13	1.74	131.66	897.9	1064.2	6.79	33.7	54.4	20.8	49.6	8.94	7.68	7.19	39.21	38.89693	0.00 NORMAL
6/17/2022 8:43	11.74	1.92	87.60	898.0	1061.9	6.79	33.7	54.5	20.8	49.6	8.96	7.69	7.19	39.21	38.89588	0.00 NORMAL
6/17/2022 8:44	11.81	0.73	87.53	898.1	1064.0	6.79	33.7	54.5	20.8	49.6	8.98	7.70	7.19	39.21	38.89444	0.00 NORMAL
6/17/2022 8:45 6/17/2022 8:46	12.19 11.68	21.35 8.02	101.07 40.93	898.1 898.2	1061.6 1059.3	6.79 6.79	33.7 33.7	54.5 54.5	20.8	49.6 49.6	9.00 9.02	7.70 7.70	7.19 7.19	39.21 39.21	38.89355 38.8936	0.00 NORMAL 0.00 NORMAL
6/17/2022 8:47	12.15	3.47	65.12	898.2	1039.3	6.79	33.7	54.5	20.8	49.6	9.04	7.70	7.19	39.21	38.89288	0.00 NORMAL
6/17/2022 8:48	12.17	31.47	61.62	898.2	1057.8	6.79	33.7	54.4	20.7	49.6	9.06	7.70	7.19	39.22	38.89277	0.00 NORMAL
6/17/2022 8:49	11.40	5.46	39.42	898.2	1058.3	6.79	33.7	54.4	20.7	49.6	9.08	7.72	7.19	39.21	38.89171	0.00 NORMAL
6/17/2022 8:50	12.05	9.40	81.62	898.2	1059.3	6.79	33.8	54.4	20.7	49.6	9.08	7.72	7.19	39.22	38.89121	0.00 NORMAL
6/17/2022 8:51	11.64	20.86		898.2	1055.5	6.79	33.8	54.4	20.7	49.6	9.09	7.72	7.19	39.22	38.89021	0.00 NORMAL
6/17/2022 8:52 6/17/2022 8:53	11.44 11.70	1.88 3.79	46.96 87.00	898.1 898.1	1057.6 1059.1	6.79 6.79	33.8 33.8	54.4 54.5	20.7	49.6 49.6	9.10 9.12	7.72 7.72	7.19 7.19	39.22 39.22	38.88949 38.88977	0.00 NORMAL 0.00 NORMAL
6/17/2022 8:54	11.70	6.49	56.04	898.1	1057.3	6.79	33.8	54.5	20.7	49.6	9.14	7.74	7.19	39.22	38.89111	0.00 NORMAL
6/17/2022 8:55	11.29	172.53		898.0	1062.0	6.79	33.8	54.5	20.7	49.6	9.16	7.74	7.19	39.22	38.89071	0.00 NORMAL
6/17/2022 8:56	11.50	93.23	95.15	897.9	1061.3	6.79	33.8	54.5	20.7	49.6	9.18	7.73	7.19	39.22	38.88983	0.00 NORMAL
6/17/2022 8:57	11.29	10.11	50.44	897.9	1058.7	6.79	33.8	54.5	20.7	49.6	9.20	7.72	7.20	39.22	38.88949	0.00 NORMAL
6/17/2022 8:58	11.44	1.24 6.29	63.60 89.21	897.9	1061.8	6.80 6.80	33.8 33.8	54.5 54.4	20.6	49.7 49.7	9.22 9.24	7.72	7.19	39.23	38.88972	0.00 NORMAL
6/17/2022 8:59 6/17/2022 9:00	11.57 11.19	3.00	45.21	897.8 897.8	1059.6 1059.9	6.80	33.8	54.4	20.6	49.7	9.24	7.73 7.74	7.19 7.19	39.23 39.23	38.88927 38.88838	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:01	12.06	3.95	75.81	897.7	1062.6	6.80	33.9	54.4	20.6	49.7	9.27	7.74	7.19	39.23	38.88949	0.00 NORMAL
6/17/2022 9:02	11.63	8.18	68.21	897.6	1062.3	6.80	33.9	54.4	20.6	49.7	9.28	7.74	7.19	39.23	38.89066	0.00 NORMAL
6/17/2022 9:03	11.23	2.00	52.41	897.6	1062.6	6.80	33.9	54.4	20.6	49.7	9.29	7.74	7.19	39.23	38.89188	0.00 NORMAL
6/17/2022 9:04	12.12	12.08		897.4	1061.9	6.80	33.9	54.5	20.6	49.7	9.30	7.74	7.20	39.24	38.89333	0.00 NORMAL
6/17/2022 9:05 6/17/2022 9:06	11.31 11.76	4.89 3.12	43.45 66.39	897.3 897.2	1061.7 1063.4	6.80 6.80	33.9 33.9	54.5 54.5	20.6	49.7 49.7	9.31 9.33	7.75 7.76	7.20 7.19	39.24 39.24	38.89433 38.8941	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:07	11.40	4.30	65.93	897.0	1063.4	6.80	33.9	54.5	20.6	49.7	9.34	7.76	7.19	39.24	38.89455	0.00 NORMAL
6/17/2022 9:08	10.82	3.30	56.47	896.8	1065.5	6.80	33.9	54.5	20.5	49.7	9.36	7.76	7.19	39.24	38.89549	0.00 NORMAL
6/17/2022 9:09	11.66	3.02	92.52	896.6	1067.2	6.80	34.0	54.5	20.5	49.7	9.38	7.76	7.20	39.24	38.897	0.00 NORMAL
6/17/2022 9:10	10.81	2.36		896.5	1067.3	6.80	34.0	54.4	20.5	49.7	9.38	7.74	7.20	39.24	38.89755	0.00 NORMAL
6/17/2022 9:11 6/17/2022 9:12	11.20 11.51	2.17 4.06	65.48 79.25	896.3 896.1	1067.9 1066.7	6.80 6.80	34.0 34.0	54.4 54.4	20.5	49.7 49.7	9.39 9.39	7.75 7.75	7.20 7.20	39.24 39.24	38.89817 38.89839	0.00 NORMAL
6/17/2022 9:12	10.97	410.26		895.9	1066.7	6.80	34.0	54.4	20.4	49.7	9.39	7.75	7.20	39.24	38.899	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:14	11.85	443.25		895.8	1067.1	6.80	34.0	54.5	20.4	49.7	9.40	7.75	7.20	39.24	38.9	0.00 NORMAL
6/17/2022 9:15	11.41	6.86	57.76	895.6	1065.5	6.80	34.1	54.5	20.4	49.7	9.40	7.75	7.20	39.24	38.901	0.00 NORMAL
6/17/2022 9:16	11.40	2.35	59.53	895.3	1066.1	6.80	34.1	54.5	20.4	49.8	9.41	7.76	7.20	39.24	38.90072	0.00 NORMAL
6/17/2022 9:17	11.85	3.14	95.57 61.55	895.1 894.9	1065.3	6.80 6.80	34.1 34.1	54.5	20.4	49.8	9.43 9.44	7.77	7.20 7.20	39.24	38.90123	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:18 6/17/2022 9:19	11.12 11.86	1.44 1.47	97.19	894.6	1065.1 1067.3	6.80	34.1	54.5 54.5	20.4	49.8 49.8	9.44	7.77	7.20	39.24 39.25	38.90162 38.90223	0.00 NORMAL
6/17/2022 9:20	11.67	2.78		894.4	1065.2	6.80	34.2	54.5	20.3	49.8	9.46	7.78	7.20	39.25	38.90362	0.00 NORMAL
6/17/2022 9:21	11.25	1.48	52.29	894.2	1065.8	6.80	34.2	54.4	20.3	49.8	9.47	7.77	7.20	39.25	38.90417	0.00 NORMAL
6/17/2022 9:22	12.00	6.60		894.1	1065.6	6.80	34.2	54.4	20.2	49.8	9.47	7.76	7.20	39.25	38.90428	0.00 NORMAL
6/17/2022 9:23	11.62	5.36		893.9	1062.8	6.80	34.2	54.4	20.2	49.8	9.47	7.77	7.19	39.25	38.90467	0.00 NORMAL
6/17/2022 9:24 6/17/2022 9:25	11.82 12.32	1.50 23.59		893.7 893.5	1063.2 1060.9	6.80 6.81	34.2 34.2	54.4 54.4	20.2	49.8 49.8	9.46 9.47	7.77	7.20 7.20	39.25 39.25	38.90489 38.90478	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:26	11.87	11.29		893.4	1058.2	6.81	34.2	54.5	20.2	49.8	9.47	7.77	7.20	39.25	38.90583	0.00 NORMAL
6/17/2022 9:27	12.22	2.09		893.3	1060.3	6.81	34.2	54.5	20.2	49.8	9.47	7.77	7.20	39.25	38.90667	0.00 NORMAL
6/17/2022 9:28	12.34	41.59		893.2	1056.0	6.81		54.5	20.2	49.8	9.48	7.77	7.20	39.25	38.90662	0.00 NORMAL
6/17/2022 9:29	12.08	14.58		893.2	1054.9	6.81		54.5	20.2	49.8	9.49	7.77	7.20	39.26	38.90734	0.00 NORMAL
6/17/2022 9:30 6/17/2022 9:31	12.14 12.07	2.44 32.25	51.89 60.65	893.1 893.1	1059.0 1055.1	6.81 6.81	34.3 34.3	54.5 54.4	20.2	49.8 49.9	9.50 9.51	7.78 7.79	7.20 7.20	39.26 39.26	38.90722 38.90644	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:32	11.90	9.01		893.1	1055.1	6.81		54.4	20.2	49.9	9.51	7.79	7.20	39.26	38.90672	0.00 NORMAL
6/17/2022 9:33	11.87	2.64	52.19	893.0	1058.6	6.81	34.3	54.4	20.1	49.9	9.52	7.79	7.20	39.26	38.90661	0.00 NORMAL
6/17/2022 9:34	11.90	43.37		892.9	1052.8	6.81	34.3	54.4	20.2	49.9	9.51	7.78	7.20	39.26	38.90689	0.00 NORMAL
6/17/2022 9:35	12.04	11.34		892.9	1049.5	6.81	34.3	54.4	20.2	49.9	9.51	7.77	7.20	39.26	38.90733	0.00 NORMAL
6/17/2022 9:36 6/17/2022 9:37	12.07 11.50	1.49 1.03		892.8 892.8	1053.2 1054.2	6.81 6.81	34.3 34.3	54.4 54.5	20.2	49.9 49.9	9.50 9.50	7.77	7.20	39.26	38.90778	0.00 NORMAL
6/17/2022 9:37	11.50	1.03		892.8 892.7	1054.2	6.81	34.3	54.5	20.2	49.9	9.50	7.77 7.77	7.20 7.20	39.26 39.26	38.90828 38.90872	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:39	12.36	20.67	59.59	892.7	1054.1	6.81	34.3	54.5	20.2	49.9	9.51	7.77	7.19	39.26	38.91027	0.00 NORMAL
6/17/2022 9:40	11.84	16.71		892.7	1051.6	6.81		54.5	20.1	49.9	9.52	7.78	7.19	39.26	38.91094	0.00 NORMAL
6/17/2022 9:41	11.88	1.93		892.7	1049.6	6.81		54.5	20.1	49.9	9.52	7.78	7.19	39.26	38.91155	0.00 NORMAL
6/17/2022 9:42	11.58	1.18		892.7	1050.3	6.81	34.3	54.4	20.1	49.9	9.52	7.78	7.19	39.26	38.91272	
6/17/2022 9:43 6/17/2022 9:44	11.93 12.03	4.07 3.68		892.7 892.6	1047.5 1052.7	6.81 6.81	34.3 34.4	54.4 54.4	20.1	49.9 49.9	9.51 9.50	7.77 7.77	7.20 7.20	39.26 39.26	38.91372 38.91478	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:45	11.20	0.89		892.6	1052.7	6.81		54.4	20.1	49.9	9.50	7.77	7.20	39.26	38.91444	0.00 NORMAL
6/17/2022 9:46	11.67	12.56		892.6	1057.2	6.81		54.5	20.1	49.9	9.49	7.77	7.19	39.27	38.91556	

Waste Fe	eed Data				
Time	Anatomical	Cytotoxic	Rx	Contract	Total Kg
8:00	116.5	248.2	141.8		506.6
9:00	118.4	252.2	144.1		514.7
10:00	116.2	247.5	141.4		505
11:00	28.0	59.6	34.0		121.6
12:00	70.4	149.9	85.7		306
13:00	144.5	307.8	175.9		628.1
14:00	121.3	258.3	147.6		527.2
15:00	134.5	286.5	163.7		584.6
16:00	59.8	127.4	72.8		260
Totals	909.4	1937.4	1107.1	0.0	3953.8

24 hour total Kg 5087.4

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/17/2022 9:47	11.66	6.60	40.31	892.6	1053.4	6.81	34.4	54.5	20.1	49.9	9.49	7.77	7.19	39.26	38.91661	0.00 NORMAL
6/17/2022 9:48	11.78	0.81	46.18	892.7	1057.8	6.81	34.4	54.5	20.0	49.9	9.49	7.76	7.19	39.27	38.91845	0.00 NORMAL
6/17/2022 9:49 6/17/2022 9:50	11.77 12.04	3.79 10.39	77.81 48.55	892.6 892.6	1055.7 1050.7	6.81 6.81	34.4 34.5	54.5 54.5	20.0	49.9 49.9	9.50 9.49	7.76 7.76	7.19 7.19	39.27 39.27	38.91967 38.92073	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:51	12.11	1.21	42.55	892.6	1055.6	6.81	34.5	54.5	20.0	49.9	9.48	7.76	7.20	39.27	38.92134	0.00 NORMAL
6/17/2022 9:52	11.53	1.16	59.82	892.5	1056.9	6.81	34.5	54.5	20.0	49.9	9.47	7.76	7.20	39.27	38.92089	0.00 NORMAL
6/17/2022 9:53	12.10	12.34	71.21	892.5	1050.7	6.81	34.5	54.4	19.9	49.9	9.46	7.76	7.20	39.26	38.92184	0.00 NORMAL
6/17/2022 9:54	12.04	2.69	42.47	892.4	1055.0	6.81	34.5	54.4	19.9	49.9	9.45	7.76	7.20	39.26	38.92234	0.00 NORMAL
6/17/2022 9:55 6/17/2022 9:56	11.64 11.91	1.39 15.30	66.50 63.29	892.3 892.3	1058.9 1054.4	6.81 6.81	34.6 34.6	54.4 54.4	19.9 19.9	49.9 49.9	9.45 9.45	7.76 7.76	7.19 7.19	39.26 39.26	38.92122 38.92117	0.00 NORMAL 0.00 NORMAL
6/17/2022 9:57	11.74	2.97	35.01	892.2	1055.9	6.81	34.6	54.5	19.9	49.9	9.45	7.76	7.19	39.26	38.92056	0.00 NORMAL
6/17/2022 9:58	11.58	1.15	49.21	892.1	1061.5	6.81	34.6	54.5	19.9	50.0	9.45	7.76	7.19	39.26	38.92006	0.00 NORMAL
6/17/2022 9:59	11.64	14.48	74.04	892.1	1057.1	6.81	34.6	54.5	19.9	50.0	9.45	7.76	7.19	39.26	38.92139	0.00 NORMAL
6/17/2022 10:00	11.50	3.96	34.21	892.1	1058.5	6.81	34.6	54.5	19.9	50.0	9.44	7.76	7.19	39.26	38.92217	0.00 NORMAL
6/17/2022 10:01 6/17/2022 10:02	11.41 11.45	3.84	53.44 60.37	892.1 892.0	1060.4 1051.0	6.81	34.6 34.6	54.5 54.5	19.8 19.8	50.0 50.0	9.42 9.41	7.76 7.76	7.19 7.19	39.26 39.26	38.923 38.92389	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:03	11.42	6.61	33.39	892.0	1043.9	6.82		54.4	19.8	50.0	9.40	7.76	7.19	39.26	38.92512	0.00 NORMAL
6/17/2022 10:04	11.11	0.97	47.36	892.0	1046.4	6.82	34.6	54.4	19.8	50.0	9.39	7.76	7.19	39.26	38.9264	0.00 NORMAL
6/17/2022 10:05	10.01	0.71	71.94	892.0	1047.2	6.82	34.7	54.4	19.8	50.0	9.39	7.76	7.19	39.26	38.92628	0.00 NORMAL
6/17/2022 10:06	10.52	0.54	95.33	891.9	1050.7	6.82		54.5	19.8	50.0	9.39	7.77	7.19	39.26	38.92579	0.00 NORMAL
6/17/2022 10:07 6/17/2022 10:08	10.75 10.11	0.00	88.86 82.35	891.8 891.6	1059.9 1066.4	6.82 6.82		54.5 54.5	19.8 19.8	50.0 50.0	9.39 9.39	7.79 7.79	7.19 7.19	39.26 39.26	38.92534 38.92573	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:09	10.11	0.53	79.97	891.3	1069.3	6.82	34.7	54.5	19.7	50.0	9.39	7.78	7.19	39.26	38.92706	0.00 NORMAL
6/17/2022 10:10	10.75	0.44	102.41	891.0	1068.1	6.82	34.8	54.5	19.7	50.0	9.39	7.77	7.19	39.26	38.92734	0.00 NORMAL
6/17/2022 10:11	11.31	0.54	88.32	890.7	1066.6	6.82		54.5	19.7	50.0	9.37	7.77	7.19	39.26	38.92773	0.00 NORMAL
6/17/2022 10:12	10.97	0.44	74.29	890.3	1067.1	6.82		54.5	19.7	50.0	9.35	7.76	7.19	39.26	38.9284	0.00 NORMAL
6/17/2022 10:13 6/17/2022 10:14	10.73 10.81	0.47	88.64 98.04	890.1 889.8	1067.6 1066.2	6.82 6.82	34.9 35.0	54.5 54.5	19.6 19.5	50.0 50.1	9.34 9.33	7.76 7.76	7.19 7.19	39.26 39.26	38.92834 38.92735	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:15	10.98	0.43	87.90	889.6	1066.8	6.82		54.5	19.5	50.1	9.32	7.76	7.19	39.26	38.92585	0.00 NORMAL
6/17/2022 10:16	10.84	0.60	100.41	889.4	1068.1	6.82		54.5	19.4	50.1	9.32	7.77	7.19	39.26	38.92451	0.00 NORMAL
6/17/2022 10:17	10.94	0.35	91.95	889.2	1066.2	6.82	35.2	54.5	19.3	50.1	9.31	7.79	7.18	39.25	38.92374	0.00 NORMAL
6/17/2022 10:18	11.15	0.50	75.40	889.0	1064.6	6.82	35.2	54.5	19.3	50.1	9.31	7.79	7.18	39.25	38.92295	0.00 NORMAL
6/17/2022 10:19 6/17/2022 10:20	10.87 10.92	0.32	69.98 96.14	888.8 888.6	1065.0 1063.5	6.82 6.82	35.3 35.4	54.5 54.5	19.2 19.1	50.1 50.2	9.31 9.31	7.79 7.78	7.19 7.19	39.25 39.25	38.9234 38.92229	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:21	11.06	0.42	89.66	888.4	1061.8	6.83	35.4	54.5	19.0	50.2	9.31	7.77	7.19	39.25	38.92067	0.00 NORMAL
6/17/2022 10:22	11.12	0.42	89.38	888.2	1061.9	6.83	35.5	54.5	19.0	50.2	9.30	7.77	7.19	39.25	38.91851	0.00 NORMAL
6/17/2022 10:23	10.81	0.29	81.58	888.0	1062.2	6.83	35.5	54.5	18.9	50.2	9.28	7.77	7.18	39.25	38.9169	0.00 NORMAL
6/17/2022 10:24	10.80	0.49	86.35 85.13	887.8 887.6	1060.9 1060.3	6.83	35.6	54.5 54.5	18.9 18.8	50.3 50.3	9.27 9.26	7.77	7.18	39.25	38.91562	0.00 NORMAL
6/17/2022 10:25 6/17/2022 10:26	11.28 11.11	0.21	87.55	887.5	1060.3	6.83 6.83	35.7 35.7	54.5	18.8	50.3	9.25	7.77	7.18 7.18	39.25 39.25	38.91367 38.91145	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:27	11.16	0.33	85.52	887.3	1060.2	6.83	35.8	54.5	18.7	50.3	9.25	7.78	7.18	39.25	38.91	0.00 NORMAL
6/17/2022 10:28	10.91	0.36	68.98	887.1	1059.8	6.83	35.8	54.5	18.7	50.4	9.25	7.78	7.18	39.25	38.90778	0.00 NORMAL
6/17/2022 10:29	10.77	0.18	64.47	886.9	1059.6	6.84	35.9	54.5	18.6	50.4	9.25	7.78	7.18	39.25	38.90628	0.00 NORMAL
6/17/2022 10:30 6/17/2022 10:31	10.65 10.28	0.28	66.98 60.32	886.8 886.6	1059.3 1059.7	6.84 6.84	35.9 36.0	54.5 54.5	18.6 18.5	50.4 50.4	9.24 9.22	7.78 7.78	7.18 7.18	39.24 39.24	38.90456 38.9035	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:31	10.28	0.09	74.39	886.4	1060.0	6.84		54.5	18.4	50.4	9.21	7.78	7.18	39.24	38.90322	0.00 NORMAL
6/17/2022 10:33	10.24	0.33	74.61	886.2	1058.2	6.84		54.5	18.4	50.5	9.20	7.78	7.18	39.24	38.90133	0.00 NORMAL
6/17/2022 10:34	10.17	0.26	53.53	886.0	1057.0	6.84	36.1	54.5	18.4	50.5	9.20	7.77	7.18	39.24	38.89872	0.00 NORMAL
6/17/2022 10:35	10.04	0.25	62.57	885.8	1057.7	6.84	36.1	54.5	18.4	50.5	9.20	7.76	7.18	39.24	38.89672	0.00 NORMAL
6/17/2022 10:36 6/17/2022 10:37	10.14 10.56	0.39	78.67 76.24	885.7 885.5	1056.9 1055.7	6.84 6.84		54.5 54.5	18.3 18.3	50.5 50.5	9.20 9.20	7.75 7.75	7.18 7.18	39.24 39.24	38.89478 38.89227	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:37	10.38	0.44	58.15	885.4	1055.7	6.84		54.5	18.3	50.5	9.20	7.75	7.18	39.24	38.89227	0.00 NORMAL
6/17/2022 10:39	9.86	0.33	69.55	885.3	1058.5	6.84		54.5	18.2	50.6	9.17	7.77	7.18	39.24	38.88944	0.00 NORMAL
6/17/2022 10:40	10.29	0.00	82.20	885.2	1056.6	6.84		54.5	18.1	50.6	9.16	7.78	7.18	39.23	38.88683	0.00 NORMAL
6/17/2022 10:41	10.44	0.18	61.20	885.1	1055.2	6.84		54.5	18.1	50.6	9.15	7.78	7.18	39.23	38.88522	0.00 NORMAL
6/17/2022 10:42 6/17/2022 10:43	10.20 9.92	0.17 0.18	64.57 88.70	884.9 884.8	1056.8 1057.8	6.84 6.84	36.4 36.5	54.5 54.5	18.1 18.0	50.6 50.7	9.14 9.14	7.78 7.78	7.18 7.18	39.23 39.23	38.88344 38.88182	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:43	10.35	0.18	90.64	884.7	1057.8	6.84	36.5	54.5	18.0	50.7	9.14	7.78	7.18	39.23	38.88121	0.00 NORMAL
6/17/2022 10:45	10.42	0.94	81.50	884.6	1058.9	6.84		54.5	17.9	50.7	9.14	7.78	7.18	39.23	38.88033	0.00 NORMAL
6/17/2022 10:46	10.48	0.47	90.61	884.5	1058.9	6.84	36.6	54.5	17.9	50.7	9.14	7.77	7.18	39.23	38.87949	0.00 NORMAL
6/17/2022 10:47	10.45	0.88	66.18	884.4	1057.5	6.85		54.5	17.8	50.7	9.14	7.76	7.19	39.23	38.87838	0.00 NORMAL
6/17/2022 10:48 6/17/2022 10:49	10.34 10.35	0.89	67.00 93.91	884.3 884.2	1058.4 1061.5	6.85 6.85		54.5 54.5	17.8 17.7	50.8 50.8	9.14 9.12	7.76 7.77	7.19 7.19	39.23 39.23	38.8766 38.87521	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:49	10.33	0.46	101.66	884.1	1061.5	6.85		54.5	17.7	50.8	9.12	7.77	7.19	39.23	38.8746	0.00 NORMAL
6/17/2022 10:51	10.85	0.53	120.80	884.0	1062.4	6.85		54.5	17.6	50.8	9.10	7.78	7.18	39.23	38.87383	0.00 NORMAL
6/17/2022 10:52	10.39	1.41	57.06	883.9	1062.0	6.85		54.5	17.6	50.8	9.09	7.78	7.18	39.22	38.87299	0.00 NORMAL
6/17/2022 10:53	10.13	0.54	68.75	883.8	1062.6	6.85		54.5	17.5	50.9	9.08	7.78	7.19	39.22	38.87066	0.00 NORMAL
6/17/2022 10:54 6/17/2022 10:55	10.52 10.91	0.30	99.70 122.68	883.8 883.7	1062.8 1058.0	6.85 6.85		54.5 54.5	17.5 17.4	50.9 50.9	9.08	7.78 7.78	7.19 7.19	39.22 39.22	38.86889 38.86777	0.00 NORMAL 0.00 NORMAL
6/17/2022 10:56	10.91	9.45	69.50	883.6	1058.0	6.85		54.5	17.4	50.9	9.08	7.78	7.19	39.22	38.86772	0.00 NORMAL
6/17/2022 10:57	9.94	591.81	66.33	883.6	1063.8	6.85		54.5	17.3	51.0	9.07	7.79	7.19	39.22	38.86644	0.00 NORMAL
6/17/2022 10:58	10.71	135.66	108.20	883.5	1056.9	6.85	37.2	54.5	17.3	51.0	9.07	7.79	7.19	39.22	38.8655	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/17/2022 10:59	10.76	2.69	51.48	883.4	1052.1	6.85	37.2	54.5	17.2	51.0	9.07	7.79	7.18	39.22	38.86455	0.00 NORMAL
6/17/2022 11:00	10.25	1.15	67.33	883.4	1057.1	6.85	37.3	54.5	17.2	51.0	9.07	7.78	7.19	39.22	38.86294	0.00 NORMAL
6/17/2022 11:01	10.23	1.16	118.96	883.3	1056.4	6.85	37.3	54.5	17.1	51.0	9.07	7.78	7.19	39.22	38.86144	0.00 NORMAL
6/17/2022 11:02	10.51	11.65	82.15	883.3	1052.1	6.85	37.4	54.5	17.1	51.1	9.07	7.78	7.19	39.22	38.86005	0.00 NORMAL
6/17/2022 11:03	10.33	623.75	55.32	883.3	1059.8	6.85	37.4	54.5	17.1	51.1	9.07	7.78	7.19	39.21	38.85844	0.00 NORMAL
6/17/2022 11:04	10.20	241.17	114.86 65.09	883.2 883.1	1058.4	6.85 6.85	37.5 37.5	54.5 54.5	17.0 17.0	51.1 51.1	9.07 9.07	7.78	7.19 7.19	39.21 39.21	38.85695 38.85528	0.00 NORMAL
6/17/2022 11:05 6/17/2022 11:06	10.60 10.44	5.20 221.81	63.04	883.1	1053.6 1057.7	6.85	37.5	54.5	17.0	51.1	9.07	7.78 7.78	7.19	39.21	38.85545	0.00 NORMAL 0.00 NORMAL
6/17/2022 11:07	10.44	62.32	137.01	883.0	1056.0	6.85	37.6	54.5	17.0	51.2	9.08	7.78	7.19	39.21	38.85505	0.00 NORMAL
6/17/2022 11:08	10.49	3.35	61.01	882.9	1050.2	6.85	37.6	54.5	16.9	51.2	9.08	7.78	7.19	39.21	38.85472	0.00 NORMAL
6/17/2022 11:09	10.59	1.09	62.56	882.9	1055.8	6.85	37.6	54.5	16.9	51.2	9.06	7.77	7.19	39.21	38.85461	0.00 NORMAL
6/17/2022 11:10	10.34	1.55	117.29	882.8	1056.2	6.86	37.7	54.5	16.9	51.2	9.04	7.76	7.19	39.21	38.85411	0.00 NORMAL
6/17/2022 11:11	10.61	2.33	79.11	882.7	1050.4	6.86	37.7	54.5	16.8	51.2	9.02	7.76	7.19	39.21	38.85272	0.00 NORMAL
6/17/2022 11:12	10.57	0.70	60.43	882.6	1057.2	6.86	37.7	54.5	16.8	51.2	9.00	7.76	7.19	39.20	38.85167	0.00 NORMAL
6/17/2022 11:13	10.20	0.66	117.92	882.5	1059.0	6.86	37.8	54.5	16.7	51.2	8.98	7.75	7.19	39.20	38.85072	0.00 NORMAL
6/17/2022 11:14 6/17/2022 11:15	10.35 10.29	3.67 17.39	87.87 70.26	882.5 882.5	1054.1 1058.4	6.86 6.86	37.8 37.9	54.5 54.5	16.7 16.6	51.3 51.3	8.96 8.93	7.75 7.76	7.19 7.19	39.20 39.20	38.85078 38.85067	0.00 NORMAL 0.00 NORMAL
6/17/2022 11:16	10.29	0.84	128.51	882.5	1058.4	6.86	37.9	54.5	16.6	51.3	8.91	7.70	7.19	39.20	38.85073	0.00 NORMAL
6/17/2022 11:17	10.30	0.86	83.36	882.5	1054.7	6.86	37.9	54.5	16.6	51.3	8.89	7.78	7.19	39.20	38.85151	0.00 NORMAL
6/17/2022 11:18	10.39	0.44	77.82	882.5	1057.4	6.86	38.0	54.5	16.6	51.3	8.86	7.78	7.19	39.20	38.85356	0.00 NORMAL
6/17/2022 11:19	10.27	0.51	114.89	882.6	1062.1	6.86	38.0	54.6	16.5	51.3	8.84	7.78	7.19	39.20	38.85517	0.00 NORMAL
6/17/2022 11:20	10.09	0.19	108.48	882.7	1061.6	6.86	38.1	54.6	16.5	51.4	8.82	7.78	7.19	39.20	38.85645	0.00 NORMAL
6/17/2022 11:21	11.41	2.29	150.05	882.8	1058.4	6.86	38.1	54.6	16.4	51.4	8.79	7.78	7.19	39.20	38.85678	0.00 NORMAL
6/17/2022 11:22	10.93	2.05	65.26	883.0	1058.9	6.86	38.2	54.5	16.4	51.4	8.77	7.79	7.19	39.20	38.85683	0.00 NORMAL
6/17/2022 11:23	10.34	0.62	80.15	883.1	1058.6	6.86	38.2	54.5	16.3	51.4	8.75	7.77	7.19	39.20	38.85645	0.00 NORMAL
6/17/2022 11:24 6/17/2022 11:25	11.07 11.21	0.86 0.56	111.86 110.97	883.3 883.4	1057.8 1058.0	6.86 6.86	38.3 38.3	54.5 54.5	16.2 16.2	51.4 51.5	8.72 8.70	7.76 7.77	7.19 7.19	39.21 39.21	38.85606 38.85689	0.00 NORMAL 0.00 NORMAL
6/17/2022 11:26	11.32	0.30	108.10	883.6	1058.0	6.86	38.4	54.5	16.1	51.5	8.67	7.77	7.19	39.21	38.85611	0.00 NORMAL
6/17/2022 11:27	11.10	0.41	153.64	883.8	1069.2	6.86	38.4	54.5	16.1	51.5	8.65	7.78	7.19	39.21	38.85506	0.00 NORMAL
6/17/2022 11:28	11.44	0.44	117.28	884.0	1069.9	6.86	38.5	54.5	16.1	51.5	8.62	7.78	7.19	39.21	38.85506	0.00 NORMAL
6/17/2022 11:29	11.65	0.61	113.39	884.2	1073.4	6.86	38.5	54.5	16.0	51.5	8.60	7.77	7.19	39.21	38.85367	0.00 NORMAL
6/17/2022 11:30	12.18	0.65	165.49	884.4	1070.8	6.86	38.5	54.5	16.0	51.5	8.57	7.78	7.19	39.21	38.85323	0.00 NORMAL
6/17/2022 11:31	12.09	0.74	101.12	884.6	1068.5	6.86	38.6	54.5	16.0	51.6	8.55	7.78	7.19	39.21	38.85278	0.00 NORMAL
6/17/2022 11:32	11.94	0.47	114.27	884.8	1074.0	6.86	38.6	54.5	15.9	51.6	8.52	7.79	7.19	39.21	38.85256	0.00 NORMAL
6/17/2022 11:33 6/17/2022 11:34	11.97 12.01	0.55 0.67	150.92 115.37	885.0 885.2	1073.1 1069.7	6.86 6.86	38.6 38.7	54.5 54.5	15.9 15.8	51.6 51.6	8.50 8.47	7.79 7.79	7.19 7.19	39.21 39.20	38.85268 38.85228	0.00 NORMAL 0.00 NORMAL
6/17/2022 11:35	12.22	0.07	116.49	885.4	1005.7	6.86	38.7	54.5	15.8	51.6	8.45	7.79	7.19	39.20	38.85128	0.00 NORMAL
6/17/2022 11:36	11.91	0.37	137.11	885.6	1075.3	6.86	38.8	54.5	15.8	51.7	8.42	7.81	7.20	39.20	38.85006	0.00 NORMAL
6/17/2022 11:37	12.28	0.70	126.27	885.8	1070.2	6.86	38.8	54.5	15.7	51.7	8.39	7.82	7.20	39.20	38.84884	0.00 NORMAL
6/17/2022 11:38	12.10	0.34	96.95	886.0	1072.2	6.86	38.9	54.5	15.7	51.7	8.37	7.82	7.21	39.20	38.84778	0.00 NORMAL
6/17/2022 11:39	12.25	7.77	77.90	886.2	1068.7	6.86	38.9	54.5	15.7	51.7	8.34	7.82	7.21	39.20	38.84589	0.00 NORMAL
6/17/2022 11:40	12.09	8.71	50.46	886.4	1065.4	6.86	38.9	54.5	15.6	51.7	8.32	7.83	7.22	39.20	38.84595	0.00 NORMAL
6/17/2022 11:41	12.18 12.49	2.86 10.42	58.95 84.35	886.6 886.8	1064.9 1062.7	6.86 6.86	38.9 39.0	54.5 54.5	15.6 15.6	51.7 51.8	8.30 8.27	7.84 7.85	7.22 7.23	39.20 39.20	38.84572	0.00 NORMAL 0.00 NORMAL
6/17/2022 11:42 6/17/2022 11:43	11.53	2.93	45.72	887.0	1062.7	6.86	39.0	54.5	15.5	51.8	8.25	7.85	7.23	39.20	38.84578 38.84583	0.00 NORMAL
6/17/2022 11:44	12.30	4.53	77.36	887.2	1064.3	6.86	39.0	54.5	15.5	51.8	8.22	7.86	7.24	39.20	38.84695	0.00 NORMAL
6/17/2022 11:45	12.04	7.48	63.25	887.4	1062.0	6.86	39.1	54.5	15.4	51.8	8.20	7.87	7.24	39.20	38.8475	0.00 NORMAL
6/17/2022 11:46	11.57	3.47	44.18	887.5	1063.7	6.86	39.1	54.5	15.4	51.8	8.17	7.88	7.25	39.20	38.84778	0.00 NORMAL
6/17/2022 11:47	12.21	6.93	79.40	887.7	1063.6	6.86	39.1	54.5	15.4	51.8	8.15	7.89	7.25	39.20	38.84761	0.00 NORMAL
6/17/2022 11:48	11.57	5.18	44.47	887.9	1060.6	6.86	39.1	54.5	15.4	51.9	8.13	7.90	7.26	39.20	38.84739	0.00 NORMAL
6/17/2022 11:49	11.91	1.19	42.86	888.0	1063.3	6.86	39.2	54.5	15.4	51.9	8.10	7.90	7.27	39.20	38.84806	0.00 NORMAL
6/17/2022 11:50 6/17/2022 11:51	12.16 11.59	10.28 4.14	70.69 35.26	888.2 888.3	1061.1 1059.0	6.86 6.86	39.2 39.2	54.5 54.5	15.4 15.3	51.9 51.9	8.08 8.05	7.91 7.92	7.27 7.28	39.19 39.19	38.84806 38.84855	0.00 NORMAL 0.00 NORMAL
6/17/2022 11:51	11.59	1.06	44.12	888.5	1059.0	6.86	39.2	54.5	15.3	51.9	8.03	7.92	7.28	39.19	38.84855	0.00 NORMAL
6/17/2022 11:53	11.99	7.62	78.40	888.6	1061.8	6.86	39.2	54.5	15.3	51.9	8.01	7.93	7.29	39.19	38.84889	0.00 NORMAL
6/17/2022 11:54	11.74	4.42	38.92	888.8	1061.9	6.86	39.3	54.5	15.3	51.9	7.98	7.94	7.30	39.19	38.84739	0.00 NORMAL
6/17/2022 11:55	12.07	1.68	50.12	889.0	1066.2	6.86	39.3	54.5	15.2	51.9	7.96	7.95	7.30	39.19	38.84727	0.00 NORMAL
6/17/2022 11:56	12.05	14.70	59.33	889.2	1062.5	6.86	39.3	54.5	15.2	51.9	7.94	7.96	7.31	39.19	38.84822	0.00 NORMAL
6/17/2022 11:57	11.92	3.87	30.61	889.4	1061.8	6.86	39.3	54.5	15.2	52.0	7.91	7.97	7.31	39.19	38.84811	0.00 NORMAL
6/17/2022 11:58	12.03	0.92	41.70	889.7	1066.5	6.86	39.3	54.5	15.2	52.0	7.89	7.99	7.32	39.19	38.84794	0.00 NORMAL
6/17/2022 11:59 6/17/2022 12:00	11.93 11.87	5.79 4.13	61.78 32.89	889.9 890.2	1062.5 1063.0	6.86 6.86	39.4 39.4	54.5 54.5	15.2 15.2	52.0 52.0	7.87 7.84	7.99 7.99	7.33 7.34	39.19 39.19	38.848 38.84761	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:00	11.87	1.41	41.13	890.2	1063.0	6.86	39.4	54.5	15.2	52.0	7.84	8.00	7.34	39.19	38.84683	0.00 NORMAL
6/17/2022 12:01	11.69	16.15	56.62	890.8	1063.0	6.86	39.5	54.5	15.1	52.0	7.80	8.01	7.35	39.18	38.84528	0.00 NORMAL
6/17/2022 12:03	11.69	5.03	29.76	891.1	1061.7	6.85	39.5	54.5	15.0	52.0	7.78	8.03	7.35	39.18	38.84478	0.00 NORMAL
6/17/2022 12:04	11.54	1.22	37.80	891.4	1066.4	6.85	39.5	54.5	15.0	52.0	7.76	8.04	7.36	39.18	38.84333	0.00 NORMAL
6/17/2022 12:05	11.61	13.57	69.18	891.7	1062.5	6.85	39.5	54.5	15.0	52.0	7.74	8.04	7.36	39.18	38.84189	0.00 NORMAL
6/17/2022 12:06	11.84	13.33	39.33	892.0	1061.5	6.85	39.5	54.5	15.0	52.1	7.73	8.04	7.37	39.17	38.8415	0.00 NORMAL
6/17/2022 12:07	11.69	1.84	40.67	892.3	1068.1	6.85	39.6	54.5	14.9	52.1	7.71	8.05	7.38	39.17	38.84066	0.00 NORMAL
6/17/2022 12:08	11.50	3.05	64.40	892.6	1066.4	6.85	39.6	54.5	14.9	52.1	7.69	8.06	7.39	39.17	38.83966	0.00 NORMAL
6/17/2022 12:09 6/17/2022 12:10	12.11 12.03	11.11 2.42	46.43 38.40	892.9 893.2	1063.7 1067.5	6.85 6.85	39.6 39.6	54.5 54.5	14.9 14.9	52.1 52.1	7.68 7.66	8.08	7.39 7.39	39.17 39.17	38.83805 38.83788	0.00 NORMAL 0.00 NORMAL
0/1//2022 12:10	12.03	2.42	38.40	073.2	1007.5	0.03	35.0	34.3	14.5	32.1	7.00	6.09	7.39	39.17	30.03/08	0.00 NORIVIAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/17/2022 12:11	12.02	13.95	72.26	893.5	1062.9	6.85	39.6	54.5	14.9	52.1	7.64	8.08	7.40	39.17	38.83766	0.00 NORMAL
6/17/2022 12:12	12.08	10.12	38.98	893.8	1059.1	6.85	39.6	54.5	14.9	52.1	7.63	8.09	7.40	39.17	38.83733	0.00 NORMAL
6/17/2022 12:13	12.15	1.92	39.31	894.0	1060.2	6.85	39.7	54.5	14.8	52.1	7.62	8.10	7.41	39.17	38.83783	0.00 NORMAL
6/17/2022 12:14 6/17/2022 12:15	12.32 11.71	14.65 4.20	66.11 39.57	894.3 894.6	1056.5 1056.5	6.85 6.85	39.7 39.7	54.5 54.5	14.8 14.8	52.1 52.1	7.60 7.59	8.11 8.12	7.42 7.42	39.17 39.17	38.83794 38.83771	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:16	12.14	3.39	50.32	894.9	1060.1	6.85	39.7	54.5	14.8	52.1	7.57	8.12	7.42	39.16	38.83793	0.00 NORMAL
6/17/2022 12:17	11.98	7.43	61.29	895.1	1057.6	6.85	39.7	54.5	14.8	52.2	7.56	8.12	7.43	39.16	38.83732	0.00 NORMAL
6/17/2022 12:18	11.76	3.33	34.93	895.4	1058.5	6.85	39.7	54.5	14.8	52.2	7.55	8.12	7.44	39.16	38.83838	0.00 NORMAL
6/17/2022 12:19	12.03	1.03	46.42	895.7	1064.8	6.85	39.8	54.5	14.8	52.2	7.54	8.13	7.44	39.16	38.8381	0.00 NORMAL
6/17/2022 12:20	11.77 12.18	3.63 6.92	58.24 48.73	896.0 896.2	1062.4	6.85	39.8 39.8	54.6	14.8	52.2 52.2	7.53 7.52	8.14 8.15	7.45 7.45	39.16 39.16	38.83765 38.83749	0.00 NORMAL
6/17/2022 12:21 6/17/2022 12:22	11.79	1.47	46.73	896.5	1063.4 1068.8	6.85 6.85	39.8	54.6 54.6	14.8 14.7	52.2	7.52	8.15	7.45	39.16	38.83727	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:23	11.97	6.58	78.59	896.8	1064.2	6.85	39.9	54.6	14.7	52.2	7.50	8.14	7.46	39.16	38.83704	0.00 NORMAL
6/17/2022 12:24	12.26	7.33	39.74	897.0	1061.2	6.85	39.9	54.5	14.6	52.2	7.49	8.15	7.46	39.16	38.83671	0.00 NORMAL
6/17/2022 12:25	11.93	1.67	41.09	897.3	1064.3	6.85	39.9	54.5	14.6	52.2	7.48	8.15	7.46	39.16	38.83671	0.00 NORMAL
6/17/2022 12:26	12.13	6.47	69.72	897.5	1061.4	6.85	40.0	54.5	14.5	52.2	7.47	8.16	7.47	39.16	38.83532	0.00 NORMAL
6/17/2022 12:27	11.77	5.21	44.67	897.7	1061.5	6.85	40.0	54.5	14.5	52.2	7.46	8.16	7.47	39.16	38.83437	0.00 NORMAL
6/17/2022 12:28 6/17/2022 12:29	12.15 11.99	7.67	58.84 60.93	897.9 898.1	1065.8 1064.9	6.86 6.86	40.0	54.5 54.5	14.5 14.5	52.3 52.3	7.45 7.44	8.17 8.18	7.47 7.47	39.16 39.16	38.83437 38.83321	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:30	11.54	3.70	37.24	898.4	1066.0	6.86	40.1	54.5	14.5	52.3	7.43	8.17	7.47	39.16	38.83326	0.00 NORMAL
6/17/2022 12:31	12.20	5.95	65.50	898.6	1067.5	6.86	40.1	54.6	14.5	52.3	7.42	8.17	7.48	39.16	38.83471	0.00 NORMAL
6/17/2022 12:32	11.87	12.53	48.77	898.9	1064.5	6.86	40.1	54.6	14.4	52.3	7.42	8.17	7.48	39.16	38.83432	0.00 NORMAL
6/17/2022 12:33	11.78	2.90	39.63	899.2	1067.1	6.86	40.2	54.6	14.4	52.3	7.41	8.18	7.48	39.16	38.83471	0.00 NORMAL
6/17/2022 12:34	11.98	2.85	72.65	899.4	1068.6	6.86	40.2	54.6	14.3	52.3	7.40	8.18	7.48	39.15	38.83426	0.00 NORMAL
6/17/2022 12:35 6/17/2022 12:36	11.64 12.04	3.00 1.20	60.07 61.04	899.7 900.0	1066.6 1070.2	6.86 6.86	40.3	54.6 54.5	14.3 14.2	52.3 52.4	7.39 7.39	8.19 8.19	7.48 7.48	39.15 39.15	38.83382 38.83254	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:37	12.04	4.91	68.78	900.4	1070.2	6.86	40.4	54.5	14.1	52.4	7.38	8.20	7.48	39.15	38.83171	0.00 NORMAL
6/17/2022 12:38	11.47	6.17	41.96	900.7	1068.7	6.86	40.4	54.5	14.1	52.4	7.38	8.21	7.48	39.15	38.83087	0.00 NORMAL
6/17/2022 12:39	12.19	5.09	67.61	901.0	1069.4	6.86	40.5	54.5	14.0	52.4	7.37	8.22	7.48	39.15	38.82915	0.00 NORMAL
6/17/2022 12:40	12.38	13.54	76.59	901.3	1066.0	6.86	40.5	54.5	14.0	52.4	7.37	8.21	7.49	39.15	38.82854	0.00 NORMAL
6/17/2022 12:41	11.85	3.86	47.00	901.5	1066.2	6.86	40.5	54.5	14.0	52.4	7.37	8.21	7.48	39.15	38.82782	0.00 NORMAL
6/17/2022 12:42 6/17/2022 12:43	12.29 12.12	3.12 10.86	87.32 83.75	901.7	1067.0 1063.8	6.86 6.86	40.6 40.6	54.5 54.6	14.0 14.0	52.4 52.5	7.36 7.36	8.21 8.21	7.48 7.48	39.15 39.15	38.82676 38.82537	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:44	11.99	2.89	55.40	902.2	1067.3	6.86	40.6	54.6	14.0	52.5	7.36	8.22	7.48	39.15	38.82515	0.00 NORMAL
6/17/2022 12:45	12.25	3.09	96.83	902.3	1068.1	6.86	40.7	54.6	13.9	52.5	7.36	8.22	7.48	39.15	38.82437	0.00 NORMAL
6/17/2022 12:46	11.99	4.74	61.47	902.5	1064.5	6.86	40.7	54.6	13.9	52.5	7.36	8.23	7.49	39.15	38.82315	0.00 NORMAL
6/17/2022 12:47	12.06	1.70	44.70	902.6	1067.8	6.86	40.7	54.6	13.8	52.5	7.36	8.24	7.49	39.15	38.8222	0.00 NORMAL
6/17/2022 12:48	12.15	3.82	75.06	902.7	1066.8	6.86	40.7	54.5	13.8	52.5	7.36	8.24	7.49	39.14	38.82132	0.00 NORMAL
6/17/2022 12:49 6/17/2022 12:50	11.76 12.24	7.24 13.87	55.65 57.27	902.8	1064.9 1068.8	6.86 6.86	40.8	54.5 54.5	13.8 13.7	52.5 52.6	7.36 7.36	8.23 8.23	7.48 7.48	39.14 39.14	38.82032 38.81865	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:51	12.18	6.05	64.33	903.1	1068.1	6.86	40.8	54.5	13.7	52.6	7.36	8.23	7.48	39.14	38.81804	0.00 NORMAL
6/17/2022 12:52	11.55	2.91	42.91	903.2	1067.7	6.86	40.9	54.5	13.7	52.6	7.36	8.23	7.48	39.14	38.81832	0.00 NORMAL
6/17/2022 12:53	12.34	3.32	67.11	903.3	1068.2	6.86	40.9	54.6	13.7	52.6	7.36	8.24	7.48	39.14	38.8191	0.00 NORMAL
6/17/2022 12:54	12.14	6.20	57.32	903.4	1065.2	6.86	40.9	54.6	13.7	52.6	7.36	8.24	7.48	39.14	38.82027	0.00 NORMAL
6/17/2022 12:55 6/17/2022 12:56	11.83	2.09	50.79 90.55	903.6	1066.2 1066.2	6.86 6.86	40.9 41.0	54.6	13.6	52.6	7.36 7.37	8.25	7.48	39.14	38.82132 38.82221	0.00 NORMAL 0.00 NORMAL
6/17/2022 12:57	12.33 11.87	4.00 41.27	52.11	903.9	1066.2	6.86	41.0	54.6 54.6	13.6 13.5	52.6 52.7	7.37	8.26 8.26	7.48 7.48	39.15 39.15	38.82299	0.00 NORMAL
6/17/2022 12:58	12.01	489.81	57.14	904.0	1067.5	6.86	41.1	54.6	13.5	52.7	7.37	8.26	7.48	39.15	38.8251	0.00 NORMAL
6/17/2022 12:59	12.28	46.58	86.93	904.1	1064.9	6.86	41.1	54.5	13.5	52.7	7.37	8.25	7.48	39.15	38.82494	0.00 NORMAL
6/17/2022 13:00	11.78	7.28	46.18	904.2	1062.9	6.87	41.1	54.5	13.4	52.7	7.38	8.25	7.48	39.15	38.82616	0.00 NORMAL
6/17/2022 13:01	12.28	2.70	59.51	904.3	1065.1	6.87	41.1	54.5	13.4	52.7	7.38	8.25	7.48	39.15	38.82671	0.00 NORMAL
6/17/2022 13:02 6/17/2022 13:03	12.29 11.90	9.16 3.43	72.31 41.97	904.4	1062.0 1062.5	6.87 6.87	41.2	54.5 54.5	13.3 13.3	52.7 52.7	7.39 7.39	8.26 8.26	7.48 7.48	39.15 39.15	38.82666 38.82644	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:03	12.54	5.17	66.00	904.5	1062.5	6.87	41.2	54.5	13.3	52.7	7.39	8.25	7.48	39.15	38.82483	0.00 NORMAL
6/17/2022 13:05	12.21	16.71	50.12	904.8	1061.6	6.87	41.3	54.6	13.3	52.8	7.40	8.28	7.48	39.15	38.82433	0.00 NORMAL
6/17/2022 13:06	12.08	2.95	40.53	905.0	1062.8	6.87	41.3	54.6	13.3	52.8	7.41	8.27	7.47	39.15	38.82483	0.00 NORMAL
6/17/2022 13:07	12.34	3.53	57.72	905.2	1064.1	6.87	41.3	54.6	13.3	52.8	7.42	8.26	7.47	39.15	38.82588	0.00 NORMAL
6/17/2022 13:08	12.20	18.48	44.81	905.3	1059.9	6.87	41.3	54.5	13.2	52.8	7.42	8.26	7.47	39.15	38.82627	0.00 NORMAL
6/17/2022 13:09 6/17/2022 13:10	12.13 12.27	7.35	39.45 65.02	905.5 905.7	1063.1 1062.7	6.87 6.87	41.3	54.5 54.5	13.2 13.2	52.8 52.8	7.43 7.44	8.27 8.27	7.47 7.47	39.15 39.15	38.82577 38.82644	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:10	12.27	13.66	37.48	905.9	1052.7	6.87	41.3	54.5	13.2	52.8	7.44	8.28	7.47	39.15	38.82688	0.00 NORMAL
6/17/2022 13:12	12.12	2.17	36.68	906.1	1060.9	6.87	41.3	54.5	13.2	52.8	7.45	8.28	7.47	39.15	38.82727	0.00 NORMAL
6/17/2022 13:13	11.89	1.48	44.37	906.3	1065.0	6.86	41.2	54.5	13.2	52.8	7.46	8.29	7.47	39.15	38.82772	0.00 NORMAL
6/17/2022 13:14	11.99	9.48	51.76	906.4	1060.3	6.86	41.2	54.5	13.3	52.8	7.47	8.29	7.47	39.15	38.82877	0.00 NORMAL
6/17/2022 13:15	12.38	16.90	32.90	906.6	1062.1	6.86	41.2	54.5	13.3	52.8	7.48	8.30	7.47	39.15	38.82955	0.00 NORMAL
6/17/2022 13:16 6/17/2022 13:17	11.55	2.52 7.97	39.71 60.99	906.8	1066.6 1062.7	6.86 6.86	41.2	54.5 54.5	13.3 13.4	52.8 52.8	7.48 7.49	8.29 8.28	7.47 7.47	39.15 39.15	38.82994 38.83005	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:17	11.89 12.32	14.92	38.76	907.0	1052.7	6.86	41.1	54.5	13.4	52.8	7.49	8.28	7.47	39.15	38.83005	0.00 NORMAL
6/17/2022 13:19	11.93	2.24	37.43	907.5	1064.1	6.86	41.1	54.6	13.5	52.8	7.51	8.28	7.46	39.15	38.8301	0.00 NORMAL
6/17/2022 13:20	11.77	3.00	51.72	907.7	1063.9	6.86	41.1	54.6	13.5	52.8	7.52	8.29	7.46	39.15	38.83083	0.00 NORMAL
6/17/2022 13:21	12.19	18.46	42.54	908.0	1059.4	6.86	41.1	54.6	13.5	52.8	7.53	8.29	7.46	39.15	38.83183	0.00 NORMAL
6/17/2022 13:22	11.92	4.07	33.31	908.3	1063.8	6.86	41.0	54.5	13.5	52.8	7.53	8.30	7.46	39.15	38.83289	0.00 NORMAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/17/2022 13:23	11.94	6.71	55.12	908.6	1062.9	6.86	41.0	54.5	13.5	52.8	7.54	8.30	7.46	39.15	38.83361	0.00 NORMAL
6/17/2022 13:24	12.20	25.13	36.66	908.8	1057.7	6.86	41.0	54.5	13.5	52.7	7.55	8.31	7.46	39.15	38.83355	0.00 NORMAL
6/17/2022 13:25	12.10	3.50	30.49	909.0	1059.8	6.86	40.9	54.5	13.5	52.7	7.56	8.31	7.46	39.15	38.83494	0.00 NORMAL
6/17/2022 13:26	11.94	1.62	40.09		1064.2	6.86	40.9	54.5	13.5	52.7	7.57	8.31	7.46	39.15	38.83516	0.00 NORMAL
6/17/2022 13:27	11.69	1.45	38.69		1063.4	6.86	40.9	54.5	13.6	52.7	7.58	8.30	7.46	39.15	38.83527	0.00 NORMAL
6/17/2022 13:28 6/17/2022 13:29	12.80	21.95 7.40	47.19 29.18		1062.3 1065.7	6.86 6.86	40.9 40.9	54.5 54.5	13.6 13.6	52.7 52.7	7.58 7.59	8.30 8.30	7.46 7.46	39.15 39.15	38.83622 38.83699	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:30	11.87 11.45	1.32	38.30		1065.7	6.86	40.9	54.6	13.6	52.7	7.60	8.30	7.46	39.15	38.83733	0.00 NORMAL
6/17/2022 13:31	12.19	6.96	51.24		1062.1	6.86	40.9	54.6	13.7	52.7	7.61	8.31	7.46	39.15	38.83733	0.00 NORMAL
6/17/2022 13:32	12.24	13.14	37.14		1059.0	6.86	40.9	54.6	13.7	52.7	7.62	8.31	7.46	39.15	38.8376	0.00 NORMAL
6/17/2022 13:33	11.93	1.93	33.03	911.0	1063.4	6.86	40.9	54.6	13.7	52.7	7.62	8.32	7.46	39.15	38.83933	0.00 NORMAL
6/17/2022 13:34	11.56	1.68	38.73		1064.7	6.85	40.9	54.5	13.7	52.6	7.63	8.32	7.46	39.15	38.84066	0.00 NORMAL
6/17/2022 13:35	12.05	0.99	36.79		1064.8	6.85	40.9	54.5	13.6	52.6	7.64	8.32	7.46	39.15	38.84222	0.00 NORMAL
6/17/2022 13:36	12.55	5.84	45.85		1064.9	6.85	40.8	54.5	13.6	52.6	7.65	8.33	7.46	39.15	38.84355	0.00 NORMAL
6/17/2022 13:37 6/17/2022 13:38	12.39 11.86	27.46 3.01	30.78 28.24		1063.8 1063.3	6.85 6.85	40.8	54.5 54.4	13.6 13.6	52.6 52.6	7.66 7.66	8.34 8.33	7.46 7.46	39.15 39.15	38.84467 38.84478	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:39	12.23	1.63	36.95		1063.5	6.85	40.8	54.5	13.6	52.6	7.67	8.32	7.46	39.15	38.84494	0.00 NORMAL
6/17/2022 13:40	12.00	1.76	39.89		1061.7	6.85	40.8	54.5	13.7	52.6	7.68	8.32	7.45	39.15	38.84572	0.00 NORMAL
6/17/2022 13:41	12.74	41.83	62.20		1058.4	6.85	40.8	54.5	13.7	52.6	7.69	8.32	7.45	39.15	38.84589	0.00 NORMAL
6/17/2022 13:42	12.14	13.78	28.31	912.7	1058.4	6.85	40.8	54.5	13.7	52.6	7.69	8.32	7.45	39.15	38.84589	0.00 NORMAL
6/17/2022 13:43	11.69	1.29	31.59	912.9	1057.8	6.85	40.8	54.6	13.8	52.6	7.70	8.33	7.45	39.15	38.84639	0.00 NORMAL
6/17/2022 13:44	12.17	0.46	38.45		1056.7	6.85	40.7	54.6	13.8	52.6	7.71	8.33	7.45	39.15	38.84639	0.00 NORMAL
6/17/2022 13:45	12.16	1.16	37.05		1057.4	6.85	40.7	54.5	13.8	52.6	7.72	8.33	7.45	39.15	38.84661	0.00 NORMAL
6/17/2022 13:46 6/17/2022 13:47	12.08 12.03	1.08 25.58	36.66 68.89		1064.6 1062.0	6.85 6.85	40.7	54.5 54.5	13.8 13.8	52.5 52.5	7.73 7.73	8.34 8.34	7.45 7.45	39.15 39.15	38.84678 38.84634	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:47	12.03	16.45	37.14		1052.0	6.85	40.7	54.5	13.8	52.5	7.73	8.34	7.45	39.15	38.8475	0.00 NORMAL
6/17/2022 13:49	12.13	1.61	40.80	914.0	1058.9	6.85	40.7	54.5	13.8	52.5	7.74	8.33	7.45	39.15	38.84789	0.00 NORMAL
6/17/2022 13:50	11.94	0.74	50.40		1059.8	6.85	40.6	54.5	13.8	52.5	7.76	8.33	7.45	39.15	38.84856	0.00 NORMAL
6/17/2022 13:51	12.21	11.06	72.05	914.4	1056.3	6.85	40.6	54.5	13.9	52.5	7.77	8.33	7.45	39.14	38.84917	0.00 NORMAL
6/17/2022 13:52	12.27	14.71	46.18	914.5	1061.6	6.85	40.6	54.5	13.9	52.5	7.78	8.33	7.45	39.15	38.84972	0.00 NORMAL
6/17/2022 13:53	11.33	2.08	47.46		1066.3	6.85	40.6	54.5	13.9	52.5	7.79	8.33	7.45	39.15	38.85061	0.00 NORMAL
6/17/2022 13:54	12.06	30.81	66.18		1062.2	6.85	40.5	54.5	14.0	52.5	7.80	8.33	7.45	39.15	38.85144	0.00 NORMAL
6/17/2022 13:55	12.17	20.20	35.47		1059.5	6.85	40.5	54.5	14.0	52.4	7.80	8.34	7.44	39.15	38.85211	0.00 NORMAL
6/17/2022 13:56 6/17/2022 13:57	12.01 11.99	2.01 5.03	40.50 52.78		1064.1 1062.3	6.85 6.85	40.5 40.5	54.5 54.5	14.0 14.1	52.4 52.4	7.81 7.82	8.34 8.34	7.44 7.44	39.15 39.15	38.85183 38.85122	0.00 NORMAL 0.00 NORMAL
6/17/2022 13:58	12.38	26.70	45.74		1057.9	6.85	40.5	54.5	14.1	52.4	7.83	8.33	7.45	39.15	38.85183	0.00 NORMAL
6/17/2022 13:59	12.20	3.35	34.32		1062.3	6.85	40.5	54.5	14.1	52.4	7.84	8.32	7.45	39.15	38.85239	0.00 NORMAL
6/17/2022 14:00	11.71	1.29	42.14	916.0	1064.4	6.85	40.5	54.5	14.1	52.4	7.85	8.32	7.44	39.15	38.85284	0.00 NORMAL
6/17/2022 14:01	12.01	1.15	39.62	916.2	1063.7	6.85	40.5	54.5	14.1	52.4	7.86	8.32	7.44	39.14	38.85239	0.00 NORMAL
6/17/2022 14:02	12.31	1.27	39.48		1066.9	6.85	40.5	54.5	14.0	52.4	7.87	8.33	7.44	39.14	38.85283	0.00 NORMAL
6/17/2022 14:03	12.06	1.27	38.88		1070.8	6.84	40.5	54.5	14.1	52.4	7.88	8.33	7.44	39.14	38.85311	0.00 NORMAL
6/17/2022 14:04 6/17/2022 14:05	11.86 12.34	1.04	39.60 42.02		1071.2 1071.4	6.84 6.84	40.4	54.5 54.5	14.1 14.1	52.3 52.3	7.88 7.89	8.33 8.34	7.44 7.44	39.14 39.14	38.85361 38.85433	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:06	12.34	1.13	40.66		1071.4	6.84	40.5	54.5	14.1	52.3	7.89	8.33	7.44	39.14	38.85327	0.00 NORMAL
6/17/2022 14:07	12.30	1.05	39.51	917.1	1071.9	6.84	40.5	54.5	14.1	52.3	7.91	8.32	7.44	39.14	38.85255	0.00 NORMAL
6/17/2022 14:08	12.31	1.52	38.64		1071.9	6.84	40.5	54.5	14.0	52.3	7.92	8.31	7.44	39.14	38.85266	0.00 NORMAL
6/17/2022 14:09	12.36	1.31	38.65	917.4	1070.9	6.84	40.5	54.5	14.1	52.3	7.93	8.31	7.44	39.14	38.8521	0.00 NORMAL
6/17/2022 14:10	12.38	1.88	37.43	917.6	1069.0	6.84	40.5	54.5	14.1	52.3	7.94	8.32	7.44	39.14	38.85205	0.00 NORMAL
6/17/2022 14:11	12.40	1.16	38.02		1066.9	6.84	40.5	54.5	14.0	52.3	7.95	8.32	7.44	39.14	38.85227	0.00 NORMAL
6/17/2022 14:12	12.49	1.33	39.55		1064.9	6.84	40.5	54.5	14.0	52.3	7.95	8.32	7.44	39.14	38.85216	0.00 NORMAL
6/17/2022 14:13 6/17/2022 14:14	12.56 12.60	2.07	37.92 36.01		1062.7 1060.9	6.83 6.83	40.5 40.5	54.5 54.5	14.0 14.0	52.3 52.3	7.96 7.97	8.33 8.33	7.44 7.44	39.14 39.14	38.85244 38.85288	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:14	12.50	2.29	34.81		1050.9	6.83	40.5	54.5	14.0	52.3	7.97	8.33	7.44	39.14	38.85288	0.00 NORMAL
6/17/2022 14:16	12.29	1.65	32.84		1060.5	6.83	40.4	54.5	14.1	52.3	7.99	8.31	7.43	39.14	38.85338	0.00 NORMAL
6/17/2022 14:17	12.32	1.90	43.38		1061.7	6.83	40.4	54.5	14.1	52.3	8.00	8.30	7.44	39.14	38.85299	0.00 NORMAL
6/17/2022 14:18	12.32	2.41	38.30	919.1	1062.5	6.83	40.4	54.5	14.1	52.3	8.01	8.30	7.44	39.14	38.85266	0.00 NORMAL
6/17/2022 14:19	12.32	2.55	37.46		1062.9	6.83	40.4	54.5	14.1	52.2	8.02	8.31	7.44	39.14	38.85126	0.00 NORMAL
6/17/2022 14:20	12.28	1.29	36.79		1063.3	6.83	40.4	54.5	14.1	52.2	8.02	8.31	7.44	39.14	38.84993	0.00 NORMAL
6/17/2022 14:21 6/17/2022 14:22	12.20 12.22	1.56 1.08	36.86 38.36		1062.7	6.83	40.4	54.5	14.1 14.1	52.2	8.03 8.04	8.31	7.44 7.43	39.14	38.84966	0.00 NORMAL
6/17/2022 14:22	12.22	1.08	38.36 44.54		1064.1 1066.7	6.82 6.82	40.4	54.5 54.5	14.1	52.2 52.2	8.04	8.31 8.31	7.43	39.14 39.13	38.85032 38.85121	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:24	12.16	1.65	41.05		1069.5	6.82	40.4	54.5	14.1	52.2	8.06	8.31	7.43	39.13	38.85216	0.00 NORMAL
6/17/2022 14:25	12.41	20.33	54.17		1067.0	6.82	40.4	54.5	14.1	52.2	8.07	8.31	7.43	39.13	38.85226	0.00 NORMAL
6/17/2022 14:26	12.12	24.22	31.00		1066.1	6.82	40.3	54.5	14.1	52.2	8.08	8.30	7.44	39.13	38.85349	0.00 NORMAL
6/17/2022 14:27	11.75	2.41	40.17	919.6	1065.9	6.82	40.3	54.5	14.1	52.2	8.09	8.30	7.44	39.13	38.85527	0.00 NORMAL
6/17/2022 14:28	12.22	11.62	56.88		1061.3	6.82	40.3	54.5	14.1	52.2	8.10	8.29	7.44	39.13	38.85638	0.00 NORMAL
6/17/2022 14:29	12.04	7.92	46.26		1059.5	6.82	40.3	54.5	14.2	52.2	8.11	8.28	7.43	39.13	38.85782	0.00 NORMAL
6/17/2022 14:30	11.87	1.38	44.92		1065.3	6.82	40.3	54.5	14.2	52.2	8.12	8.28	7.43	39.13	38.85899	0.00 NORMAL
6/17/2022 14:31	11.68	8.39	60.55		1064.1	6.81	40.3	54.5	14.2	52.1	8.13	8.27	7.43	39.13	38.8591	0.00 NORMAL
6/17/2022 14:32 6/17/2022 14:33	12.01 11.96	26.66 3.14	46.27 44.92		1060.6 1065.0	6.81 6.81	40.3	54.5 54.5	14.3 14.3	52.1 52.1	8.14 8.14	8.26 8.25	7.43 7.43	39.13 39.13	38.85938 38.85893	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:34	11.73	2.07	53.40		1065.0	6.81	40.3	54.5	14.3	52.1	8.15	8.24	7.43	39.13	38.85904	0.00 NORMAL
0, 1., 2022 17.37	11./3	2.07	33.40	713.3	2003.2	0.01	70.5	34.3	17.5	J2.1	0.13	0.24	7.73	33.13	30.03304	J.OU ITOTAVIAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP OpMode
6/17/2022 14:35	12.33	25.57	67.20	919.5	1059.4	6.81	40.2	54.5	14.3	52.1	8.16	8.24	7.43	39.13	38.85904	0.00 NORMAL
6/17/2022 14:36	12.10	8.32	38.84	919.4	1061.4	6.81	40.2	54.5	14.3	52.1	8.17	8.22	7.42	39.13	38.85882	0.00 NORMAL
6/17/2022 14:37	11.79	1.55	48.28	919.4	1064.1	6.81	40.2	54.5	14.3	52.1	8.18	8.21	7.42	39.14	38.85976	0.00 NORMAL
6/17/2022 14:38	11.76	1.29	43.93	919.3	1063.1	6.81	40.2	54.5	14.3	52.1	8.19	8.20	7.41	39.13	38.86049	0.00 NORMAL
6/17/2022 14:39 6/17/2022 14:40	12.20 12.00	1.59 0.91	42.87 42.73	919.3 919.2	1064.7 1070.0	6.81	40.2	54.5 54.5	14.3 14.3	52.1 52.0	8.20 8.21	8.19 8.18	7.41 7.40	39.14 39.14	38.86293 38.86427	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:41	12.12	26.19	73.37	919.2	1064.9	6.80	40.2	54.5	14.4	52.0	8.22	8.17	7.40	39.14	38.86483	0.00 NORMAL
6/17/2022 14:42	12.53	26.63	35.69	919.2	1060.1	6.80	40.2	54.5	14.4	52.0	8.23	8.16	7.39	39.14	38.86522	0.00 NORMAL
6/17/2022 14:43	12.18	1.97	36.68	919.2	1058.3	6.80	40.1	54.6	14.4	52.0	8.24	8.14	7.39	39.14	38.86605	0.00 NORMAL
6/17/2022 14:44	12.18	1.17	43.35	919.1	1056.6	6.80	40.1	54.5	14.4	52.0	8.25	8.13	7.38	39.14	38.86666	0.00 NORMAL
6/17/2022 14:45	12.10	1.28 1.70	45.17	919.1	1056.8	6.80	40.2	54.5 54.5	14.4	52.0	8.26	8.12	7.37	39.14 39.14	38.86677	0.00 NORMAL
6/17/2022 14:46 6/17/2022 14:47	12.18 12.05	17.15	51.41 68.94	919.1 919.0	1062.5 1063.0	6.80	40.2	54.5	14.4 14.4	52.0 52.0	8.27 8.27	8.11 8.09	7.37 7.36	39.14	38.86666 38.86683	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:48	11.55	7.83	36.27	919.0	1065.1	6.80	40.2	54.5	14.3	52.0	8.28	8.09	7.36	39.13	38.86816	0.00 NORMAL
6/17/2022 14:49	12.02	4.23	56.33	919.0	1064.8	6.80	40.1	54.5	14.3	52.0	8.29	8.09	7.35	39.13	38.86883	0.00 NORMAL
6/17/2022 14:50	12.28	28.02	52.01	919.0	1060.6	6.80	40.1	54.5	14.3	51.9	8.30	8.09	7.35	39.14	38.86961	0.00 NORMAL
6/17/2022 14:51	11.71	4.69	39.65	919.0	1062.4	6.79	40.2	54.5	14.3	51.9	8.31	8.08	7.34	39.14	38.86994	0.00 NORMAL
6/17/2022 14:52	12.03	6.26 11.00	58.36 50.80	919.1 919.1	1064.7 1062.0	6.79	40.2	54.5 54.5	14.4 14.4	51.9 51.9	8.32	8.07	7.33	39.14 39.13	38.87072	0.00 NORMAL 0.00 NORMAL
6/17/2022 14:53 6/17/2022 14:54	11.70 11.79	2.51	41.38	919.1	1062.0	6.79 6.79	40.2	54.6	14.4	51.9	8.32 8.33	8.06 8.05	7.33 7.32	39.13	38.87061 38.87017	0.00 NORMAL
6/17/2022 14:55	12.21	17.37	63.39	919.0	1063.9	6.79	40.2	54.6	14.4	51.9	8.34	8.03	7.31	39.13	38.87133	0.00 NORMAL
6/17/2022 14:56	11.60	297.28	35.07	919.0	1062.7	6.79	40.2	54.5	14.4	51.9	8.35	8.02	7.31	39.13	38.87128	1.00 NORMAL
6/17/2022 14:57	11.98	267.23	56.11	918.9	1066.1	6.79	40.2	54.5	14.4	51.9	8.36	8.01	7.30	39.13	38.87189	1.00 NORMAL
6/17/2022 14:58	11.85	8.93	64.71	918.9	1067.2	6.79	40.2	54.5	14.3	51.9	8.36	8.00	7.30	39.13	38.87233	1.00 NORMAL
6/17/2022 14:59 6/17/2022 15:00	11.42 12.23	2.15 7.34	59.59 85.67	918.8 918.7	1067.9 1069.5	6.78 6.78	40.2	54.5 54.5	14.3 14.3	51.9 51.9	8.37 8.38	7.98 7.97	7.29 7.28	39.13 39.13	38.87378 38.87511	1.00 NORMAL 1.00 NORMAL
6/17/2022 15:00	12.23	135.60	61.80	918.7	1069.5	6.78	40.2	54.5	14.3	51.9	8.38	7.97	7.28	39.13	38.87544	1.00 NORMAL
6/17/2022 15:02	11.57	627.06	68.76	918.5	1071.0	6.78	40.2	54.5	14.3	51.9	8.39	7.95	7.27	39.13	38.87616	1.00 NORMAL
6/17/2022 15:03	12.09	20.07	85.03	918.4	1070.3	6.78	40.2	54.5	14.3	51.9	8.40	7.93	7.26	39.13	38.87655	1.00 NORMAL
6/17/2022 15:04	11.70	4.13	61.13	918.3	1070.9	6.78	40.3	54.5	14.3	51.9	8.41	7.92	7.26	39.13	38.87683	1.00 NORMAL
6/17/2022 15:05	12.00	3.16	78.57	918.2	1074.7	6.78	40.3	54.5	14.2	51.9	8.41	7.92	7.25	39.14	38.87767	1.00 NORMAL
6/17/2022 15:06 6/17/2022 15:07	11.91 11.82	5.24 2.45	83.56 65.40	918.1 918.0	1072.1 1072.2	6.78 6.78	40.3	54.5 54.5	14.2 14.2	51.9 51.9	8.42 8.43	7.92 7.91	7.25 7.24	39.14 39.14	38.87794 38.87778	1.00 NORMAL 1.00 NORMAL
6/17/2022 15:08	12.27	3.56	82.37	917.9	1072.2	6.78	40.3	54.5	14.2	51.9	8.43	7.91	7.24	39.14	38.87822	1.00 NORMAL
6/17/2022 15:09	12.07	3.49	79.34	917.8	1072.0	6.77	40.4	54.5	14.2	51.9	8.44	7.90	7.23	39.14	38.879	1.00 NORMAL
6/17/2022 15:10	12.02	1.55	67.92	917.7	1074.4	6.77	40.4	54.6	14.1	51.9	8.45	7.89	7.22	39.14	38.87901	1.00 NORMAL
6/17/2022 15:11	12.21	2.99	86.12	917.5	1076.4	6.77	40.4	54.6	14.1	51.9	8.45	7.87	7.21	39.14	38.87906	1.00 NORMAL
6/17/2022 15:12 6/17/2022 15:13	12.19	4.60 1.83	73.81 54.77	917.4	1073.2 1075.9	6.77 6.77	40.5 40.5	54.6 54.6	14.1 14.1	51.9 51.9	8.46 8.47	7.86 7.85	7.21 7.20	39.14 39.14	38.87917 38.87789	1.00 NORMAL
6/17/2022 15:14	12.14 12.25	5.20	78.51	917.3 917.3	1075.9	6.77	40.5	54.6	14.1	51.9	8.47	7.84	7.20	39.14	38.87695	1.00 NORMAL 1.00 NORMAL
6/17/2022 15:15	12.20	4.83	63.60	917.2	1071.1	6.77	40.6	54.6	14.0	51.9	8.48	7.83	7.19	39.14	38.87584	1.00 NORMAL
6/17/2022 15:16	12.39	1.95	61.00	917.1	1073.0	6.77	40.6	54.5	14.0	51.9	8.48	7.82	7.19	39.14	38.87533	1.00 NORMAL
6/17/2022 15:17	12.53	5.12	77.80	917.1	1071.5	6.77	40.6	54.5	13.9	51.9	8.49	7.81	7.18	39.14	38.87484	1.00 NORMAL
6/17/2022 15:18	12.31	8.94	50.30	917.0	1068.6	6.77	40.6	54.5	13.9	51.9	8.49	7.80	7.17	39.14	38.87411	1.00 NORMAL
6/17/2022 15:19 6/17/2022 15:20	12.54 12.70	2.72 19.67	56.09 75.80	916.9 916.8	1070.0 1066.3	6.77 6.77	40.6 40.6	54.5 54.5	13.9 13.9	51.9 51.9	8.50 8.51	7.79 7.78	7.17 7.17	39.14 39.14	38.87373 38.87362	1.00 NORMAL 1.00 NORMAL
6/17/2022 15:21	12.07	5.12	48.87	916.7	1066.4	6.77	40.6	54.5	13.9	51.9	8.51	7.79	7.17	39.14	38.87373	
6/17/2022 15:22	12.43	5.68	76.43	916.6	1068.8	6.77	40.6	54.5	13.9	51.9	8.52	7.79	7.16	39.14	38.87367	
6/17/2022 15:23	12.27	7.30	75.43	916.5	1067.2	6.76	40.7	54.6	13.9	51.9	8.52	7.79	7.15	39.14	38.87312	1.00 NORMAL
6/17/2022 15:24	11.90	2.83	47.77	916.3	1068.4	6.76	40.7	54.6	13.9	51.9	8.53	7.79	7.15	39.14	38.87223	1.00 NORMAL
6/17/2022 15:25 6/17/2022 15:26	12.45 11.95	12.09 13.68	69.65 45.27	916.2 916.1	1068.6 1065.6	6.76 6.76	40.7	54.6 54.6	13.9 13.9	51.9 51.9	8.53 8.53	7.78 7.77	7.15 7.14	39.14 39.14	38.87084	1.00 NORMAL 1.00 NORMAL
6/17/2022 15:26	12.30	2.55	45.27	916.1	1065.6	6.76	40.7	54.6	13.9	51.9	8.53 8.54	7.77	7.14	39.14	38.87006 38.87056	
6/17/2022 15:28	12.48	13.48	63.52	915.9	1065.5	6.76	40.7	54.6	13.8	51.9	8.54	7.76	7.14	39.14	38.86979	
6/17/2022 15:29	11.70	193.78	42.01	915.8	1065.3	6.76	40.8	54.5	13.8	51.9	8.55	7.75	7.14	39.14	38.87006	
6/17/2022 15:30	12.34	124.21	66.05	915.6	1066.5	6.76	40.8	54.5	13.7	51.9	8.55	7.75	7.14	39.14	38.869	
6/17/2022 15:31	12.22	28.95	51.09	915.5	1063.5	6.76	40.8	54.5	13.7	51.9	8.55	7.74	7.14	39.14	38.86862	
6/17/2022 15:32 6/17/2022 15:33	11.69 12.30	4.34 7.96	37.59 62.82	915.3 915.1	1063.6 1064.3	6.76 6.76	40.8	54.5 54.5	13.7 13.7	51.9 51.9	8.56 8.56	7.73 7.72	7.13 7.13	39.14 39.15	38.86834 38.86762	1.00 NORMAL 1.00 NORMAL
6/17/2022 15:34	11.99	17.58	43.36	914.9	1060.6	6.76	40.8	54.5	13.7	51.9	8.56	7.72	7.13	39.15	38.8674	
6/17/2022 15:35	12.04	7.97	38.56	914.7	1063.3	6.75	40.8	54.5	13.8	51.9	8.57	7.73	7.13	39.15	38.86723	1.00 NORMAL
6/17/2022 15:36	12.39	30.91	73.14	914.5	1062.2	6.75	40.8	54.6	13.8	51.9	8.57	7.73	7.13	39.15	38.86673	
6/17/2022 15:37	11.95	22.79	37.01	914.2	1058.5	6.75	40.7	54.6	13.8	51.9	8.57	7.73	7.13	39.15	38.86596	1.00 NORMAL
6/17/2022 15:38 6/17/2022 15:39	12.14 12.20	2.17 15.00	39.87 58.30	914.0 913.7	1061.9 1061.0	6.75 6.75	40.7	54.6 54.6	13.8 13.8	51.9 51.9	8.57 8.58	7.73 7.72	7.13 7.13	39.15 39.14	38.8649 38.86368	
6/17/2022 15:39	12.20	23.72	36.30	913.7	1051.0	6.75	40.7	54.6	13.8	51.9	8.58	7.72	7.13	39.14	38.86218	
6/17/2022 15:41	12.27	2.85	36.56	913.4	1063.6	6.75	40.8	54.6	13.8	51.8	8.58	7.71	7.13	39.14	38.86057	1.00 NORMAL
6/17/2022 15:42	12.08	21.78	57.42	913.3	1062.5	6.75	40.8	54.6	13.8	51.8	8.58	7.71	7.13	39.14	38.86007	1.00 NORMAL
6/17/2022 15:43	12.11	28.13	33.99	913.2	1059.2	6.74	40.8	54.5	13.7	51.8	8.58	7.70	7.13	39.14	38.85951	1.00 NORMAL
6/17/2022 15:44	12.12	2.90	34.24	913.2	1063.6	6.74	40.8	54.5	13.7	51.8	8.58	7.69	7.13	39.14	38.85812	
6/17/2022 15:45 6/17/2022 15:46	11.92 12.06	4.92 20.47	47.49 42.53	913.2 913.3	1064.4 1061.1	6.74 6.74	40.8	54.5 54.5	13.7 13.7	51.8 51.8	8.58 8.58	7.69 7.68	7.13 7.13	39.14 39.14	38.85757 38.85624	1.00 NORMAL 1.00 NORMAL
3/11/2022 13.40	12.00	20.47	42.33	J1J.J	1001.1	0.74	70.0	J+.J	13.7	51.0	0.36	7.00	7.13	33.14	30.03024	1.00 NONVAL

TheDate	OX6min	COmin	NOXmin	PrimTemp	SecTemp	SNCR	DemTemp	CarbTemp	DiffTemp	IDFanTemp	QunchPH	CondPH	AtomPH	AtomA	AtomB	HEPADP	OpMode
6/17/2022 15:47	11.93	3.99	34.77	913.3	1066.0	6.74	40.9	54.5	13.7	51.8	8.58	7.67	7.13	39.14	38.85479	1.00	NORMAL
6/17/2022 15:48	11.93	29.44	58.22	913.3	1065.0	6.74	40.9	54.6	13.7	51.8	8.58	7.67	7.13	39.14	38.85329	1.00	NORMAL
6/17/2022 15:49	11.99	50.89	36.03	913.4	1061.0	6.74	40.9	54.6	13.7	51.8	8.58	7.66	7.13	39.14	38.85179	1.00	NORMAL
6/17/2022 15:50	11.93	4.38	33.53	913.4	1063.4	6.73	40.9	54.6	13.7	51.8	8.58	7.67	7.14	39.14	38.85124	1.00	NORMAL
6/17/2022 15:51	12.01	6.09	49.43	913.5	1063.3	6.73	40.9	54.6	13.7	51.8	8.58	7.68	7.14	39.14	38.8499	1.00	NORMAL
6/17/2022 15:52	12.03	42.02	36.91	913.5	1058.7	6.73	40.9	54.6	13.7	51.8	8.58	7.68	7.14	39.14	38.84851	1.00	NORMAL
6/17/2022 15:53	11.94	23.00	34.54	913.5	1063.1	6.73	40.9	54.6	13.6	51.8	8.58	7.67	7.14	39.14	38.84706	1.00	NORMAL
6/17/2022 15:54	11.88	12.90	58.28	913.6	1062.6	6.73	40.9	54.6	13.6	51.8	8.58	7.67	7.14	39.14	38.84595	1.00	NORMAL
6/17/2022 15:55	12.06	26.46	49.75	913.6	1057.2	6.73	40.9	54.5	13.6	51.8	8.58	7.66	7.14	39.14	38.8454	1.00	NORMAL
6/17/2022 15:56	12.00	2.21	44.88	913.6	1059.8	6.73	40.9	54.5	13.6	51.8	8.58	7.66	7.14	39.14	38.84429	1.00	NORMAL
6/17/2022 15:57	11.77	2.43	71.06	913.6	1062.3	6.72	41.0	54.5	13.6	51.8	8.57	7.65	7.14	39.14	38.84312	1.00	NORMAL
6/17/2022 15:58	11.97	32.95	51.55	913.5	1057.2	6.72	41.0	54.5	13.5	51.8	8.57	7.64	7.14	39.14	38.84162	1.00	NORMAL
6/17/2022 15:59	11.93	6.87	28.89	913.5	1060.6	6.72	41.0	54.5	13.5	51.8	8.57	7.64	7.14	39.13	38.8414	1.00	NORMAL
6/17/2022 16:00	11.51	1.34	48.89	913.5	1065.7	6.72	41.0	54.6	13.5	51.8	8.57	7.63	7.15	39.13	38.83995	1.00	NORMAL
6/17/2022 16:01	11.79	15.69	67.62	913.5	1061.3	6.72	41.0	54.6	13.5	51.8	8.56	7.63	7.15	39.13	38.8389	1.00	NORMAL
6/17/2022 16:02	12.10	16.30	30.99	913.5	1060.8	6.72	41.1	54.6	13.5	51.8	8.56	7.62	7.15	39.13	38.83784	1.00	NORMAL
6/17/2022 16:03	11.76	1.50	46.22	913.5	1065.4	6.71	41.1	54.6	13.5	51.8	8.55	7.63	7.15	39.13	38.83712	1.00	NORMAL
6/17/2022 16:04	11.83	21.10	65.48	913.5	1061.6	6.71	41.1	54.6	13.5	51.8	8.55	7.64	7.15	39.13	38.83668	1.00	NORMAL
6/17/2022 16:05	11.95	7.12	31.54	913.4	1060.6	6.71	41.1	54.6	13.4	51.8	8.54	7.63	7.15	39.13	38.83601	1.00	NORMAL
6/17/2022 16:06	11.91	1.52	47.16	913.4	1064.6	6.71	41.2	54.6	13.4	51.8	8.53	7.63	7.15	39.13	38.83601	1.00	NORMAL
6/17/2022 16:07	12.01	33.36	64.02	913.4	1060.6	6.71	41.2	54.6	13.4	51.8	8.53	7.63	7.16	39.13	38.83451	1.00	NORMAL
6/17/2022 16:08	11.82	13.14	25.38	913.3	1058.9	6.71	41.2	54.5	13.4	51.8	8.52	7.62	7.16	39.13	38.83406	1.00	NORMAL
6/17/2022 16:09	11.88	1.94	42.61	913.3	1062.9	6.71	41.2	54.5	13.3	51.8	8.51	7.62	7.16	39.13	38.83329	1.00	NORMAL
6/17/2022 16:10	11.99	23.67	70.66	913.3	1058.8	6.71	41.2	54.5	13.3	51.8	8.50	7.61	7.16	39.13	38.83162	1.00	NORMAL
6/17/2022 16:11	12.09	10.20	30.94	913.3	1058.5	6.71	41.3	54.6	13.3	51.8	8.50	7.61	7.16	39.13	38.83117	1.00	NORMAL
Average	11.71	19.49	61.23	901.40	1062.60	6.82	38.46	54.51	16.05	51.43	8.46	7.95	7.29	39.18	38.87	0.17	
Min	9.86	0.00	25.38	882.49	1043.92	6.71	33.60	54.42	13.22	49.52	7.36	7.61	7.13	39.13	38.82	0.00	Normal(on)
Max	12.80	738.58	165.49	919.62	1076.37	6.87	41.31	54.60	20.87	52.81	9.52	8.35	7.49	39.27	38.93	1.00	i

APPENDIX M

Modelling Results - Test Contaminants - ECA Contaminants

Scenario	Contaminant	CAS Number	Total Facility Emission	Air Dispersion Model Used	Maximum POI Concentratio	Averaging Period (Hrs)	ACB (μg/m³) [1]	Limiting Effect	Regulatio n Schedule	Benchmar k Category [2]	Percentage of MECP Standard
<u> </u>			Rate (g/s)		n (µg/m³)				#		(%)
Normal	1,2,4-Trichlorobenzene	120-82-1	8.81E-08	AERMOD	2.59E-05	24	400	Health	Guideline	B1	< 1%
	Aluminum Oxide	1344-28-1	2.83E-04	AERMOD	8.32E-02	24	120	Health	Guideline	B1	< 1%
	Arsenic (As)	7440-38-2	8.33E-07	AERMOD	2.45E-04	24	0.3	Health	Guideline	B1	< 1%
	Barium (Ba)	7440-39-3	8.91E-06	AERMOD	2.62E-03	24	10	Health	Guideline	B1	< 1%
[3][4]	PCDD/F (ITEQ)	n/a	8.84E-11	AERMOD	2.60E-08	24	1.00E-07	Health	Standard	B1	26%
[3][4]	PCDD/F (ITEQ)	n/a	8.84E-11	AERMOD	2.60E-08	24	1.00E-06	Health	URT	URT	3%
	Pentachlorophenol	87-86-5	8.81E-08	AERMOD	2.59E-05	24	20	Health	Guideline	B1	< 1%
	Phosphorus (P)	10026-13-8	9.37E-05	AERMOD	2.75E-02	24	10	Health	Guideline	B1	< 1%
	Total PCB	1336-36-3	8.86E-07	AERMOD	2.60E-04	24	0.15	Health	Guideline	B1	< 1%
	Selenium (Se)	7782-49-2	2.08E-06	AERMOD	6.12E-04	24	10	Health	Guideline	B1	< 1%
	Cadmium	7440-43-9	5.50E-07	AERMOD	1.62E-04	24	0.025	Health	Standard	B1	< 1%
	Cadmium	7440-43-9	5.50E-07	AERMOD	1.62E-04	24	0.25	Health	URT	URT	< 1%
	Carbon Monoxide	630-08-0	1.08E-02	AERMOD	1.00E+01	0.5	6000	Health	Standard	B1	< 1%
	Hydrochloric Acid	7647-01-0	8.97E-03	AERMOD	2.64E+00	24	20	Health	Standard	B1	13%
	Hydrochloric Acid	7647-01-0	8.97E-03	AERMOD	2.64E+00	24	200	Health	URT	URT	1%
	Lead	7439-92-1	4.88E-06	AERMOD	1.43E-03	24	0.5	Health	Standard	B1	< 1%
	Lead	7439-92-1	4.88E-06	AERMOD	2.62E-04	720	0.2	Health	Standard	B1	< 1%
	Lead	7439-92-1	4.88E-06	AERMOD	1.43E-03	24	2	Health	URT	URT	< 1%
	Mercury	7439-97-6	1.47E-05	AERMOD	4.32E-03	24	2	Health	Standard	B1	< 1%
	Oxides of Nitrogen	10102-44-0	2.28E-01	AERMOD	1.76E+02	1	400	Health	Standard	B1	44%
	Oxides of Nitrogen	10102-44-0	2.28E-01	AERMOD	6.70E+01	24	200	Health	Standard	B1	33%
	Particulate Matter	n/a	6.97E-03	AERMOD	2.05E+00	24	120	Visibility	Standard	B1	2%
	Sulphur dioxide	7446-09-5	5.47E-03	AERMOD	4.21E+00	1	690	Health	Standard	B1	< 1%
	Sulphur dioxide	7446-09-5	5.47E-03	AERMOD	1.61E+00	24	275	Health	Standard	B1	< 1%
	Sulphur dioxide	7446-09-5	5.47E-03	AERMOD	4.21E+00	1	690	Health	URT	URT	< 1%
[5]	Sulphur dioxide	7446-09-5	5.47E-03	AERMOD	4.21E+00	1	100	Health	Standard	B1	4%
[5]	Sulphur dioxide	7446-09-5	5.47E-03	AERMOD	2.24E-01	8760	10	Health	Standard	B1	2%

^{*}Modelling was updated in September, 2022. Meterological data was run using MECP Suburban Met. Data Set (v.19191) and modelling was completed using AERMOD v.19191

Notes:

[1] The term "MECP POI Limit" identified in Table D-4 of Guideline A-10 refers to the following information (there may be more than one relevant MECP POI Limit for each contaminant):

- Air quality Standards, Guidelines or SL-JSLs set out the MECP publication, "Air Contaminants Benchmark (ACB) List: Standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants", 01 April 2018;
- The Daily Assessment Values (DAV) from the MECP ACB List;
- The Annual Assessment Values (AAV) from the MECP ACB List; or,
- [2] Benchmark Categories are set out in the MECP ACB List; Benchmark 1 (B1) refers to Standards or Guidelines, Benchmark 2 (B2) refers to Screening Levels.
- [3] The PCDD/F (ITEQ) based on the total toxicity equivalent for all individual compounds based on stack sampling program conducted by RWDI
- [4] Concentrations in micrograms per cubic metre
- [5] New ACB Standard for Sulphur Dioxide, effective date July 1, 2023.
- [6] AERMOD maximum 1-hour predicted concentrations multiplied by factor of 1.2 to derive equivalent 1/2 hour concentrations.
 - 1 g/sec modelling rates results in a maximum half-hour POI of 925 μg/m³
 - 1 g/sec modelling rates results in a maximum 1-hour POI of (from Mode 770 μg/m³
 - 1 g/sec modelling rates results in a maximum 24-hour POI of (from Mode 294 µg/m³
 - 1 g/sec modelling rates results in a maximum Monthly POI of (from Mode $54 \mu g/m^3$

result multiplied by 140% as specified in MECP Guideline A-10, Secion 11.1.5.

1 g/sec modelling rates results in a maximum Annual Average POI of (fro 29 μg/m³ Any Annual POI Concentrations in Table 12 were obtained by multiplying the contaminant emission rate by the Annual Average unit dispersion factor with that

APPENDIX N

List of Participants

Individuals	Role	Company	Contact Information			
Kirk Easto	Project Management	RWDI	Kirk.Easto@rwdi.com			
Mitchell Southwell, B.Sc., QSTI	Stack Sampling - Team lead	RWDI	Mitchell.Southwell@rwdi.com			
Oluwatobi Odumoye, E.I.T., QSTI	Stack Sampling	RWDI	Oluwatobi.Odumoye@rwdi.com			
Hayden Edworthy	Stack Sampling	RWDI	Hayden.Edworthy@rwdi.com			
Sean Ratcliffe	Stack Sampling	RWDI	Sean.Ratcliffe@rwdi.com			
Dan Kokol	EHS Specialist	Stericycle	DKokol@stericycle.com			
Conan Fonseca	Facility Manager, Incinerator	Stericycle	Conan.Fonseca@stericycle.com			
Clayton Johnson	Lab Analysis	Bureau Veritas Labs	Clayton.Johnson@bureauveritas.com			

Source Evaluation Society

P. O. Box 12124 Research Triangle Park North Carolina 27709

October 26, 2021

Oluwatobi O. Odumoye RWDI 15 Columbus Crescent Guelph, Ontario N1G 3A7 CANADA

Subject: Qualified Source Tester Certificate No. 2021-1102

Qualification Notice - Manual Gas Volume Measurements and Isokinetic
Particulate Sampling Methods (exam date: 3/3/21)

Qualification Notice - Gaseous Pollutants Instrumental Sampling Methods
(exam date: 6/27/21)

Qualification Notice - Hazardous Metals Measurement Sampling Methods
(exam date: 3/26/21)

Dear Mr. Odumoye:

It is my pleasure to inform you that you have satisfied the requirements of the Source Evaluation Society Qualified Source Test Individual program for group exam(s) listed above. As a member of the successful candidates in this SES program, you should be proud of this distinction within the source emissions testing community. I am confident that you will continue to uphold the standards of technical excellence and ethical conduct embodied in the SES mission statement.

The enclosed Qualification Notice(s) and SES identification card are your permanent record of this achievement. This status is valid for the period shown on the Qualification Notices.

Congratulations on your achievement and I wish you continued success in your future endeavors.

Sincerely yours,

Peter R. Westlin

SES QSTI/QSTO Review Committee Chairman

cc.

Glenn England, SES QSTI/QSTO Review Board Member Karen D. Kajiya-Mills, SES QSTI/QSTO Review Board Member Peter S. Pakalnis, SES QSTI/QSTO Review Board Member Theresa M. Lowe, SES QSTI/QSTO Review Committee Administrator Bruce C. Randall, SES QSTI/QSTO Review Board Member J. Wade Bice, SES QSTI/QSTO Review Board Member Tina Sanderson, SES QSTI/QSTO Review Board Member

Source Evaluation Society

P. O. Box 12124 Research Triangle Park North Carolina 27709

An idea was introduced at the 2006 SSSAAP conference to list those individuals who have received their QSTI qualification approvals on the SES web site. The SES Board of Directors determined that individuals would have to approve in writing before making public such information. The QSTI Committee would like your permission to post the information shown below on the SES web site for public view. This information will be provided on the website as a link to an Excel spreadsheet. Your information will be listed as below or with any changes you indicate:

Name Company City/State/Zip:	Oluwatobi O. Oo RDWl Guelph, Ontario		
Contact Info.:	oo@rwdi.com; ioo	dumoye@gmail.com	
Any Addlt. Info:			
Passed:	Group 1	Exam Date: 3/3/21	Valid From - To: 03/03/2021 to 03/02/2026
	Group 3	Exam Date: 6/27/21	Valid From - To: 06/27/21 to 06/26/2026
	Group 4	Exam Date: 3/26/21	Valid From - To: 03/26/2021 to 03/25/2026
QSTI Certificate #:	2021-1102		

You may view the current spreadsheet format at the SES website at www.sesnews.org. If you agree to your name and information being posted, please sign below and email to Theresa Lowe at qstiprogram@gmail.com. Also, if you wish to have your contact information listed other than your email address, please note any changes above (e.g., an address, telephone or a cell phone number, etc.). Any further changes or additions will need to be made in writing and emailed to Theresa Lowe at qstiprogram@gmail.com.

	1	han	k you,	
--	---	-----	--------	--

Theresa Lowe		
SES QSTI/QSTO	Review Committee	Administrator

I give the SES QSTI/QSTO Review Committee approval to have my name and information as outlined above to be posted on the SES web site. Any changes have been noted above. This approval extends to any future exams for which I receive a QSTI or QSTO Qualification Approval(s).

Signature:	Date:
PASSED A METHOD GROUP EXAM? (T	FORMATION, UPON REQUEST, ABOUT WHETHER YOU HAVE he information released will be if you passed an exam and the date of the ITM D-7036-D.) YES DOOD IF YOU AGREE, PLEASE SIGN BELOW.
Signature:	Date:

Qualified Source Testing Individual

LET IT BE KNOWN THAT

OLUWATOBI O. ODUMOYE

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

ISSUED THIS 3RD DAY OF MARCH 2021 AND EFFECTIVE UNTIL MARCH 2ND, 2026

Peter P. Westlin, OSTI/OSTO Pavious Board

Peter R. Westlin, QSTI/QSTO Review Board

Peter S. Pakalnis, QSTI/QSTO Review Board

Tina Sanderson, QSTI/QSTO Review Board

Wode Bien

J. Wade Bice, QSTI/QSTO Review Board

Haren D. Kajiga Mills

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

NO. 2021-1102

Bruce Randall QSTI/QSTO Review Board

Qualified Source Testing Individual

LET IT BE KNOWN THAT

OLUWATOBI O. ODUMOYE

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

GASEOUS POLLUTANTS INSTRUMENTAL SAMPLING METHODS

ISSUED THIS 27TH DAY OF JUNE 2021 AND EFFECTIVE UNTIL JUNE 26TH, 2026

Peter R. Westlin, QSTI/QSTO Review Board

Peter S. Pakalnis, QSTI/QSTO Review Board

Tina Sanderson, QSTI/QSTO Review Board

J. Wade Bice, QSTI/QSTO Review Board

Bruce Randall QSTI/QSTO Review Board

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

CERTIFICATE NO.

2021-1102

Qualified Source Testing Individual

LET IT BE KNOWN THAT

OLUWATOBI O. ODUMOYE

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

HAZARDOUS METALS MEASUREMENT SAMPLING METHODS

ISSUED THIS 26TH DAY OF MARCH 2021 AND EFFECTIVE UNTIL MARCH 25TH, 2026

Peter R. Westlin, QSTI/QSTO Review Board

Peter S. Pakalnis, QSTI/QSTO Review Board

Tina Sanderson, QSTI/QSTO Review Board

J. Wade Bice, QSTI/QSTO Review Board

Bruce Randall QSTI/QSTO Review Board

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

CERTIFICATE NO.

2021-1102

Source Evaluation Society

P. O. Box 12124 Research Triangle Park North Carolina 27709

November 30, 2021

Mitchell O. Southwell RWDI 600 Southgate Drive Guelph, Ontario N1G 3W6 CANADA

Subject: Qualified Source Tester Certificate No. 2021-1108

Qualification Notice - Manual Gas Volume Measurements and Isokinetic
Particulate Sampling Methods (exam date: 3/4/21)

Qualification Notice - Manual Gaseous Pollutants Source Sampling Methods
(exam date: 3/25/21)

Qualification Notice - Hazardous Metals Measurement Sampling Methods
(exam date: 4/8/21)

Dear Mr. Southwell:

It is my pleasure to inform you that you have satisfied the requirements of the Source Evaluation Society Qualified Source Test Individual program for group exam(s) listed above. As a member of the successful candidates in this SES program, you should be proud of this distinction within the source emissions testing community. I am confident that you will continue to uphold the standards of technical excellence and ethical conduct embodied in the SES mission statement.

The enclosed Qualification Notice(s) and SES identification card are your permanent record of this achievement. This status is valid for the period shown on the Qualification Notices.

Congratulations on your achievement and I wish you continued success in your future endeavors.

Sincerely yours,

Peter R. Westlin

SES QSTI/QSTO Review Committee Chairman

CC:

Glenn England, SES QSTI/QSTO Review Board Member Karen D. Kajiya-Mills, SES QSTI/QSTO Review Board Member Peter S. Pakalnis, SES QSTI/QSTO Review Board Member Theresa M. Lowe, SES QSTI/QSTO Review Committee Administrator Bruce C. Randall, SES QSTI/QSTO Review Board Member J. Wade Bice, SES QSTI/QSTO Review Board Member Tina Sanderson, SES QSTI/QSTO Review Board Member

Source Evaluation Society

P. O. Box 12124 Research Triangle Park North Carolina 27709

An idea was introduced at the 2006 SSSAAP conference to list those individuals who have received their QSTI qualification approvals on the SES web site. The SES Board of Directors determined that individuals would have to approve in writing before making public such information. The QSTI Committee would like your permission to post the information shown below on the SES web site for public view. This information will be provided on the website as a link to an Excel spreadsheet. Your information will be listed as below or with any changes you indicate:

Name Company City/State/Zip:	Mitchell O. Sout RWDI Guelph, Ontario		
Contact Info.:	mitchellsouthwell(@gmail.com	
Any Addlt. Info:			
Passed:	Group 1	Exam Date: 3/4/21	Valid From - To: 03/04/2021 to 03/03/2026
	Group 2	Exam Date: 3/25/21	Valid From - To: 03/25/2021 to 03/24/2026
	Group 4	Exam Date: 4/8/21	Valid From - To: 04/08/2021 to 04/07/2026
QSTI Certificate #:	2021-1108		

You may view the current spreadsheet format at the SES website at www.sesnews.org. If you agree to your name and information being posted, please sign below and email to Theresa Lowe at qstiprogram@gmail.com. Also, if you wish to have your contact information listed other than your email address, please note any changes above (e.g., an address, telephone or a cell phone number, etc.). Any further changes or additions will need to be made in writing and emailed to Theresa Lowe at qstiprogram@gmail.com.

Thank you,

Theresa Lowe SES QSTI/QSTO Review Committee Administrator

I give the SES QSTI/QSTO Review Committee approval to have my name and information as outlined above to be posted on the SES web site. Any changes have been noted above. This approval extends to any future exams for which I receive a QSTI or QSTO Qualification Approval(s).

to any future exams for which I receive a QS	STI or QSTO Qualification Approval(s).
Signature:	Date:
PASSED A METHOD GROUP EXAM? (The info	ATION, UPON REQUEST, ABOUT WHETHER YOU HAVE ormation released will be if you passed an exam and the date of the 7036-D.) YES INO IN IF YOU AGREE, PLEASE SIGN BELOW
Signature:	Date:

Qualified Source Testing Individual

LET IT BE KNOWN THAT

MITCHELL O. SOUTHWELL

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GAS VOLUME MEASUREMENTS AND ISOKINETIC PARTICULATE SAMPLING METHODS

ISSUED THIS 4TH DAY OF MARCH 2021 AND EFFECTIVE UNTIL MARCH 3RD, 2026

Par Will

Peter R. Westlin, QSTI/QSTO Review Board

A. Andahi

Peter S. Pakalnis, QSTI/QSTO Review Board

J Sunderson

Tina Sanderson, QSTI/QSTO Review Board

Wode Bica

J. Wade Bice, QSTI/QSTO Review Board

Haren D. Kajing-Hills

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

NO. 2021-1108

Bruce Randall QSTI/QSTO Review Board

Qualified Source Testing Individual

LET IT BE KNOWN THAT

MITCHELL O. SOUTHWELL

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

MANUAL GASEOUS POLLUTANTS SOURCE SAMPLING METHODS

ISSUED THIS 25TH DAY OF MARCH 2021 AND EFFECTIVE UNTIL MARCH 24TH, 2026

the West

Peter R. Westlin, QSTI/QSTO Review Board

1. I'MANT

Peter S. Pakalnis, QSTI/QSTO Review Board

J Sunderson

Tina Sanderson, QSTI/QSTO Review Board

Wode Dice

J. Wade Bice, QSTI/QSTO Review Board

Haren D. Kajing-Hills

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

BRA

Bruce Randall QSTI/QSTO Review Board

NO. 2021-1108

Qualified Source Testing Individual

LET IT BE KNOWN THAT

MITCHELL O. SOUTHWELL

HAS SUCCESSFULLY PASSED A COMPREHENSIVE EXAMINATION AND SATISFIED EXPERIENCE REQUIREMENTS IN ACCORDANCE WITH THE GUIDELINES ISSUED BY THE SES QUALIFIED SOURCE TEST INDIVIDUAL REVIEW BOARD FOR

HAZARDOUS METALS MEASUREMENT SAMPLING METHODS

ISSUED THIS 8TH DAY OF APRIL 2021 AND EFFECTIVE UNTIL APRIL 7TH, 2026

Row Wall

Peter R. Westlin, QSTI/QSTO Review Board

A. Andahi

Peter S. Pakalnis, QSTI/QSTO Review Board

J. Sanderson

Tina Sanderson, QSTI/QSTO Review Board

Wode Bice

J. Wade Bice, QSTI/QSTO Review Board

Haren D. Kajing-Hills

Karen D. Kajiya-Mills , QSTI/QSTO Review Board

BRA

Bruce Randall QSTI/QSTO Review Board

NO. 2021-1108

APPENDIX E

A new emergency diesel generator was installed in 2016, model Generac SD500, with 500kW rated power, and 762hp at rated power.

Generator testing considers a 15-minute startup time during which no control of nitrogen oxides is assumed. Emission factors during this startup period are estimated using AP-42 Table 3.3-1. The Generac SD500 is EPA Certified for emissions, therefore emissions complying with EPA Tier 3 are assumed during normal operation following the startup period. Following MECP guidance for emergency standby generators, the significant contaminants emitted to the atmosphere from an emergency generator are nitrogen oxides, with an approval screening level of 1880 μ g/m³ maximum half-hour average at non-sensitive receptors. Therefore, only NOx is considered in the emission calculation. These calculations are provided in Step 1 and Step 2 below.

Step 1: Determining Emission Rates for startup and normal operation

Emission Rates at Startup

Contaminant	Electrical Power Rating [1] (hp)	Mechanical Power Rating [1] (bhp)	Emission Factor [2] (lb/hp-hr)	Emission Rate at startup (g/s)
NOx	762	914.4	0.031	3.57

Notes:

[1] Power rating for engine model SD500, as provided by the manufacturer. Brake horsepower was not provided and is assumed to be 20% higher.

[2] Emission factor from AP-42 Chapter 3.3 Table 3.3-1

Sample Emission Rate Calculations For NOx during unit startup:

NOx Emission Rate =	Power Rating	hp	Emission factor	lb	1	hr	453.59237	g
				hp-hr	3600	seconds	1	lb
NOx Emission Rate =	914.4	hp	0.031	lb	1	hr	453.59237	g
		•		hp-hr	3600	seconds	1	lb

NOx Emission Rate =

3.57 g/s

Emission Rates for Normal Operation

Contaminant	Power Rating	Emission Factor	Emission Rate,
	[1]	[2]	normal operation
	(kWe)	(g/kW-hr)	(g/s)
NOx	500	4.00	0.56

Notes:

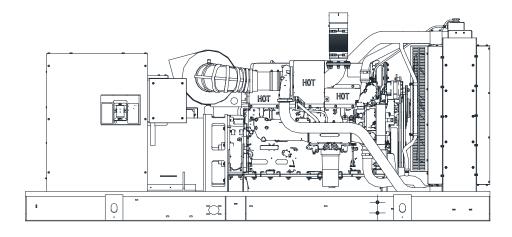
- [1] Power rating for engine model SD500, as provided by the manufacturer.
- [2] Emission factor for U.S. EPA Tier 3 Nonroad and Stationary Compression Ignition Engines

Sample Emission Rate Calculations For NOx during normal operation:

NOx Emission Rate =	Power Rating	kW	Emission factor	g	1	hr
				kW-hr	3600	seconds
NOx Emission Rate =	500	kW	4	g	1	hr
				kW-hr	3600	seconds
NOx Emission Rate =	0.56	g/s				

Step 2: Determining the Weighted Emission Rates Used in the Dispersion Model

Assessed a 15 minute warm up time, where generators operate without NOx control. After the 15 minute warm up time NOx control is assumed to U.S. EPA Tier 3 standards.


Startup 15 minutes Normal 45 minutes

Operating Mode	Emission Rates (g/s)	Exhaust Flow		Exhaust Temperature	
Operating wode	NOx	(m³/min)	(m³/s)	(°C)	(°K)
15 Minutes Startup	3.57	112	1.87	550	823
45 Minutes Normal	0.56	112	1.87	550	823
Weighted 1-Hour Average	1.31	112	1.87	550	823

Diameter 0.20 m Exit Velocity 57.6 m/s

STANDBY POWER RATING

500 kW, 625 kVA, 60 Hz

^{*}Built in the USA using domestic and foreign parts

Image used for illustration purposes only

CODES AND STANDARDS

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41

POWERING AHEAD

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to met the Standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generator. We choose only engines that Have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring out customer's service support continues after their generator purchase.

^{*}EPA Certified Prime ratings are not available in the US or its Territories

^{**}Certain options or customization may not hold certification valid

SPEC SHEET

SD500 | 15.2L | 500 kW

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

STANDARD FEATURES

ENGINE SYSTEM

General

- · Oil Drain Extension
- · Air Cleaner
- · Fan Guard
- · Stainless Steel flexible exhaust connection
- · Critical Exhaust Silencer (enclosed only)
- · Factory Filled Oil
- · Radiator Duct Adapter (open set only)

Fuel System

- · Fuel lockoff solenoid
- · Primary fuel filter

Cooling System

- · Closed Coolant Recovery System
- · UV/Ozone resistant hoses
- · Factory-Installed Radiator
- · Radiator Drain Extension
- 50/50 Ethylene glycol antifreeze
- · 120 VAC Coolant Heater

Engine Electrical System

- · Battery charging alternator
- Battery cables
- · Battery tray
- · Solenoid activated starter motor
- Rubber-booted engine electrical connections

ALTERNATOR SYSTEM

- UL2200 GENprotect™
- 12 leads (3-phase, non 600 V)
- · Class H insulation material
- · Vented rotor
- 2/3 pitch
- · Skewed stator
- · Auxiliary voltage regulator power winding
- Amortisseur winding
- · Brushless Excitation
- · Sealed Bearings
- Automated manufacturing (winding, insertion, lacing, varnishing)
- Rotor dynamically spin balanced
- · Full load capacity alternator
- · Protective thermal switch

GENERATOR SET

- · Internal Genset Vibration Isolation
- · Separation of circuits high/low voltage
- · Separation of circuits multiple breakers
- · Silencer Heat Shield
- · Wrapped Exhaust Piping
- · Silencer housed in discharge hood (enclosed only)
- · Standard Factory Testing
- 2 Year Limited Warranty (Standby rated Units)
- 1 Year Limited Warranty (Prime rated Units)

ENCLOSURE (IF SELECTED)

GENERAC*

 Rust-proof fasteners with nylon washers to protect finish

INDUSTRIAL

- · High performance sound-absorbing material
- · Gasketed doors
- · Stamped air-intake louvers
- · Air discharge hoods for radiator-upward pointing
- · Stainless steel lift off door hinges
- · Stainless steel lockable handles
- Rhino Coat[™] Textured polyester powder coat

TANKS (IF SELECTED)

- UL 142
- · Double wall
- Vents
- · Sloped top
- · Sloped bottom
- · Factory pressure tested (2 psi)
- Rupture basin alarm
- Fuel level
- · Check valve in supply and return lines
- Rhino Coat[™]- Textured polyester powder coat
- Stainless hardware

CONTROL SYSTEM

Control Panel

- Digital H Control Panel Dual 4x20 Display
- · Programmable Crank Limiter
- 7-Day Programmable Exerciser
- · Special Applications Programmable PLC
- RS-232/485
- · All-Phase Sensing DVR
- · Full System Status
- · Utility Monitoring
- · Low Fuel Pressure Indication
- · 2-Wire Start Compatible
- · Power Output (kW)

- Power Factor
- kW Hours, Total & Last Run
- Real/Reactive/Apparent Power
- All Phase AC Voltage
- · All Phase Currents
- Oil Pressure
- · Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage
- Frequency
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- · Waterproof/sealed Connectors
- · Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- Customizable Alarms, Warnings, and Events
- Modbus protocol
- Predictive Maintenance algorithm
- Sealed Boards
- Password parameter adjustment protection

- Single point ground
- 15 channel data logging
- 0.2 msec high speed data logging
- Alarm information automatically comes up on the display

Alarms

- Oil Pressure (Pre-programmable Low Pressure Shutdown)
- Coolant Temperature (Pre-programmed High Temp Shutdown)
- Coolant Level (Pre-programmed Low Level Shutdown)
- Engine Speed (Pre-programmed Over speed Shutdown)
- Battery Voltage Warning
- · Alarms & warnings time and date stamped
- Alarms & warnings for transient and steady state conditions
- Snap shots of key operation parameters during alarms & warnings
- Alarms and warnings spelled out (no alarm codes)

SD500 | 15.2L | 500 kW

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

GENERAC INDUSTRIAL POWER

CONFIGURABLE OPTIONS

ENGINE SYSTEM

General

- O 50° C Ambient Cooling System
- O Heavy Duty Air Cleaner
- O Critical & Hospital Grade Silencers
- O CCV (Closed Crankcase Ventilation)

Fuel Electrical System

- O 10A & 20A UL battery charger
- O Battery Warmer

ALTERNATOR SYSTEM

- O Alternator Upsizing
- O Anti-Condensation Heather

CIRCUIT BREAKER OPTIONS

- O Main Line Circuit Breaker
- O 2nd Main Line Circuit Breaker
- O Shunt Trip and Auxiliary Contact
- O Electronic Trip Breaker

GENERATOR SET

- O Intelimonitor Communications Software (English Only)
- O 8 Load Position Load Center
- O AC Electrical Lighting Package (ELP)
- O 5 Year Warranty
- O 5 Year Extended Warranty
- O Spring Isolators (Standard/Seismic)

ENCLOSURE

- O Weather Protected Enclosure
- O Level 1 Sound Attenuation
- O Level 2 Sound Attenuation
- O Steel Enclosure
- O Aluminum Enclosure
- O 150/180 MPH Wind Rating
- O Louvers with Gravity Dampers
- O Enclosure Heaters

TANKS (Size on last page)

- O Electrical Fuel Level
- O Mechanical Fuel Level
- O 12 Hour Run Time
- O 24 Hour Run Time
- O Fuel Line Kits
- O Fuel Water Separator

CONTROL SYSTEM

- O NFPA 110 Complaint
- O Remote Relay Board (8 or 16)
- O Oil Temperature Sender with Indication Alarm
- O Remote E-Stop (Break Glass-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom- Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Flush Mount)
- O Remote Communication Bridge
- O Remote Communication Ethernet
- O 10A Run Relay, 12 outputs
- O Ground Fault Indication and Protection Functions

ENGINEERED OPTIONS

ENGINE SYSTEM

- O Fluid containment Pan
- O Oil Heater
- O Stainless Steel Hardware

ALTERNATOR SYSTEM

- O 3rd Breaker Systems
- O Unit Mounted Load Banks
- O Medium Voltage Alternators

CONTROL SYSTEM

- O Spare inputs (x4) / outputs (x4)
- O Battery Disconnect Switch

GENERATOR SET

- O Special Testing
- O 12 VDC Enclosure Lighting Kit
- O 24 VDC/120 VAC Enclosure Lighting Kit

ENCLOSURE

- O Motorized Dampers
- O Intrusion Alert Door Switch

TANKS

- O Overfill Protection Valve
- O UL2085 Tank
- O ULC S-601 Tank
- O Stainless Steel Tank
- O Special Fuel Tanks (MIDEQ and FL DEP/DERM, etc.)
- O Vent Extensions
- O Transfer Pumps and Controllers
- O Fuel Tank Heaters

RATING DEFINITIONS

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability.

Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of every 12 hours. The Prime Power option is only available on International applications. Power ratings in accordance with ISO 8528-1, Second Edition

SD500 | 15.2L | 500 kW

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

1155 CCA

(2) - 12 VDC

Negative

8D

APPLICATION AND ENGINEERING DATA

ENGINE SPECIFICATIONS			
General		Cooling System	
Make	Perkins	Cooling System Type	Closed Recovery
EPA Emissions Compliance	Stationary Emergency	Water Pump	Centrifugal Type, Belt Driven
EPA Emissions Reference	See Emissions Data Sheet	Fan Type	Pusher
Cylinder #	6	Fan Speed (rpm)	1658
Туре	In-Line	Fan Diameter mm (in)	927 (36.5)
Displacement - L (cu In)	15.2	JW Coolant Heater Standard Wattage	
Bore - mm (in)	137 (5.39)	After Coolant Heater Standard Wattage	1500
Stroke - mm (in)	171 (6.73)	Coolant Heater Standard Voltage	240VAC
Compression Ratio	16.0:1		
Intake Air Method	Turbocharged/Intercooled	Fuel System	
Cylinder Head Type	4 - Valve	Fuel Type	Ultra Low Sulfur Diesel #2
Piston Type	Aluminum	Fuel Specifications	ASTM
Crankshaft Type	I-Beam Section	Fuel Filtering (microns)	Primary 10 - Secondary 2
Facility Occupation		Fuel Injection	Electronic
Engine Governing		Fuel Pump Type	Engine Driven Gear
Governor	Electronic Isochronous	Injector Type	MEUI
Frequency Regulation (Steady State)	+/- 0.25%	Engine Type	Pre-Combustion
		Fuel Supply Line mm (in)	12.7 (½"NPT)
Lubrication System		Fuel Return Line mm (in)	12.7 (½"NPT)
Oil Pump Type	Gear	F : F! !: !O !	
Oil Filter Type	Full-Flow Cartridge	Engine Electrical System	
Crankcase Capacity - L (qts)	45 (47.55)	System Voltage	24 VDC
		Battery Charging Alternator	70 Amps at 24V

Battery Size

Battery Group

Battery Voltage

Ground Polarity

ALTERNATOR SPECIFICATIONS

Standard Model	WEG	Standard Excitation	Permanent Magnet
Poles	4	Bearings	Single Sealed Cartridge
Field Type	Revolving	Coupling	Direct, Flexible Disc
Insulation Class - Rotor	Н	Load Capacity - Standby	100%
Insulation Class - Stator	Н	Prototype Short Circuit Test	Yes
Total Harmonic Distortion	<3%	Voltage Regulator Type	Digital
Telephone Interference Factor (TIF)	<50	Regulation Accuracy (Steady State)	±0.5%

SD500 | 15.2L | 500 kW

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

OPERATING DATA

POWER RATINGS

		Standby
Three-Phase 120/208 VAC @0.8pf	500 kW	Amps: 1735
Three-Phase 120/240 VAC @0.8pf	500 kW	Amps: 1504
Three-Phase 277/480 VAC @0.8pf	500 kW	Amps: 752
Three-Phase 346/600 VAC @0.8pf	500 kW	Amps: 601

STARTING CAPABILITIES (sKVA)

sKVA vs. Voltage Dip

		480 VAC						208/240 V	AC					
Alternator	kW	10%	15%	20%	25%	30%	35%	Alternator kW	10%	15%	20%	25%	30%	35%
Standard	500	475	686	914	1143	1371	1600	Standard 500) 429	643	857	1071	1286	1500
Upsize 1	642	471	707	943	1179	1414	1650	Upsize 1 689	9 543	814	1086	1357	1629	1900
Upsize 2	832	757	1136	1514	1893	2271	2650	Upsize 2 723	3 571	857	1143	1429	1714	2000

FUEL CONSUMPTION RATES*

Diesel - gal/hr (l/hr)

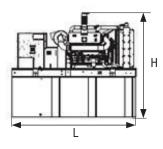
Fuel Pump Lift - ft (m)	Percent Load	Standby
12 (3.7)	25%	10.5 (39.7)
	50%	19.5 (73.8)
Total Fuel Pump Flow (Combustion + Return) gal/hr (l/hr)	75%	23.7 (89.7)
121 (457)	100%	31.2 (118.1)

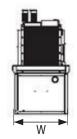
^{*} Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

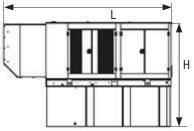
		Standby
Coolant Flow per Minute	gal/min (l/min)	114.1 (432)
Coolant System Capacity	gal (L)	13 (49)
Heat Rejection to Coolant	BTU/hr	1,198,080
Inlet Air	cfm (m³/hr)	30,582 (866)
Max. Operating Radiator Air Temp	Fo (Co)	122 (50)
Max. Ambient Temperature (before derate)	Fo (Co)	104 (40)
Maximum Radiator Backpressure	in H ₂ O	0.5

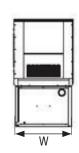
COMBUSTION AIR REQUIREMENTS

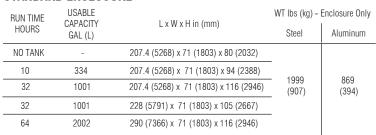

		Standby	
Flow at Rated Power	cfm (m³/min)	1483 (42)	

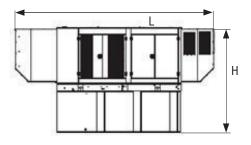

ENGINE			EXHAUST		
		Standby			Standby
Rated Engine Speed	rpm	1800	Exhaust Flow (Rated Output)	cfm (m³/min)	3955 (112)
Horsepower at Rated kW**	hp	762	Max. Backpressure (Post Silencer)	inHg (Kpa)	2.01 (6.8)
Piston Speed	ft/min (m/min)	2020	Exhaust Temp (Rated Output)	°F (°C)	1022 (550)
BMEP	psi	366	Exhaust Outlet Size (Open Set)	mm (in)	127 (5)

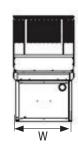
 $[\]ensuremath{^{**}}$ Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.


GENERAC INDUSTRIAL POWER


DIMENSIONS AND WEIGHTS*

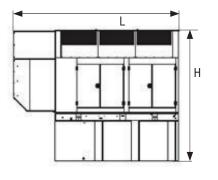

OI LIV OL			
RUN TIME USABLE CAPACITY GAL (L)		L x W x H in (mm)	WT lbs (kg) - Tank & Open Set
NO TANK	-	154.4 (3923) x 71 (1803) x 67 (1702)	10580 (4799)
10	334	158.5 (4026) x 71 (1803) x 81 (2057)	12255 (5559)
32	1001	158.5 (4026) x 71 (1803) x 103 (2616)	13180 (6978)
32	1001	228 (5791) x 71 (1803) x 92 (2337)	13730 (6228)
64	2002	290 (7366) x 71 (1803) x 103 (2616)	15430 (6999)

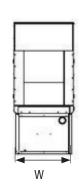




STANDARD ENCLOSURE

OPEN SET





LEVEL 1 ACOUSTIC ENCLOSURE

RUN TIME	('ΔΡΔ('IIV V W v H in /mm)		WT lbs (kg) -	Enclosure Only
HOURS GAL (L)		LAWATTIII (IIIIII)	Steel	Aluminum
NO TANK	-	247.5 (6285) x 71 (1803) x 80 (2032)		
10	334	247.5 (6285) x 71 (1803) x 94 (2388)	0700	4004
32	1001	247.5 (6285) x 71 (1803) x 116 (2946)	2782 (1262)	1291 (586)
32	1001	247.5 (6285) x 71 (1803) x 105 (2667)		
64	2002	290 (7366) x 71 (1803)x 116 (2946)		

LEVEL 2 ACOUSTIC ENCLOSURE

RUN TIME	USABLE	USABLE CAPACITY L x W x H in (mm)		Enclosure Only
HOURS	GAL (L)	EXTEXT III (IIIII)	Steel	Aluminum
NO TANK	-	207.4 (5268) x 71 (1803) x 114 (2899)		
10	334	207.4 (5268) x 71 (1803)) x 128 (3251)	— — 3330	1522
32	1001	207.4 (5268) x 71 (1803) x 150 (3810)	(1510)	(692)
32	1001	228 (5791) x 71 (1803) x 139 (3531)	_	
64	2002	290 (7366) x 71 (1803) x 150 (3810)	_	

Specification characteristics may change without notice. Dimensions and weights are for preliminary purposes only. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

^{*} All measurements are approximate and for estimation purposes only. Sound dBA can be found on the sound data sheet. Enclosure Only weight is added to Tank & Open Set weight to determine total weight.

APPENDIX F

Appendix G1: Cooling Tower Visible Plume

Stericycle 2022 ESDM Update

Location Toronto

Cooling Tower Specifications										Informati	on Per Cell		Total Exit	Total Exit	Total Exit	
Description / Group Name	Source ID	Group ^[1]	Make / Manufacturer	Quantity of Units	Number of Cells in Unit	Total Cells	Total Cells in Group	Air Flo (total for ent (cfm)		Fan Diameter (m)	Length (m)	Width (m)	Area (m²)	Area for Unit (m²)	Area for Unit type (m²)	Area for Group (m²)
BAC 33803-GS Cooling Tower	CT1	1	BAC	1	1	1	1	220150	104	3.35	-	-	8.81	8.81	8.81	8.81

RWDI# 2204908

Equations	
L=9.81*(Ro/u) ² *{ $(\rho_a-\rho)/\rho_a$ }	
Xo={(2/1.05)*Ro ³ /L} ^{0.5}	
X=(T-Ta)/(To-Ta)	
Xp=Xo*X ^{-0.75}	

	Atmospheric Conditions for the Site							
Parameter	Definition	Value	Units	Notes				
To	Temperature of air leaving tower (°C)	78	°F	Value from specifications				
	From Manufacturer's Specs for wet bulb temperature	25.6	°C					
Ta	Mean January Temperature for closest city	-5.5	°C	Mean January Temperature for Toronto - Provided by MECP Cooling Tower Guideline				
		22.1	°F					
T	From Psychrometric Chart provided in MECP Cooling Tower Guideline	-4.0	°C	From Psychrometric Chart provided in MECP Cooling Tower Guideline				
		24.8	°F					
Pa	Atmospheric pressure	101,325	Pa	Assumed value				
u	Average wind speed at point of discharge	5	m/s	Assumed value based on MECP Cooling Tower Guideline				
R	Ideal gas law constant	8.314	L kPa mol ⁻¹ K ⁻¹					
MW	Molecular weight of air	28.97	g / mol					
%RH	Mean January relative humidity for nearest city	80%		From MECP mean January temperatures and humidities (Table 1)				
Psat	Saturation vapor pressure at Ta using Goff-Gratch equation	405	Pa	See "Vapor Pressure" Sheet				
P _{H2O}	Partial pressure of water in air (P _{H2O} = %RH*Psat)	324	Pa					
Н	Humidity at %RH and Ta (H = 18.02*P _{H20} /[28.97*(Pa-PH2O)]) - Ideal Gas Law	0.0020	g H2O/g dry air					
Hs	Specific humidity at Ta and %RH (Hs = H*28.97*Pa/8.3145*Ta) - Ideal Gas Law	2.64	g H2O/m³ dry air	r = H x MW x Pa / R / (Ta + 273.15)				
Va	Specific volume of dry air at ambient conditions	12.13	ft³/lb	From Perry's handbook - see "Specific Volumes" Sheet				
Vas	Specific volume of water vapour in saturated air at ambient conditions	0.047	ft³/lb	From Perry's Handbook - see "Specific Volumes" Sheet				
Vaw	Specific volume of dry air and water vapour at ambient conditions	12.14	ft³/lb	= Va + Vaw * %RH				
Vs	Specific volume of dry air and water vapour at cooling tower temperature	14.00	ft³/lb	From Perry's Handbook - see "Specific Volumes" Sheet				
ρа	Density of dry air and water vapour at ambient conditions	0.082	lb/ft³	= 1/Vaw				
ρ	Density of air leaving tower (P = 1/Vs)	0.071	lb/ft³	= 1/Vs				
X	(X = [T - Ta]/[To - Ta])	0.048	-					

LENGTH OF VISIBLE PLUME, L

Description / Group Name	Name	Equivalent Radius for Group of Units Ro (m)	L (m)	Xo (m)	Length of Visible Plume Xp (m)	Distance to Nearest Receptor ^[2] (m)	Recentor Description
BAC 33803-GS Cooling Tower	CT1	1.68	0.15	7.81	77	800	Highway 407

Notes:

[1] Cooling Towers are treated as being grouped if all towers in the group "lie within a two-stack diameter radius of the middle of the group", as per ASHRAE 2007 guidance.

[2] Distance to nearest receptor is the distance to the point of impingement (typically the nearest major roadway).

Stericycle 2022 ESDM Update

The following describes the detailed calculations for fogging emissions from the cooling towers, based on the Ministry of the Environment and Climate Change's Cooling Tower Guideline.

This sample calculation is based on source CT1 (BAC), From Cooling tower group 1.

The representative location for meteorological conditions is Toronto.

Calculation 1 - Density of ambient air & air leaving the tower, ρ_a & ρ

```
\rho = \frac{1}{\left(V_S\right)} Where; To = 25.6 °C = Temperature of air leaving tower (°C) - From Manufacturer's Specs for wet bulb temperature; Vs = 14.0 ft³/lb = Specific volume at cooling tower temperature - From Perry's Handbook for To \rho = 1/14 \qquad |b/ft³| = Density of ambient air \& air leaving the tower (= 1/Vs) \rho_a = \frac{1}{\left(V_{aw}\right)}
```

Where;

$$V_{aw} = V_a + \%RH \times V_{as}$$

and

```
%RH = 80% = Relative Humidity - From MECP mean January temp. and humidities (Table 1 of Cooling Tower Guideline); T_a = -5.5 °C = Mean January Temperature for Toronto  
Va = 12.13 ft³/lb = Specific volume of ambient air - From Perry's handbook for Ta  
Vaw = 12.13 + 0.8 × 0.0468  
Vaw = 12.17 ft³/lb  

= Relative Humidity - From MECP mean January temp. and humidities (Table 1 of Cooling Tower Guideline); T_a = -5.5 °C  

= Mean January Temperature for Toronto  

**Specific volume of ambient air - From Perry's handbook for Ta  

Vaw = 12.13 + 0.8 × 0.0468  

**Vaw = 12.17 ft³/lb  

**Toronto  

**Toronto  

**Toronto  

**Specific volume of water vapour in saturated air - From Perry's handbook for Ta  

Vaw = 12.17 ft³/lb  

**Toronto  

**Toron
```

Therefore,

$$\begin{array}{ll} \rho_a = \ 1 \ / \ 12.17 & Ib/ft^3 \\ \rho_a = \ 0.082 & Ib/ft^3 \end{array}$$

Calculation 2 - Scaling Length, L

$$\begin{split} L &= g \times \left(\frac{R_O}{u}\right)^2 \times \left(\frac{\left(\rho_a - \rho\right)}{\rho_a}\right) \\ \text{Where;} \\ g &= 9.81 & \text{m/s}^2 &= \text{Gravitational constant} \\ \text{Ro} &= 1.68 & \text{m} &= \text{Equivalent fan radius for the 1 cooling tower(s) in Group 1;} \\ u &= 5 & \text{m/s} &= \text{Wind speed - typical based on MECP guidance;} \\ \rho &= 0.082 & \text{lb/ft}^3 &= \text{Density of ambient air - as above (Calculation 1); and,} \\ \rho &= 0.071 & \text{lb/ft}^3 &= \text{Density of air leaving the tower - as above (Calculation 1).} \\ \text{L} &= 9.81 \times [(1.68)/(5)]^2 \times [(0.082 - 0.071)/(0.082)] \\ \text{L} &= 0.15 & \text{m} \end{split}$$

= Equivalent fan radius for the 1 cooling tower(s) in Group 1;

Calculation 3 - Initial Length of Visible Plume, X_o

```
X<sub>o</sub> = [(2/1.05) x (1.68<sup>3</sup>/0.148)]^0.5
```

$$X_0 = 7.8$$
 m

Calculation 4 - Determine Temperature from Psychometric chart (°C), T

The first point on the chart (Point A) would be the temperature of air leaving the tower (T_0) :

°C = Temperature of air leaving the tower

As the tower is in the Toronto region, the ambient temerature would be:

°C = Mean ambient January temperature for Toronto

The relative humidity would be:

= Mean ambient January relative humidity for Toronto;

Using the Goff-Gratch equation at Ta, the saturation vapor pressure would be:

Psat = 405 Pa = Saturation vapor pressure at Ta;

While:

P_{H2O} = %RH x Psat Pa = Partial Pressure of water in air $P_{H2O} = 324.4$ Pa = Partial Pressure of water in air

And;

Pa = 101,325 Pa = Atmospheric pressure

Based on these values the humidity can be determined:

$$H = \frac{\left(1802 \times P_{H2O}\right)}{2897\left(P_a - P_{H2O}\right)}$$

H = 0.0020g H2O/g dry air

Also the specific humidity can be determined:

$$H_{\rm S} = \frac{(H \times 2897 \times Pa)}{(8.3145 \times (T_a + 237.15))}$$

Hs = 2.64g H2O/m3 dry air

The coordinates of (T_a, H_S) constitute Point B on the chart.

The two points (A & B) are joined, the location where this line crosses the saturation curve of the chart is Point C. The temperature at Point C is the Temperature value needed to perform the plume length calculation, therefore,

°C = Temperature from Psychrometric chart

Calculation 5 - Plume Length Temperature Correction, X

$$X = \frac{\left(T - T_a\right)}{\left(T_O - T_a\right)}$$

 $T_0 = 25.6$ °C = Temperature of air leaving the tower

°C = Mean ambient January temperature for Toronto

Ta = -5.5 °C T = -4.0 °C = Temperature from Psychrometric chart

X = [-4 - (-5.5)]/[25.6 - (-5.5)]

X = 0.048

Calculation 6 - Length of Visible Plume X_p

$$X_{P}=X_{O}\times X^{-0.75}$$
 Where,
$$X_{O}=7.82 \qquad m \qquad = \text{Initial Length of Visible Plume} \\ X=0.048 \qquad = \text{Parameter calculated in Calculation 5 (dimensionless)}$$

$$X_{P}=7.82\times (0.048)^{\Delta}-0.75 \\ X_{P}=77 \qquad m$$

Thus the length of the visible plume is 77m

Appendix G3: Cooling Tower Particulate Emissions

Stericycle 2022 ESDM Update

Source Label	Tower Size (cooling ton)	Circulating [1	Water Flow	Drift Loss ^[2]		Total Dissolved Solids ^[3]		PM-10 Emission Factor	PM-10 Emission Rate ^[4]	
		(gal/min)	(L/s)	(%)	(L/s)	(g/s)	(ppm)	(g/L)	(g/L)	(g/s)
CT1	405	1215	77	0.02%	0.0153	15.3	1,000	1.0	2.0E-04	1.53E-02
									Total =	1.53E-02

Notes:

- [1] Circulating water flow based on typical cooling tower ratio of 3 gal/min per cooling ton.
- [2] Drift loss based on US-EPA AP-42 (Chapter 13.4) estimated Total Liquid drift and density of water (1 kg/L).
- [3] Total dissolved solids (TDS) based on manufacturer's (BAC) maximum allowable TDS concentration in cooling water (1,000 ppm).
- [4] PM emissions assume 100% of TDS are emitted as PM-10 once water component evaporates off.

Example Calculation for (CT1)

Circulating Water Flow = 77 L/s

Drift Loss = 0.020%

Water Density = 1,000 g/L

TDS concentration = 1,000 ppm = 1.00E-03 g/g

The particulate emission calculation is:

PM-10 Emissions = circulating water flow (L/s) x drift loss (%) x water density (g/L) x TDS conc (g/g)

PM-10 Emissions =	77 L	0.020%	1,000 g	1.00E-03 ppm
•	1 s		1 L	

PM-10 Emissions = 0.015330919 g/s

RWDI# 2204908

MAY-25-2012 13:19

P.01

SUBMITTAL DATA FORM

С			<u> </u>
USTOMER	MEDICAL WASTE MANAGEMENT, INC. 95 DEERHURST DRIVE BRAMPTON, ONTARIO L6T 5R7	DATE P.O. NO, B.A.C. NO. MODEL NO. SHIP DATE	10/17/00 C000143201 33803-G\$ 12/15/00
 `` 			

PROJECT:

MEDICAL WASTE MANAGEMENT, INC.

ENGINEER:

GYRPHON INTERNATIONAL ENGINEERING - ST. CATHARINES, ON

B.A.C. REP:

H.E. RIECKELMAN, INC. - MISSISSAUGA, ON

COOLING TOWER

ALL INFORMATION IS PER UNIT

CERTIFIED CAPACITY: 1215 USGPM OF WATER FROM 105°F TO 80°F AT 73°F ENTERING WET BULB

FAN MOTOR(\$):

(1) 60 HP, 1800/900 RPM, 3 PHASE, 60 HERTZ, SUITABLE 575 VOLTS, TWO SPEED, ONE WIND, TEFC ENCLOSURE. FAN DRIVES BASED ON 0" ESP. FAN MOTOR IS EXTERNALLY MOUNTED.

NOTE:

 Two speed fan motors and/or Energy Miser Fan Systems require a starter that incorporates a 15 second time delay when switching from high to low speed.

3 COPIES OF SUBMITTAL PACKAGE

DRAWINGS	FEATURES
UNIT PRINT (BAC-19048A)	REMOTE SUMP APPLICATION, LESS FLOAT VALVE AND STRAINER
STEEL SUPPORT (BAC-18623A)	EXTERNALLY MOUNTED MOTOR
CONDUIT / WIRING (BAC-18658A & BAC-7092A)	GEAR DRIVEN FAN SYSTEM
OUTLET LOCATION (BAC-18783B)	TOP WATER INLET WITH BALANCING VALVES
INLET ARRANGEMENT (BAC18669B)	MECHANICAL VIBRATION CUTOUT SWITCH
LADDER (BAC-18662A)	EXTENDED LUBRICATION LINES
VIBRATION CUTOUT LOCATION / WIRING (BAC-17491A & BAC-11493A)	ALUMINUM LADDER WITH GALVANIZED STEEL SAFETY CAGE AND HAND RAILS TO (TO SHIP LOOSE)

THANK YOU FOR YOUR ORDER ACCEPTED AT THE B.A.C. GEORGETOWN, CANADA PLANT ON: SEPTEMBER 27, 2000

AN APPROVED SUBMITTAL IS NOT REQUIRED. YOUR ORDER HAS BEEN SCHEDULED FOR SHIPMENT FROM OUR FACTORY APPROXIMATELY 12/15/00. PLEASE BE PREPARED TO ACCEPT THE EQUIPMENT AS SCHEDULED, OUR FACILITIES CANNOT ACCOMMODATE STORAGE OF COMPLETED UNITS.

BALTIMORE AIRCOIL COMPANY TERMS & CONDITIONS OF SALE ATTACHED.

P.O. BOX 7322, BALTIMORE, MARYLAND 21227 / TELE; (410) 799-6200 / FAX: (410) 799-6416

P.O. BOX 960, MADERA, CALIFORNIA 93639 / TELE: (209) 673-9231 / FAX: (209) 673-5095

P.O. BOX 317, PAXTON, ILLINOIS 60957 / TELE: (217) 379-2311 / FAX: (217) 379-3522

P.O. BOX 402, MILFORD, DELAWARE 19963 / TELE: (302) 422-3061 / FAX: (302) 422-9269

³⁵ SINCLAIR AVENUE, GEORGETOWN, ONTARIO L7G 1J3 / TELE: (905) 877-5272 / FAX: (905) 877-9400

Terms and Conditions of Sale

Pricing: Prices shall remain firm, provided this order is released for fabrication within six (6) months after receipt of the order by Seller and shipped within Seller's standard published factory leadtimes. For each additional month or portion thereof, one percent (1%) of the price per month will be added for a period not to exceed six (6) months, after which the price in effect at time of shipment will apply. In the event that Buyer requests for its convenience that Seller delay delivery of products subject to this order beyond the scheduled delivery date, pricing shall be subject to the same adjustment.

Payments: If the Buyer shall fail to make any payments in accordance with the terms and conditions of sale, the Seller, in addition to its other rights and remedies but not in limitation thereof, may, at its option, without prior notice, cancel this order as to any undelivered products or defer shipments or deliveries hereunder, or under any other agreement between Buyer and Seller, except upon Seller's receipt of cash before shipment or such security as Seller considers satisfactory. Seller reserves the right to impose an interest charge (not exceeding the lawful maximum) on the balance of each invoice not paid on its due date for the period from the due date to the date of receipt of payment by Seller. In the event Buyer's failure to make timely payments to Seller results in Seller incurring additional costs, including but not limited to collection expenses and attorneys' fees, said costs shall be added to the amount due Seller from Buyer. Buyer shall have no right to any retainage and shall not withhold payment on Seller's Invoice in any amount.

Taxes: Unless listed on the front (reverse) side of this document, prices do <u>not</u> include any federal, state or local sales, use or value-added taxes payable in connection with this order. All such taxes shall be paid by Buyer.

Allocation of Risk: Deliveries shall be considered made when the products subject to this order are loaded on the carrier. At such time, title to the goods and all risk of loss, damage or shortage shall pass to Buyer, and any claims based thereon must be filed by Buyer with the carrier.

Force Majeure: Seller shall under no circumstances be liable for any loss or damage resulting from delay or failure in the performance of its obligations under this contract to the extent that such performance is delayed or prevented by: fires, floods, war, riots, strikes, freight embargoes or transportation delays, shortage of labor, inability to secure fuel, material, supplies or power at current prices, or on account of shortages thereof; acts of God or of the public enemy; any existing or future laws or acts of the federal, state or local government (including specifically, but not exclusively, any orders, rules or regulations issued by any official or agency of any such government) affecting the conduct of Seller's business with which Seller in its judgment and discretion deems it advisable to comply as a legal or patriotic duty, or to any case beyond the Seller's reasonable control.

Warranties: Seller warrants that the products sold under this contract shall be free from defects in material and workmanship for a period of twelve (12) months from the date of equipment startup or eighteen (18) months from the date of shipment, whichever occurs first. The following mechanical equipment components only are warranted against defects in materials and workmanship for a period of five (5) years from date of shipment. fans, fan shafts, bearings, sheaves, gearboxes, driveshafts, couplings, mechanical equipment supports and fan motors. Written notice of any defect shall be given to Seller immediately upon discovery by Buyer, and shall fully describe the claimed defect. Defective parts shall be repaired or replaced F.O.B. point of shipment, provided that inspection by Seller verifies the claimed defect(s). This shall be Buyer's exclusive remedy. This warranty does not cover the costs of removing, shipping or reinstalling the equipment. Repairs made without the prior written approval of Seller shall void all warranties covering material and workmanship. Any descriptions of the product(s) in the contract are for the sole purpose of identification and do not constitute a warranty. In the interest of product improvement, Seller reserves the right to change specifications and product design without incurring any liability therefor. The foregoing express warranties are the only warranties of Seller applicable to the product(s) sold under this contract. All other warranties, whether verbal or written, and all warranties implied by law, including any warranties of merchantability or fitness for a particular purpose, are hereby excluded. Failure on the part of Buyer or of other parties to properly maintain the product(s) sold under this contract, or the operation of such product(s), by Buyer and/or other parties under conditions more severe than those for which such product(s) were designed, shall void all warranties covering materials and workmanship. Seller's warranties do not apply to defects in product(s) for which payment in full has not been received by Seller, and sald warranties do not cover normal wear and tear or the erosion, corrosion and/or deterioration of the product(s) from unusual causes. No warranties by Seller shall apply to accessories manufactured by others, inasmuch as they are warranted separately by their respective manufacturers, except as stated above. Seller shall in no event be liable for consequential, incidental or special damages arising out of a breach of any of its warranties or of any other obligations hereunder. Buyer assumes liability for and shall bear the costs of compliance with all laws, regulations, codes standards or ordinances applicable to the location, operation and maintenance of the product(s) sold under this contract, including those requirements pertaining to the distances between such product(s) and air-conditioning system duct intakes. No representative or agent of Seller is authorized to enlarge upon the express warranties of Seller.

Cancellation/Changes/Returns: Cancellation of or changes in any order by Buyer shall not be effective without Buyer's notice thereof received, agreed to, and confirmed in writing by Seller. If Seller, in its absolute discretion, approves Buyer's cancellation of an order, Buyer agrees to pay a reasonable cancellation charge. Seller's prior written consent must be obtained before Buyer returns any products, and when so returned will be subject to a handling charge and transportation costs payable by Buyer.

Indemnification: Buyer shall hold harmless and indemnify Seller from and against all liability, claims, losses, damages, and expenses (including attorneys' fees) for personal injury and properly damage arising out of Buyer's improper unloading, handling, or use of the products subject to this order, and for Buyer's infringement of another's property rights.

Government Contracts: If Buyer's purchase order is for products to be used in the performance of a U.S. Government contract, those clauses of applicable procurement regulations mandatorily required by federal law to be included in U.S. Government subcontracts shall be incorporated herein by reference.

Export Transactions: Buyer shall comply with all applicable export laws and regulations of the U.S. Government, and shall hold harmless and indemnify Seller from and against all liability, damages, and expenses (including attorneys' fees) incurred by Seller as a result of Buyer's violation of any U.S. Government export and/or international antiboycott laws or regulations.

Agreement of Sale: Buyer's order is accepted on the terms and conditions stated herein and Seller's acceptance of Buyer's order is expressly made conditional upon Buyer's assent to such terms and conditions, including any of Seller's terms and conditions which may be additional to or different from those contained in Buyer's purchase order or otherwise. Such assent shall be deemed to have been given unless written notice of objection to any such terms and conditions (including inconsistencies between Buyer's purchase order and this acceptance) is given by Buyer to Seller promptly upon receipt of this acknowledgment. Any agreement or understanding, oral or written, which modifies or waives the terms and conditions herein (whether contained in Buyer's purchase order or other documentation) shall be deemed material and shall be rejected unless hereafter agreed to in writing and signed by Seller's authorized officer. Waiver by Seller of any breach or default hereunder shall not be deemed a waiver by Seller of any other or subsequent breach or default which may thereafter occur. Neither the rights nor the obligations of either Buyer or Seller are assignable without the prior written consent of the other party. This agreement of sale and all rights and obligations of Buyer and Seller shall be governed by and construed in accordance with the laws of the State of Maryland.

MAY-25-2012 13:19 P.03

SUBMITTAL DATA FORM

Ú DATE 10/17/00 s MEDICAL WASTE MANAGEMENT, INC. P.O. NO Ţ 95 DEERHURST DRIVE B.A.C. NO. C000143201 Ö BRAMPTON, ONTARIO L6T 5R7 MODEL NO. 33803-GS Μ E SHIP DATE 12/15/00 R

PROJECT:

MEDICAL WASTE MANAGEMENT, INC.

ENGINEER:

GYRPHON INTERNATIONAL ENGINEERING - ST. CATHARINES, ON

B.A.C. REP:

H.E. RIECKELMAN, INC. - MISSISSAUGA, ON

COOLING TOWER

ALL INFORMATION IS PER UNIT

CERTIFIED CAPACITY: 1215 USGPM OF WATER FROM 105°F TO 80°F AT 73°F ENTERING WET BULB

FAN MOTOR(S):

(1) 60 HP, 1800/900 RPM, 3 PHASE, 60 HERTZ, SUITABLE 575 VOLTS, TWO SPEED, ONE WIND.

TEFC ENCLOSURE. FAN DRIVES BASED ON 0" ESP. FAN MOTOR IS EXTERNALLY MOUNTED.

NOTE:

Two speed fan motors and/or Energy Miser Fan Systems require a starter that incorporates a 15 second time delay when switching from high to low speed.

3 COPIES OF SUBMITTAL PACKAGE

DRAWINGS	FEATURES
UNIT PRINT (BAC-19048A)	REMOTE SUMP APPLICATION, LESS FLOAT VALVE AND STRAINER
STEEL SUPPORT (BAC-18623A)	EXTERNALLY MOUNTED MOTOR
CONDUIT / WIRING (BAC-18658A & BAC-7092A)	GEAR DRIVEN FAN SYSTEM
OUTLET LOCATION (BAC-18783B)	TOP WATER INLET WITH BALANCING VALVES
INLET ARRANGEMENT (BAC18669B)	MECHANICAL VIBRATION CUTOUT SWITCH
LADDER (BAC-18662A)	EXTENDED LUBRICATION LINES
VIBRATION CUTOUT LOCATION / WIRING (BAC-17491A & BAC-11493A)	ALUMINUM LADDER WITH GALVANIZED STEEL SAFETY CAGE AND HAND RAILS TO (TO SHIP LOOSE)

THANK YOU FOR YOUR ORDER ACCEPTED AT THE B.A.C. GEORGETOWN, CANADA PLANT ON: SEPTEMBER 27, 2000

AN APPROVED SUBMITTAL IS NOT REQUIRED. YOUR ORDER HAS BEEN SCHEDULED FOR SHIPMENT FROM OUR FACTORY APPROXIMATELY 12/15/00. PLEASE BE PREPARED TO ACCEPT THE EQUIPMENT AS SCHEDULED, OUR FACILITIES CANNOT ACCOMMODATE STORAGE OF COMPLETED UNITS.

BALTIMORE AIRCOIL COMPANY TERMS & CONDITIONS OF SALE ATTACHED

P.O. BOX 7322, BALTIMORE, MARYLAND 21227 / TELE; (410) 799-6200 / FAX; (410) 799-6416

P.O. BOX 960, MADERA, CALIFORNIA 93639 / TELE: (209) 673-9231 / FAX: (209) 673-5095

P.O. BOX 317, PAXTON, ILLINOIS 60957 / TELE; (217) 379-2311 / FAX: (217) 379-3522

P.O. BOX 402, MILFORD, DELAWARE 19963 / TELE: (302) 422-3061 / FAX: (302) 422-9269

³⁵ SINCLAIR AVENUE, GEORGETOWN, ONTARIO L7G 1J3 / TELE: (905) 877-5272 / FAX: (905) 877-9400

MAY-25-2012 13:19

ISO PORT

October 17, 2000

Baltimore Aircoil Company

Series 3000 Cooling Tower Mechanical Specifications

G-235 (Z700 metric) Hot-Dip Galvanized Steel Structural Elements with FRP Casing Panels

Project Name;

Medical Waste Management, Inc.

Customer Name:

Medical Waste Management, Inc. - Brampton, ON

Purchase Order No.:

Engineer Name: Grypl

Gryphon International Engineering - St. Catharines, ON 33803-GS

Model Number: B.A.C. Serial No.:

C000143201

Unit Type:

Factory assembled, induced draft, crossflow cooling tower with vertical air discharge. Principal structural construction is of heavy gauge G-235 (Z700 metric) hot-dip galvanized steel angles and channels. The edges of the hot-dip galvanized steel components are given a protective coat of

zinc-rich compound.

Thermal Performance:

Thermal performance is certified by the Cooling Technology Institute in

accordance with CTI Certification Standard STD-201.

Quality Assurance:

Each unit is manufactured under closely-controlled conditions using standardized parts to ensure each unit is built precisely to the same high-quality design and construction standards. The design, manufacture, and business processes are ISO 9001 certified.

Cold Water Basin:

Constructed of heavy gauge G-235 (Z700 metric) hot-dip galvanized steel. Basin includes a depressed center section with drain/clean-out connection. Basin area under the fill sections are sloped toward the depressed center section for easy cleaning.

Connections:

All cold water basin connections four inches (4") (102 mm) and larger are

both beveled for welding and grooved for mechanical coupling.

Connections less than four inches (4") (102 mm) are provided with male

pipe thread (MPT).

Water Level Control:

Water level control and strainer are omitted for remote sump application.

Casing:

Casing is constructed of fiberglass-reinforced polyester (FRP) panels.

Access Doors:

Hinged 34" X 35" (864 mm X 889 mm) access doors are provided on both side walls of the tower for access to eliminators and fan plenum section. The doors are made of G-235 (Z700 metric) hot-dip galvanized steel with an exterior overlay of fiberglass-reinforced polyester (FRP),

MAY-25-2012 13:19 P.05

Air Inlet Louvers:

Air inlet louvers are wave-formed, fiberglass-reinforced polyester (FRP),

spaced to minimize air resistance and prevent water splash-out.

Water Distribution System:

Two (2) 150# (68 kg) stud circle hot water inlet connections (per cell) are located at the top of the unit. A butterfly valve for each inlet connection is shipped loose for field mounting by others.

Hot Water Basins:

Hot water distribution basins are open gravity type constructed of heavy gauge, G-235 (Z700 metric) hot-dip galvanized steel with G-235 (Z700 metric) hot-dip galvanized steel basin covers. Polypropylene metering orifices are provided to assure even distribution of water over the wet deck surface.

Wet Deck & Eliminators:

The BACross® Wet Deck Surface and integral drift eliminators are formed from polyvinyl chloride (PVC). They are impervious to rot, decay, and fungus or biological attack and have a flame spread rating of 5 per ASTM Standard E84-77a. The eliminators are designed to effectively strip entrained moisture from the leaving airstream with a minimum of air resistance. This wet deck is suitable for a maximum entering water temperature of 120°F (48.8°C).

Gear Speed Reducer:

Speed reducer is a right angle, gear drive designed specifically for cooling tower service. Spiral bevel or spiral bevel/helical gears are designed in accordance with the Cooling Tower Institute STD-111, "Gear Speed Reducers". All gears have a minimum service factor of 2.0 based on design fan horsepower and are for both forward and reverse operation. An oil level fill port and sight glass are located on the gear drive to facilitate routine inspection and maintenance. The gear drive motor(s), mounting base(s), and drive shaft(s) must be field installed. The drive shaft(s) must also be properly aligned after installation by qualified personnel to ensure satisfactory operation.

Composite Drive Shaft:

The composite drive shaft is a high misalignment coupling designed for cooling tower applications. The male and female coupling tube halves are also made of compression molded composite material. Only the hubs and mounting hardware are galvanized steel.

Mechanical Support:

The mechanical equipment support consists of a tubular steel assembly designed to maintain alignment of rotating parts during start-up and operating conditions.

Fan Shaft and Bearings:

Fan(s) and steel fan shaft(s) are supported by heavy-duty, self-aligning, grease-packed, relubricatable ball bearings with special seals for protection against dust and moisture. All bearings are designed for minimum L10 life of 40,000 hours (280,000 hours average life).

TEFC Fan Motor(s):

Fan motor(s) is totally enclosed, two speed, one wind, fan-cooled (TEFC) ball bearing type with 1.15 service factor, and suitable for outdoor service. It is mounted outside the moist discharge air stream.

Fan and Fan Cylinder:

Fan(s) are fixed pitch, heavy duty, cast aluminum, axial flow. The heavy gauge, G-235 (Z700) hot-dip galvanized fan cylinder(s) are designed for streamlined air entry and minimum tip clearances for maximum fan efficiency.

MAY-25-2012 13:19 P.06

Fan Guard: A heavy gauge, hot-dip galvanized steel wire fan guard is provided over

each fan cylinder.

Extended Lubrication Lines: Bearing lubrication lines are extended to grease fittings located on the

face of the unit.

Vibration Cutout Switch: Each fan driver is equipped with a vibration cutout switch to prevent

further catastrophic failure of fans once the failure begins to occur. The vibration switch(es) is mechanically tripped with a frequency range of 0 to 3,600 RPM and trip point of 0.2 to 2.0 g's. No input power is required. Switch rating is 15 amperes at 125 VAC or 480 VAC, 1/2 ampere at 125

Vdc and 1/4 ampere at 250 Vdc.

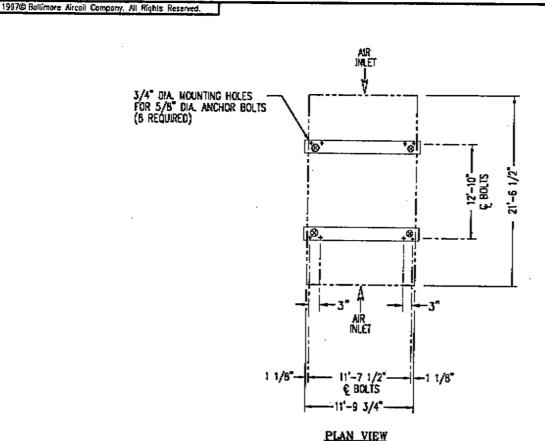
External Access: An aluminum ladder, galvanized steel safety cage, and perimeter safety

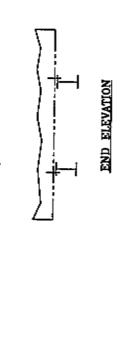
railing constructed of 1-1/4" (32 mm) galvanized steel pipe are provided

to access the top of the unit. These items meet pertinent OSHA standards and ship loose for field assembly and installation by others.

A

DRAWING NUMBER:


BAC-19048A



COMPANY

10/17/00

DATE:

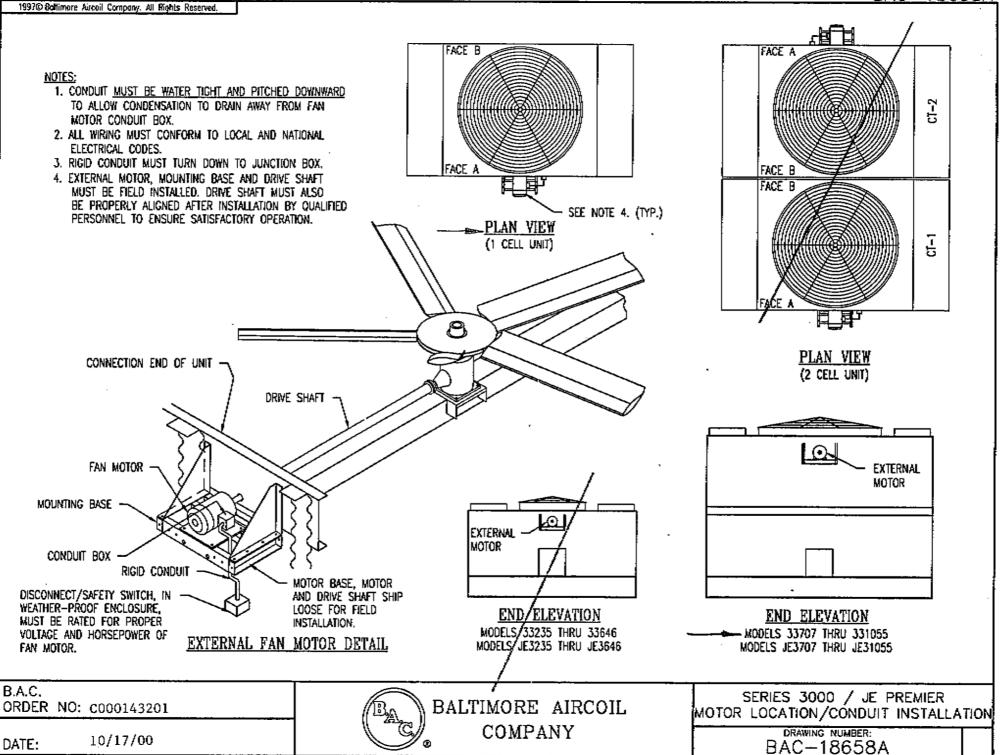
					ACTIONS PSF)	SEISMIC R (UBC-2)	EACTIONS ONE 4)
MOOEL NO.	Shipping Weight (LBS)	OPERATING WEIGHT (LBS)	WEIGHT AT ⊗ (LOS)	MAX, VERT. REACTION AT & (L8S)	MAX. HORIZ. REACTION AT (\$) (LBS)	MAX. VERT. REACTION AT ⊗ (LBS)	MAX. HORIZ. REACTION AT (CLBS)
_33707 _JE3707	12900	34690	8673	+/- 3285	2465	+/- 6150	5235
_33758 JE3758	12960	34750	8688	+/- 3285	2465	+/ 8150	5235
33803 JE3803	13120	34910	8728	+/- 3285	2465	+/- 6150	5235

WIND OR SEISMIC REACTIONS ARE ADDITIVE TO OPERATING WEIGHT.

NOTES:

- 1. SUPPORTING STEELHORK AND ANCHOR BOLTS TO BE DESIGNED AND FURNISHED BY OTHERS.
- 2. ALL SUPPORTING STEEL MUST BE LEVEL AT TOP.
- 3. BEAKS SHOULD BE SELECTED IN ACCORDANCE WITH ACCEPTED STRUCTURAL PRACTICE, MAXIMUM DEFLECTION OF BEAK UNDER UNIT TO BE 1/360 OF SPAN, NOT TO EXCEED 1/2 INCH.
- 4. ALTERNATELY THE TOWER MAY BE SUPPORTED ON COLUMNS AT THE ANCHOR POINTS SHOWN, COLUMNS MUST PROVIDE A MINIMUM OF 12" X 12" BEARING SURFACE UNDER EACH OF THE CONCENTRATED LOAD POINTS.
- 5. IF VIBRATION ISOLATION RAILS ARE USED BETWEEN TOWER AND SUPPORTING STEEL, BE CERTAIN TO ALLOW FOR THE LENGTH OF THE VIBRATION RAILS WHEN DETERMINING LENGTH OF SUPPORTING STEEL VIBRATION RAIL LENGTH AND MOUNTING HOLE LOCATION MAY OFFER FROM THOSE OF THE COOLING TOWER, REFER TO VIBRATION ISOLATOR DRAWINGS FOR THIS DATA.
- 6. OPERATING WEIGHT AND WEIGHT LOADING ARE FOR TOWER WITH WATER LEVEL IN PAN AT OVERFLOW.
- WEIGHTS SHOWN ARE FOR STANDARD UNIT. SOME ACCESSORIES MAY REQUIRE WEIGHT ADDS. SEE RESPECTIVE ACCESSORY SUBMITTAL DRAWING FOR WEIGHT ADD.

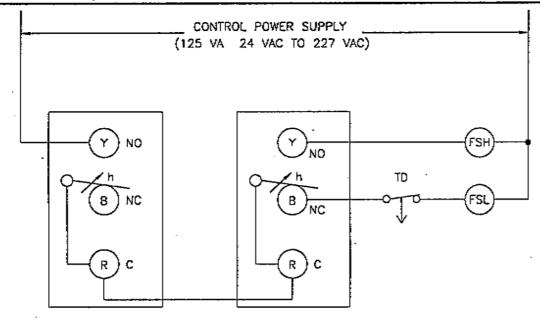
B.A.C. ORDER NO:	C000143201
DATE:	10/17/00


BALTIMORE AIRCOIL COMPANY

SERIES 3000/JE PREMIER
SUGGESTED STEEL SUPPORT-PLAN A

DRAWING NUMBER: BAC-18623A

A



7.09

LOW - TEMP

SWICH

HIGH - TEMP

SWICH

- A 15 SECOND TIME DELAY IS REQUIRED BEFORE ENERGIZING THE LOW SPEED CIRCUIT WHEN SWITCHING FROM HIGH SPEED.
- 2. THE LOW SPEED AND HIGH SPEED FAN CIRCUITS SHOULD BE WIRED SUCH THAT BOTH FAN CONTROL CIRCUITS DO NOT ENERGIZE AT THE SAME TIME,
- 3. AT LOW SPEED, LOW TEMPERATURE SWITCH WILL BE IN NORMALLY OPEN POSITION AND HIGH TEMPERATURE SWITCH WILL BE IN NORMALLY CLOSED POSITION, AT HIGH SPEED, BOTH SWITCHES WILL BE IN NORMALLY OPEN POSITIONS.

SYMBOL	DESCRIPTION
FSH FSL NO NC C TD	HIGH SPEED FAN CONTROL CONTACTOR COIL LOW SPEED FAN CONTROL CONTACTOR COIL NORMALLY OPEN CONTACT NORMALLY CLOSED CONTACT COMMON TIME DELAY CONTACTOR COIL (NORMALLY CLOSED INSTANT OPEN, TIME CLOSED DELAY OFF)

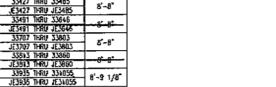
DANGER - POTENTIAL HIGH VOLTAGE HAZARD

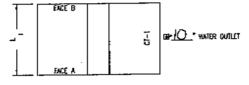
WHEN A POWER FACTOR CORRECTION CAPACITOR IS USED WITH THE LOW SPEED. MOTOR OF THE ENERGY MISER FAN SYSTEM, THE POWER FACTOR CORRECTION CAPACITOR MUST BE DISCONNECTED FROM THE LOW SPEED MOTOR POWER CIRCUIT WHEN THE LOW SPEED MOTOR IS DE-ENERGIZED. THIS IS NECESSARY IN ORDER TO PREVENT THE POWER FACTOR CORRECTION CAPACITOR FROM ALLOWING THE LOW SPEED MOTOR TO ACT AS A GENERATOR AND PRODUCE HIGH VOLTAGES IN THE LOW SPEED MOTOR CIRCUIT WHEN THE HIGH SPEED MOTOR IS OPERATING. THEREFORE, THE LOW SPEED MOTOR POWER FACTOR CORRECTION CAPACITOR MUST BE WIRED TO THE LOW SPEED MOTOR POWER CIRCUIT THROUGH A SET OF NORMALLY OPEN CONTACTS WHICH WILL DISCONNECT THE CAPACITOR FROM THE POWER CIRCUIT WHEN THE LOW SPEED MOTOR STARTER CIRCUIT IS DE-ENERGIZED. I.E., WHEN THE LOW SPEED MOTOR IS TURNED OFF.

TYPICAL WIRING DIAGRAM FOR TWO SPEED MOTOR OR ENERGY-MISER® FAN SYSTEM USING TWO SPDT THERMOSTATS (ALL COMPONENTS AND WIRING SUPPLIED BY OTHERS)

B.A.C. ORDER NO: C000143201 10/17/00 DATE

BALTIMORE AIRCOIL COMPANY


DRAYING NUMBER: RAC-7092 A


MAY

BOTTOM CONKECTION PAPE FLANCE HICHITAG SURFACE -(SEE NOTE 4)-

1 15/16" FROM

BUSE OF UNIT FLEVATION MEN BOTTON OUTLET

PLAN MEN OF 1-CELL UNIT

1997@Bolimore Arcel Company All Rights Reserved.

TABUS-2 MAXIMUM FLOW RATE FOR PAN BOTTON CONNECTIONS (GPM)

7ABLE-1 CONNECTION LOCATIONS

5'-10"

6-9 1/1

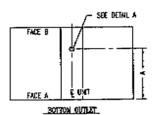
MODEL HUMBER 33235 THRU 33315

JE3235 THRU JE3315

33341 THRU 33424

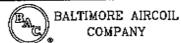
JE3341 THRU JE3424 33127 THRU 33185

The lost confidences					
	CONH. SIZE	WATER CUTLET			
	6*	350			
	-	100			
	10	1250			
	12	-1700			
	14	2300			
	16	_3000			
	16	3200			
	_20"	4650			

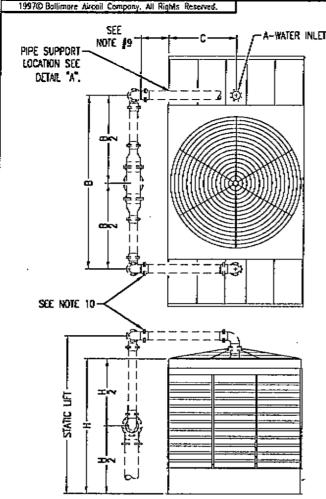

	THE PARTY OF THE P					
	NOCHET KANNESS					
:	33235 THRU 33345	7'-9 5/8'				
•	JC3235 THRU JE3315	1-3-570				
	33341 THRU 33424	0.000				
	JE3341 THRU JE3424	, .				
	33427 THRU 33860	11"-9 3/4"				
	JE3427 THRU JE3850					
	33935 THOU 331055	43°-11-4/8°				
	JE3935 THOU JE3H055					

1. DO HOT SUPPORT PPING FROM COOLING TONER, ML HECESSARY PIPING SUPPLED BY CHIEFS.

2. FELD PPIKG SKOULD BE FASSICATED AT TIME OF INSTALLATION, PRE-FABRICATION OF


PIPE WORK IS NOT RECOMMENDED. A FLOW RATES ARE CIVEN FOR REUDIE SUMP (GRANTY FLOW) APPLICATIONS. THEY ARE BASED ON THE MAXIMON HEAD AVAILABLE TO MOVE WARR FROM THE BASEN INTO THE

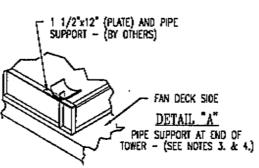
OUTLET PIPING. 4. THE BOLT HOLE PATTERN IS DIRLLED TO MATCH THE BOLF HOLE PATTERN OF A 150 POUND FLAT FACE EMERICAN SUMDARD FLANGE THE FLAT FACE FLANCE AND FLUL FACE CASKET IS NO BE FLANGS-ED BY OTHERS FOR MATING WITH THE UNIT.

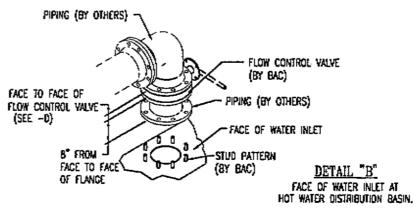


CONHECTION LOCATION
TOPICAL BUCH CELL [SEE TABLES 1 & 2)

B.A.C.	C000143201		
ORDER NO:	10/17/00		
DATE:	10/17/00		

SERIES 3000/ JE PREMIER BTM OUTLET- REMOTE SUMP	
(RAWING MUREA: RAC18783B	




NOTES:

- ALL PIPING SHOWN BY DASHED LINES IS TO BE FURNISHED BY OTHERS. REFER TO UNIT CERTIFIED DRAWING FOR DETAILS OF THE COOLING TOWER.
- FIELD PIPING SHOULD BE FABRICATED AT THE TIME OF UNIT INSTALLATION. PRE-FABRICATION OF PIPE WORK IS NOT RECOMMENDED.
- 3. SUPPLY PIPING TO COOLING TOWER INLET CONNECTIONS MAY BE SUPPORTED FROM TOWER STRUCTURE ONLY AT THE PIPE SUPPORT SUPPORT LOCATIONS SHOWN, PIPING MUST NOT BE SUPPORTED BY THE TOWER INLET CONNECTIONS, PIPING OUTSIDE OF THE PERIMETER OF THE TOWER MUST NOT BE SUPPORTED FROM THE TOWER.
- Supply Piping Supports must be designed to rest on the Walls of the hot water distribution basins at locations indicated. (See Detail "A").
- ALL PIPING SUPPORTS TO BE DESIGNED, FURNISHED AND INSTALLED BY OTHERS.

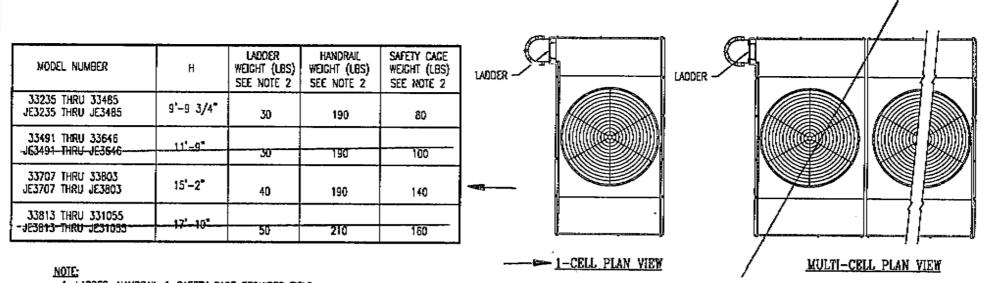
- MAXIMAIN DIAMETER OF INLET HEADER PIPING THAT CAN BE SUPPORTED BY THE COOLING TOWER WATER DISTRIBUTION BASSINS IS 14 INCHES.
- REQUIRED STATIC PUMPING HEAD FROM BASE OF COOLING TOWER IS INDICATED BY STATIC LIFT DIMENSION.
- WHEN TOWER IS EQUIPPED WITH SAFETY RAILING PACKAGE, INLET PIPING SHOULD BE DESIGNED TO CLEAR THE RAILING. ADJUST STATIC LIFT AS REQUIRED.
- PROVIDE ADEQUATE SPACE BETWEEN COOLING TOWER AND RISER PIPING TO ALLOW FOR ENTRY INTO THE COOLING TOWER ACCESS DOORS.
- FOR UNITS BEING INSTALLED ON VIBRATION ISOLATION RAILS, FLEXIBLE CONNECTIONS SHOULD BE INSTALLED IN THE PIPPIG JUST BEFORE THE TOWER PERIMETER.

	MODEL NO.	A WLET SIZE	В	c	D	Н
	33235 THRU 33315 JE3235 THRU JE3315	6*	11'-5 3/4"	3'-10 13/16"	2 1/8"	9'-9 3/4"
	33341 THRU 33424 JE3341 THRU JE3424	8"	13'-5 3/4"	4'-10 5/8"	2 1/2*	9'-9 3/4"
į	33427 THRU 33485 JE3427 THRU JE3485	8"	14'-11 3/4"	5'-10 7/8"	2 1/2*	9'-9 3/4"
	33491 THRU 33646 JE3491 THRU JE3646	8"	14' 11 3/4"	5' 10 7/8"-	-2-1/2 -	111-9" -
-	33707 THRU 33803 JE3707 THRU JE3803	8*	14'-11 3/4"	5'-10 7/8"	2 1/2"	15'-2"
	33813 THRU 33860 JE3813 THRU JE3860	8*	-14" 11 3/4"	-5'-10 7/8*	2 1/21	17'-10"-
	33935 THRU 331055 JE3935 THRU JE31055	10"	17'-5 3/4°	6'-11 9/16"	2 1/2*	17'-10"

PIPING BY OTHERS / FLOW CONTROL VALVES BY BAC AND INSTALLED BY OTHERS

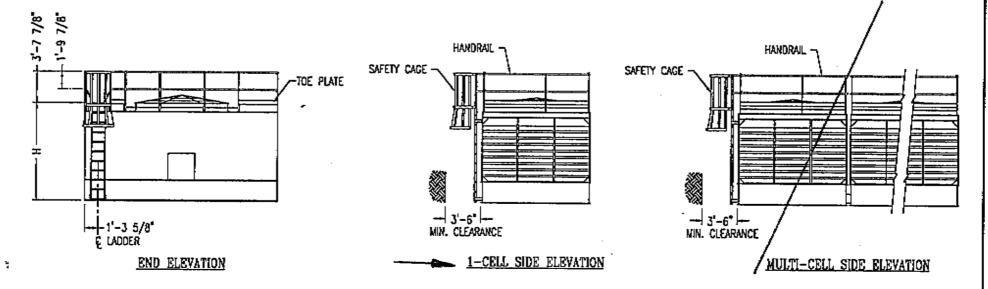
B.A.C. ORDER NO:

R NO: C000143201


DATE:

10/17/00

BALTIMORE AIRCOIL COMPANY SERIES 3000/JE PREMIER
TOP INLET TYP. PIPING ARRANGEMENT


DRAWING NUMBER: BAC-18669A 1

LADDER, HANDRAIL & SAFETY CAGE REQUIRES FIELD
ASSEMBLY.

1997@ Boltimore Aircoil Company, All Rights Reserved.

 WEIGHTS GIVEN ARE FOR LADDER, HANDRAIL & SAFETY CAGE RESPECTIVELY AND SHOULD BE ADDED TO STANDARD UNIT WEIGHT.

B.A.C. ORDER NO: C000143201 DATE: 10/17/00

BALTIMORE AIRCOIL COMPANY SERIES 3000 / JE PREMIER STD. LADDER, SAFTY CAGE, HANDRAIL

DRAWING NUMBER: BAC-18662A

A

ω

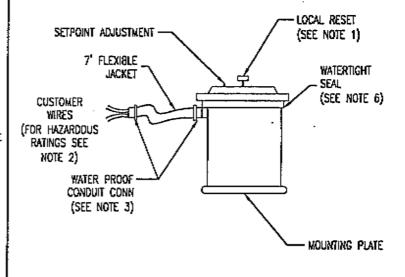
8

2000@ Bollimore Aircoil Company, Al Rights Reserved.

NOTES:

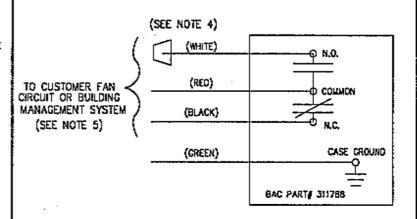
- 1. LOCAL PUSH BUTTON RESET.
- 2. TO MAINTAIN HAZARDOUS DUTY RATINGS, THE FACTORY INSTALLED WATER TIGHT CONDUIT/CABLE CONNECTION FITTINGS MUST BE REMOVED AND THE FOUR CONDUCTOR CABLE MUST BE ROUTED INSIDE OF A SUITABLE EXPLOSION PROOF CONDUIT, NOTE: THE CONNECTORS CAN EASILY BE REMOVED WITHOUT HAVING TO UN-WIRE THE CONDUCTORS FROM INSIDE THE CUTOUT SWITCH.
- 3. THE MECHANICAL MERATION CUTOUT SWITCH COMES WITH TWO WATER TIGHT CONDUIT/CABLE CONNECTORS. ONE CONNECTOR IS USED TO PROVIDE A WATER TIGHT CONNECTION TO THE MERATION CUTOUT SWITCH AND THE OTHER IS PROVIDED FOR THE ELECTRICIAN TO CONNECT THE WIRE CABLE TO A JUNCTION BOX LOCATED IN THE MEINITY OF THE MERATION CUTOUT SWITCH.
- 4. THE NORWALLY OPEN SWITCH WARE (WHITE) HAS A FACTORY INSTALLED BUTT END CONNECTOR SO THAT A CLOSED SIGNAL ENDICATES NORMAL OPERATION. IF REVERSE CONTROL LOGIC IS DESIRED, CUT OFF THE BUTT END CONNECTOR ON THE WHITE WHRE AND INSTALL A WIRE NUT OR BUTT CONNECTOR ON THE NORMALLY CLOSED WIRE (BLACK).
- 5. THIS MECHANICAL MBRATION CUTOUT SWITCH COMES WITH ONE SINGLE POLE DOUBLE THROW SWITCH. THE SWITCH CONTACTS 'ARE "ORY CONTACTS" WHICH CAN BE SUCCESSFULLY USED DIRECTLY IN THE FAN STARTER CONTROL (TYPICALLY A/C VOLTAGE) CIRCUIT OR DIRECTLY IN A BUILDING MANAGEMENT SYSTEM (TYPICALLY D/C VOLTAGE).
 CONTACT RATINGS: 15 AMPSO 125 OR 480 VAC. 1/2 AMPO 125 VOC. 1/4 AMPO 250 VOC.
- 6. CAUTION: MOISTURE INSIDE THE SWITCH CAN LEAD TO SWITCH FAILURE. CARE MUST BE TAKEN WHEN REPLACING THE COVER ON THE VIBRATION SWITCH TO ENSURE THAT THE PROPER WATERTISHT SEAL IS OBTAINED.

ADJUSTMENTS OF BAC MECHANICAL VIBRATION CUTOUT SWITCH


8AC RECOMMENDS THAT EACH VIBRATION CUTOFF SWITCH BE FIELD ADJUSTED AT START-UP TO OPTIMIZE THE TRIP POINT RELATIVE TO THE FINAL MOUNTING POSITION AND VIBRATIONAL CHARACTERISTICS OF THE INSTALLED EQUIPMENT.

NOTE: INSTALLATION AND ADJUSTMENT MUST BE PERFORMED BY A QUALIFIED, COMPETENT TECHNICIAN

- 1. FOR SAFETY SAKE, TURN OFF, THEN LOCK & TAG-OUT THE ELECTRICAL SUPPLY TO THE FAN MOTOR(S).
- 2. TURN ADJUSTMENT SCREW COUNTERCLOCKWISE (CCW) 1/8 TURN AT A TIME UNTIL YOU HEAR THE CONTROL TRIP.
- 3. ONCE TRIPPED, ROTATE ADJUSTMENT SCREW 1/4 TURN CLOCKHISE (CW) AND THEN PUSH IN MANUAL RESET BUTTON.
- 4. START UP FAN(S) TO DETERMINE IF THE START-UP WALL CAUSE THE CUT-OUT SWITCH TO TRIP.
- 5. IF THE VIBRATION CUTOUT SWITCH DOES NOT TRIP, THEN START AND STOP THE FAN TWO MORE TIMES AND IF THE CUTOUT SWITCH STILL DOES NOT TRIP, THEN CAUBRATION IS COMPLETE. IF THE VIBRATION CUTOUT SWITCH DID TRIP, THEN TURK OFF, THEN LOCK & TAG-OUT THE ELECTRICAL SUPPLY TO THE FAN MOTOR(S). ADJUST THE SET POINT SCREW AN ADMINISTAL 1/4 TURN CW AND THEN DEPRESS THE RESET BUTTON. RE-START THE FAN(S) TO DETERMINE IF THE START-UP FINAL CAUSE THE SMITCH TO TRIP. REPEAT THIS ADJUSTMENT PROCESS UNTIL THE CONTROL DOES NOT TRIP. CNCE THE FINAL ADJUSTMENT HAS BEEN MADE, START AND STOP THE FAN TWO MORE TIMES AND IF THE CUTOUT SWITCH STILL DOES NOT TRIP, THEN CALIBRATION IS COMPLETE.


MECHANICAL VIBRATION CUT-OUT SWITCH

(ONE-SINGLE POLE DOUBLE THROW SWITCH)

WIRING DIAGRAM

(ONE-SINGLE POLE DOUBLE THROW SWITCH - SEE NOTE 5)

BEFORE PERFORMING ANY MAINTENANCE, ADJUSTMENT OR INSPECTION OF THE SWITCH, MAKE CERTAIN THAT ALL POWER HAS BEEN DISCONNECTED AND LOCKED IN THE OFF POSITION.

SHUT OFF WITH LOCAL RESET

B.A.C. GRDER NO: C000143201 DATE: 10/17/00

BALTIMORE AIRCOIL COMPANY MECHANICAL VCOS WIRING DIAGRAM DRAWAG NUNBER: BAC-17491A

TOTAL

7

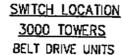
μ

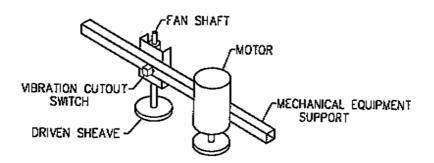
Follow the installation drawings and wiring diagram (see chart below) to ensure the proper operation of the vibration switch. Direct any questions to your local BAC Representative.

<u>NOTE</u>

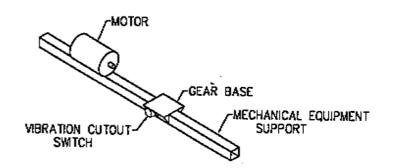
Moisture inside the switch can lead to switch failure. Care must be taken when replacing the cover on the vibration switch to ensure that the proper waterlight seal is obtained.

CAUTION

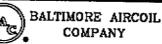

Before performing any maintenance, adjustment or inspection of the switch, make certain that all power has been disconnected and locked in the off position.


WRING DIAGRAM CHART

BAC-17491A=Shut down with local reset


BAC-17492A=Shut down & alorm, with remote or local reset & time delay on start (110 Vac)

BAC-17493A=Shut down & clarm, with remote or local reset & time delay on start (220 Vac)



SWITCH LOCATION
3000 TOWERS
GEAR DRIVE UNITS

B.A.C. ORDER NO: C000143201

DATE: 10/17/00

MECHANICAL VCOS LOCATION SERIES 3000 GRAWING MUMBER: BAC-11493A . 15

APPENDIX G

Modelling Files Supplied Electronically